Hash :
183d7e24
Author :
Date :
2015-11-20T15:59:09
Remove predefined precision qualifiers from ESSL3 samplers New sampler types in ESSL3 should not have default precision qualifiers. This is specified in ESSL 3.00.4 section 4.5.4. BUG=angleproject:1222 TEST=angle_unittests Change-Id: I9c8e7a5fbb4278db80de79bcaeebaf23e64242a0 Reviewed-on: https://chromium-review.googlesource.com/312048 Tryjob-Request: Olli Etuaho <oetuaho@nvidia.com> Tested-by: Olli Etuaho <oetuaho@nvidia.com> Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Zhenyao Mo <zmo@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/Cache.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/CallDAG.h"
#include "compiler/translator/ForLoopUnroll.h"
#include "compiler/translator/Initialize.h"
#include "compiler/translator/InitializeParseContext.h"
#include "compiler/translator/InitializeVariables.h"
#include "compiler/translator/ParseContext.h"
#include "compiler/translator/PruneEmptyDeclarations.h"
#include "compiler/translator/RegenerateStructNames.h"
#include "compiler/translator/RemovePow.h"
#include "compiler/translator/RenameFunction.h"
#include "compiler/translator/RewriteDoWhile.h"
#include "compiler/translator/ScalarizeVecAndMatConstructorArgs.h"
#include "compiler/translator/UnfoldShortCircuitAST.h"
#include "compiler/translator/ValidateLimitations.h"
#include "compiler/translator/ValidateOutputs.h"
#include "compiler/translator/VariablePacker.h"
#include "compiler/translator/depgraph/DependencyGraph.h"
#include "compiler/translator/depgraph/DependencyGraphOutput.h"
#include "compiler/translator/timing/RestrictFragmentShaderTiming.h"
#include "compiler/translator/timing/RestrictVertexShaderTiming.h"
#include "third_party/compiler/ArrayBoundsClamper.h"
#include "angle_gl.h"
#include "common/utilities.h"
bool IsWebGLBasedSpec(ShShaderSpec spec)
{
return (spec == SH_WEBGL_SPEC ||
spec == SH_CSS_SHADERS_SPEC ||
spec == SH_WEBGL2_SPEC);
}
bool IsGLSL130OrNewer(ShShaderOutput output)
{
return (output == SH_GLSL_130_OUTPUT ||
output == SH_GLSL_140_OUTPUT ||
output == SH_GLSL_150_CORE_OUTPUT ||
output == SH_GLSL_330_CORE_OUTPUT ||
output == SH_GLSL_400_CORE_OUTPUT ||
output == SH_GLSL_410_CORE_OUTPUT ||
output == SH_GLSL_420_CORE_OUTPUT ||
output == SH_GLSL_430_CORE_OUTPUT ||
output == SH_GLSL_440_CORE_OUTPUT ||
output == SH_GLSL_450_CORE_OUTPUT);
}
size_t GetGlobalMaxTokenSize(ShShaderSpec spec)
{
// WebGL defines a max token legnth of 256, while ES2 leaves max token
// size undefined. ES3 defines a max size of 1024 characters.
switch (spec)
{
case SH_WEBGL_SPEC:
case SH_CSS_SHADERS_SPEC:
return 256;
default:
return 1024;
}
}
namespace {
class TScopedPoolAllocator
{
public:
TScopedPoolAllocator(TPoolAllocator* allocator) : mAllocator(allocator)
{
mAllocator->push();
SetGlobalPoolAllocator(mAllocator);
}
~TScopedPoolAllocator()
{
SetGlobalPoolAllocator(NULL);
mAllocator->pop();
}
private:
TPoolAllocator* mAllocator;
};
class TScopedSymbolTableLevel
{
public:
TScopedSymbolTableLevel(TSymbolTable* table) : mTable(table)
{
ASSERT(mTable->atBuiltInLevel());
mTable->push();
}
~TScopedSymbolTableLevel()
{
while (!mTable->atBuiltInLevel())
mTable->pop();
}
private:
TSymbolTable* mTable;
};
int MapSpecToShaderVersion(ShShaderSpec spec)
{
switch (spec)
{
case SH_GLES2_SPEC:
case SH_WEBGL_SPEC:
case SH_CSS_SHADERS_SPEC:
return 100;
case SH_GLES3_SPEC:
case SH_WEBGL2_SPEC:
return 300;
default:
UNREACHABLE();
return 0;
}
}
} // namespace
TShHandleBase::TShHandleBase()
{
allocator.push();
SetGlobalPoolAllocator(&allocator);
}
TShHandleBase::~TShHandleBase()
{
SetGlobalPoolAllocator(NULL);
allocator.popAll();
}
TCompiler::TCompiler(sh::GLenum type, ShShaderSpec spec, ShShaderOutput output)
: shaderType(type),
shaderSpec(spec),
outputType(output),
maxUniformVectors(0),
maxExpressionComplexity(0),
maxCallStackDepth(0),
fragmentPrecisionHigh(false),
clampingStrategy(SH_CLAMP_WITH_CLAMP_INTRINSIC),
builtInFunctionEmulator(),
mSourcePath(NULL),
mTemporaryIndex(0)
{
}
TCompiler::~TCompiler()
{
}
bool TCompiler::shouldRunLoopAndIndexingValidation(int compileOptions) const
{
// If compiling an ESSL 1.00 shader for WebGL, or if its been requested through the API,
// validate loop and indexing as well (to verify that the shader only uses minimal functionality
// of ESSL 1.00 as in Appendix A of the spec).
return (IsWebGLBasedSpec(shaderSpec) && shaderVersion == 100) ||
(compileOptions & SH_VALIDATE_LOOP_INDEXING);
}
bool TCompiler::Init(const ShBuiltInResources& resources)
{
shaderVersion = 100;
maxUniformVectors = (shaderType == GL_VERTEX_SHADER) ?
resources.MaxVertexUniformVectors :
resources.MaxFragmentUniformVectors;
maxExpressionComplexity = resources.MaxExpressionComplexity;
maxCallStackDepth = resources.MaxCallStackDepth;
SetGlobalPoolAllocator(&allocator);
// Generate built-in symbol table.
if (!InitBuiltInSymbolTable(resources))
return false;
InitExtensionBehavior(resources, extensionBehavior);
fragmentPrecisionHigh = resources.FragmentPrecisionHigh == 1;
arrayBoundsClamper.SetClampingStrategy(resources.ArrayIndexClampingStrategy);
clampingStrategy = resources.ArrayIndexClampingStrategy;
hashFunction = resources.HashFunction;
return true;
}
TIntermNode *TCompiler::compileTreeForTesting(const char* const shaderStrings[],
size_t numStrings, int compileOptions)
{
return compileTreeImpl(shaderStrings, numStrings, compileOptions);
}
TIntermNode *TCompiler::compileTreeImpl(const char *const shaderStrings[],
size_t numStrings,
const int compileOptions)
{
clearResults();
ASSERT(numStrings > 0);
ASSERT(GetGlobalPoolAllocator());
// Reset the extension behavior for each compilation unit.
ResetExtensionBehavior(extensionBehavior);
// First string is path of source file if flag is set. The actual source follows.
size_t firstSource = 0;
if (compileOptions & SH_SOURCE_PATH)
{
mSourcePath = shaderStrings[0];
++firstSource;
}
TIntermediate intermediate(infoSink);
TParseContext parseContext(symbolTable, extensionBehavior, intermediate, shaderType, shaderSpec,
compileOptions, true, infoSink, getResources());
parseContext.setFragmentPrecisionHighOnESSL1(fragmentPrecisionHigh);
SetGlobalParseContext(&parseContext);
// We preserve symbols at the built-in level from compile-to-compile.
// Start pushing the user-defined symbols at global level.
TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable);
// Parse shader.
bool success =
(PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], nullptr, &parseContext) == 0) &&
(parseContext.getTreeRoot() != nullptr);
shaderVersion = parseContext.getShaderVersion();
if (success && MapSpecToShaderVersion(shaderSpec) < shaderVersion)
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "unsupported shader version";
success = false;
}
TIntermNode *root = nullptr;
if (success)
{
mPragma = parseContext.pragma();
if (mPragma.stdgl.invariantAll)
{
symbolTable.setGlobalInvariant();
}
root = parseContext.getTreeRoot();
root = intermediate.postProcess(root);
// Highp might have been auto-enabled based on shader version
fragmentPrecisionHigh = parseContext.getFragmentPrecisionHigh();
// Disallow expressions deemed too complex.
if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY))
success = limitExpressionComplexity(root);
// Create the function DAG and check there is no recursion
if (success)
success = initCallDag(root);
if (success && (compileOptions & SH_LIMIT_CALL_STACK_DEPTH))
success = checkCallDepth();
// Checks which functions are used and if "main" exists
if (success)
{
functionMetadata.clear();
functionMetadata.resize(mCallDag.size());
success = tagUsedFunctions();
}
if (success && !(compileOptions & SH_DONT_PRUNE_UNUSED_FUNCTIONS))
success = pruneUnusedFunctions(root);
// Prune empty declarations to work around driver bugs and to keep declaration output simple.
if (success)
PruneEmptyDeclarations(root);
if (success && shaderVersion == 300 && shaderType == GL_FRAGMENT_SHADER)
success = validateOutputs(root);
if (success && shouldRunLoopAndIndexingValidation(compileOptions))
success = validateLimitations(root);
if (success && (compileOptions & SH_TIMING_RESTRICTIONS))
success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0);
if (success && shaderSpec == SH_CSS_SHADERS_SPEC)
rewriteCSSShader(root);
// Unroll for-loop markup needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX))
{
ForLoopUnrollMarker marker(ForLoopUnrollMarker::kIntegerIndex);
root->traverse(&marker);
}
if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_SAMPLER_ARRAY_INDEX))
{
ForLoopUnrollMarker marker(ForLoopUnrollMarker::kSamplerArrayIndex);
root->traverse(&marker);
if (marker.samplerArrayIndexIsFloatLoopIndex())
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "sampler array index is float loop index";
success = false;
}
}
// Built-in function emulation needs to happen after validateLimitations pass.
if (success)
{
initBuiltInFunctionEmulator(&builtInFunctionEmulator, compileOptions);
builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root);
}
// Clamping uniform array bounds needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS))
arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root);
if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION))
initializeGLPosition(root);
// This pass might emit short circuits so keep it before the short circuit unfolding
if (success && (compileOptions & SH_REWRITE_DO_WHILE_LOOPS))
RewriteDoWhile(root, getTemporaryIndex());
if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT))
{
UnfoldShortCircuitAST unfoldShortCircuit;
root->traverse(&unfoldShortCircuit);
unfoldShortCircuit.updateTree();
}
if (success && (compileOptions & SH_REMOVE_POW_WITH_CONSTANT_EXPONENT))
{
RemovePow(root);
}
if (success && shouldCollectVariables(compileOptions))
{
collectVariables(root);
if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS)
{
success = enforcePackingRestrictions();
if (!success)
{
infoSink.info.prefix(EPrefixError);
infoSink.info << "too many uniforms";
}
}
if (success && shaderType == GL_VERTEX_SHADER &&
(compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE))
initializeVaryingsWithoutStaticUse(root);
}
if (success && (compileOptions & SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS))
{
ScalarizeVecAndMatConstructorArgs scalarizer(
shaderType, fragmentPrecisionHigh);
root->traverse(&scalarizer);
}
if (success && (compileOptions & SH_REGENERATE_STRUCT_NAMES))
{
RegenerateStructNames gen(symbolTable, shaderVersion);
root->traverse(&gen);
}
}
SetGlobalParseContext(NULL);
if (success)
return root;
return NULL;
}
bool TCompiler::compile(const char* const shaderStrings[],
size_t numStrings, int compileOptions)
{
if (numStrings == 0)
return true;
TScopedPoolAllocator scopedAlloc(&allocator);
TIntermNode *root = compileTreeImpl(shaderStrings, numStrings, compileOptions);
if (root)
{
if (compileOptions & SH_INTERMEDIATE_TREE)
TIntermediate::outputTree(root, infoSink.info);
if (compileOptions & SH_OBJECT_CODE)
translate(root, compileOptions);
// The IntermNode tree doesn't need to be deleted here, since the
// memory will be freed in a big chunk by the PoolAllocator.
return true;
}
return false;
}
bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources &resources)
{
compileResources = resources;
setResourceString();
assert(symbolTable.isEmpty());
symbolTable.push(); // COMMON_BUILTINS
symbolTable.push(); // ESSL1_BUILTINS
symbolTable.push(); // ESSL3_BUILTINS
TPublicType integer;
integer.type = EbtInt;
integer.primarySize = 1;
integer.secondarySize = 1;
integer.array = false;
TPublicType floatingPoint;
floatingPoint.type = EbtFloat;
floatingPoint.primarySize = 1;
floatingPoint.secondarySize = 1;
floatingPoint.array = false;
switch(shaderType)
{
case GL_FRAGMENT_SHADER:
symbolTable.setDefaultPrecision(integer, EbpMedium);
break;
case GL_VERTEX_SHADER:
symbolTable.setDefaultPrecision(integer, EbpHigh);
symbolTable.setDefaultPrecision(floatingPoint, EbpHigh);
break;
default:
assert(false && "Language not supported");
}
// Set defaults for sampler types that have default precision, even those that are
// only available if an extension exists.
// New sampler types in ESSL3 don't have default precision. ESSL1 types do.
initSamplerDefaultPrecision(EbtSampler2D);
initSamplerDefaultPrecision(EbtSamplerCube);
// SamplerExternalOES is specified in the extension to have default precision.
initSamplerDefaultPrecision(EbtSamplerExternalOES);
// It isn't specified whether Sampler2DRect has default precision.
initSamplerDefaultPrecision(EbtSampler2DRect);
InsertBuiltInFunctions(shaderType, shaderSpec, resources, symbolTable);
IdentifyBuiltIns(shaderType, shaderSpec, resources, symbolTable);
return true;
}
void TCompiler::initSamplerDefaultPrecision(TBasicType samplerType)
{
ASSERT(samplerType > EbtGuardSamplerBegin && samplerType < EbtGuardSamplerEnd);
TPublicType sampler;
sampler.primarySize = 1;
sampler.secondarySize = 1;
sampler.array = false;
sampler.type = samplerType;
symbolTable.setDefaultPrecision(sampler, EbpLow);
}
void TCompiler::setResourceString()
{
std::ostringstream strstream;
strstream << ":MaxVertexAttribs:" << compileResources.MaxVertexAttribs
<< ":MaxVertexUniformVectors:" << compileResources.MaxVertexUniformVectors
<< ":MaxVaryingVectors:" << compileResources.MaxVaryingVectors
<< ":MaxVertexTextureImageUnits:" << compileResources.MaxVertexTextureImageUnits
<< ":MaxCombinedTextureImageUnits:" << compileResources.MaxCombinedTextureImageUnits
<< ":MaxTextureImageUnits:" << compileResources.MaxTextureImageUnits
<< ":MaxFragmentUniformVectors:" << compileResources.MaxFragmentUniformVectors
<< ":MaxDrawBuffers:" << compileResources.MaxDrawBuffers
<< ":OES_standard_derivatives:" << compileResources.OES_standard_derivatives
<< ":OES_EGL_image_external:" << compileResources.OES_EGL_image_external
<< ":ARB_texture_rectangle:" << compileResources.ARB_texture_rectangle
<< ":EXT_draw_buffers:" << compileResources.EXT_draw_buffers
<< ":FragmentPrecisionHigh:" << compileResources.FragmentPrecisionHigh
<< ":MaxExpressionComplexity:" << compileResources.MaxExpressionComplexity
<< ":MaxCallStackDepth:" << compileResources.MaxCallStackDepth
<< ":EXT_blend_func_extended:" << compileResources.EXT_blend_func_extended
<< ":EXT_frag_depth:" << compileResources.EXT_frag_depth
<< ":EXT_shader_texture_lod:" << compileResources.EXT_shader_texture_lod
<< ":EXT_shader_framebuffer_fetch:" << compileResources.EXT_shader_framebuffer_fetch
<< ":NV_shader_framebuffer_fetch:" << compileResources.NV_shader_framebuffer_fetch
<< ":ARM_shader_framebuffer_fetch:" << compileResources.ARM_shader_framebuffer_fetch
<< ":MaxVertexOutputVectors:" << compileResources.MaxVertexOutputVectors
<< ":MaxFragmentInputVectors:" << compileResources.MaxFragmentInputVectors
<< ":MinProgramTexelOffset:" << compileResources.MinProgramTexelOffset
<< ":MaxProgramTexelOffset:" << compileResources.MaxProgramTexelOffset
<< ":MaxDualSourceDrawBuffers:" << compileResources.MaxDualSourceDrawBuffers
<< ":NV_draw_buffers:" << compileResources.NV_draw_buffers
<< ":WEBGL_debug_shader_precision:" << compileResources.WEBGL_debug_shader_precision;
builtInResourcesString = strstream.str();
}
void TCompiler::clearResults()
{
arrayBoundsClamper.Cleanup();
infoSink.info.erase();
infoSink.obj.erase();
infoSink.debug.erase();
attributes.clear();
outputVariables.clear();
uniforms.clear();
expandedUniforms.clear();
varyings.clear();
interfaceBlocks.clear();
builtInFunctionEmulator.Cleanup();
nameMap.clear();
mSourcePath = NULL;
mTemporaryIndex = 0;
}
bool TCompiler::initCallDag(TIntermNode *root)
{
mCallDag.clear();
switch (mCallDag.init(root, &infoSink.info))
{
case CallDAG::INITDAG_SUCCESS:
return true;
case CallDAG::INITDAG_RECURSION:
infoSink.info.prefix(EPrefixError);
infoSink.info << "Function recursion detected";
return false;
case CallDAG::INITDAG_UNDEFINED:
infoSink.info.prefix(EPrefixError);
infoSink.info << "Unimplemented function detected";
return false;
}
UNREACHABLE();
return true;
}
bool TCompiler::checkCallDepth()
{
std::vector<int> depths(mCallDag.size());
for (size_t i = 0; i < mCallDag.size(); i++)
{
int depth = 0;
auto &record = mCallDag.getRecordFromIndex(i);
for (auto &calleeIndex : record.callees)
{
depth = std::max(depth, depths[calleeIndex] + 1);
}
depths[i] = depth;
if (depth >= maxCallStackDepth)
{
// Trace back the function chain to have a meaningful info log.
infoSink.info.prefix(EPrefixError);
infoSink.info << "Call stack too deep (larger than " << maxCallStackDepth
<< ") with the following call chain: " << record.name;
int currentFunction = static_cast<int>(i);
int currentDepth = depth;
while (currentFunction != -1)
{
infoSink.info << " -> " << mCallDag.getRecordFromIndex(currentFunction).name;
int nextFunction = -1;
for (auto& calleeIndex : mCallDag.getRecordFromIndex(currentFunction).callees)
{
if (depths[calleeIndex] == currentDepth - 1)
{
currentDepth--;
nextFunction = calleeIndex;
}
}
currentFunction = nextFunction;
}
return false;
}
}
return true;
}
bool TCompiler::tagUsedFunctions()
{
// Search from main, starting from the end of the DAG as it usually is the root.
for (size_t i = mCallDag.size(); i-- > 0;)
{
if (mCallDag.getRecordFromIndex(i).name == "main(")
{
internalTagUsedFunction(i);
return true;
}
}
infoSink.info.prefix(EPrefixError);
infoSink.info << "Missing main()";
return false;
}
void TCompiler::internalTagUsedFunction(size_t index)
{
if (functionMetadata[index].used)
{
return;
}
functionMetadata[index].used = true;
for (int calleeIndex : mCallDag.getRecordFromIndex(index).callees)
{
internalTagUsedFunction(calleeIndex);
}
}
// A predicate for the stl that returns if a top-level node is unused
class TCompiler::UnusedPredicate
{
public:
UnusedPredicate(const CallDAG *callDag, const std::vector<FunctionMetadata> *metadatas)
: mCallDag(callDag),
mMetadatas(metadatas)
{
}
bool operator ()(TIntermNode *node)
{
const TIntermAggregate *asAggregate = node->getAsAggregate();
if (asAggregate == nullptr)
{
return false;
}
if (!(asAggregate->getOp() == EOpFunction || asAggregate->getOp() == EOpPrototype))
{
return false;
}
size_t callDagIndex = mCallDag->findIndex(asAggregate);
if (callDagIndex == CallDAG::InvalidIndex)
{
// This happens only for unimplemented prototypes which are thus unused
ASSERT(asAggregate->getOp() == EOpPrototype);
return true;
}
ASSERT(callDagIndex < mMetadatas->size());
return !(*mMetadatas)[callDagIndex].used;
}
private:
const CallDAG *mCallDag;
const std::vector<FunctionMetadata> *mMetadatas;
};
bool TCompiler::pruneUnusedFunctions(TIntermNode *root)
{
TIntermAggregate *rootNode = root->getAsAggregate();
ASSERT(rootNode != nullptr);
UnusedPredicate isUnused(&mCallDag, &functionMetadata);
TIntermSequence *sequence = rootNode->getSequence();
if (!sequence->empty())
{
sequence->erase(std::remove_if(sequence->begin(), sequence->end(), isUnused), sequence->end());
}
return true;
}
bool TCompiler::validateOutputs(TIntermNode* root)
{
ValidateOutputs validateOutputs(getExtensionBehavior(), compileResources.MaxDrawBuffers);
root->traverse(&validateOutputs);
return (validateOutputs.validateAndCountErrors(infoSink.info) == 0);
}
void TCompiler::rewriteCSSShader(TIntermNode* root)
{
RenameFunction renamer("main(", "css_main(");
root->traverse(&renamer);
}
bool TCompiler::validateLimitations(TIntermNode* root)
{
ValidateLimitations validate(shaderType, infoSink.info);
root->traverse(&validate);
return validate.numErrors() == 0;
}
bool TCompiler::enforceTimingRestrictions(TIntermNode* root, bool outputGraph)
{
if (shaderSpec != SH_WEBGL_SPEC)
{
infoSink.info << "Timing restrictions must be enforced under the WebGL spec.";
return false;
}
if (shaderType == GL_FRAGMENT_SHADER)
{
TDependencyGraph graph(root);
// Output any errors first.
bool success = enforceFragmentShaderTimingRestrictions(graph);
// Then, output the dependency graph.
if (outputGraph)
{
TDependencyGraphOutput output(infoSink.info);
output.outputAllSpanningTrees(graph);
}
return success;
}
else
{
return enforceVertexShaderTimingRestrictions(root);
}
}
bool TCompiler::limitExpressionComplexity(TIntermNode* root)
{
TMaxDepthTraverser traverser(maxExpressionComplexity+1);
root->traverse(&traverser);
if (traverser.getMaxDepth() > maxExpressionComplexity)
{
infoSink.info << "Expression too complex.";
return false;
}
TDependencyGraph graph(root);
for (TFunctionCallVector::const_iterator iter = graph.beginUserDefinedFunctionCalls();
iter != graph.endUserDefinedFunctionCalls();
++iter)
{
TGraphFunctionCall* samplerSymbol = *iter;
TDependencyGraphTraverser graphTraverser;
samplerSymbol->traverse(&graphTraverser);
}
return true;
}
bool TCompiler::enforceFragmentShaderTimingRestrictions(const TDependencyGraph& graph)
{
RestrictFragmentShaderTiming restrictor(infoSink.info);
restrictor.enforceRestrictions(graph);
return restrictor.numErrors() == 0;
}
bool TCompiler::enforceVertexShaderTimingRestrictions(TIntermNode* root)
{
RestrictVertexShaderTiming restrictor(infoSink.info);
restrictor.enforceRestrictions(root);
return restrictor.numErrors() == 0;
}
void TCompiler::collectVariables(TIntermNode* root)
{
sh::CollectVariables collect(&attributes,
&outputVariables,
&uniforms,
&varyings,
&interfaceBlocks,
hashFunction,
symbolTable);
root->traverse(&collect);
// This is for enforcePackingRestriction().
sh::ExpandUniforms(uniforms, &expandedUniforms);
}
bool TCompiler::enforcePackingRestrictions()
{
VariablePacker packer;
return packer.CheckVariablesWithinPackingLimits(maxUniformVectors, expandedUniforms);
}
void TCompiler::initializeGLPosition(TIntermNode* root)
{
InitializeVariables::InitVariableInfoList variables;
InitializeVariables::InitVariableInfo var(
"gl_Position", TType(EbtFloat, EbpUndefined, EvqPosition, 4));
variables.push_back(var);
InitializeVariables initializer(variables);
root->traverse(&initializer);
}
void TCompiler::initializeVaryingsWithoutStaticUse(TIntermNode* root)
{
InitializeVariables::InitVariableInfoList variables;
for (size_t ii = 0; ii < varyings.size(); ++ii)
{
const sh::Varying& varying = varyings[ii];
if (varying.staticUse)
continue;
unsigned char primarySize = static_cast<unsigned char>(gl::VariableColumnCount(varying.type));
unsigned char secondarySize = static_cast<unsigned char>(gl::VariableRowCount(varying.type));
TType type(EbtFloat, EbpUndefined, EvqVaryingOut, primarySize, secondarySize, varying.isArray());
TString name = varying.name.c_str();
if (varying.isArray())
{
type.setArraySize(varying.arraySize);
name = name.substr(0, name.find_first_of('['));
}
InitializeVariables::InitVariableInfo var(name, type);
variables.push_back(var);
}
InitializeVariables initializer(variables);
root->traverse(&initializer);
}
const TExtensionBehavior& TCompiler::getExtensionBehavior() const
{
return extensionBehavior;
}
const char *TCompiler::getSourcePath() const
{
return mSourcePath;
}
const ShBuiltInResources& TCompiler::getResources() const
{
return compileResources;
}
const ArrayBoundsClamper& TCompiler::getArrayBoundsClamper() const
{
return arrayBoundsClamper;
}
ShArrayIndexClampingStrategy TCompiler::getArrayIndexClampingStrategy() const
{
return clampingStrategy;
}
const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const
{
return builtInFunctionEmulator;
}
void TCompiler::writePragma()
{
TInfoSinkBase &sink = infoSink.obj;
if (mPragma.stdgl.invariantAll)
sink << "#pragma STDGL invariant(all)\n";
}