Hash :
c66e4e3e
Author :
Date :
2013-10-23T13:06:13
Add brotli compressor This commit is for the encoder for brotli compression format. Brotli is a generic byte-level compression algorithm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Functions for clustering similar histograms together.
#ifndef BROTLI_ENC_CLUSTER_H_
#define BROTLI_ENC_CLUSTER_H_
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <complex>
#include <map>
#include <set>
#include <utility>
#include <vector>
#include "./bit_cost.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./histogram.h"
namespace brotli {
struct HistogramPair {
int idx1;
int idx2;
bool valid;
double cost_combo;
double cost_diff;
};
struct HistogramPairComparator {
bool operator()(const HistogramPair& p1, const HistogramPair& p2) {
if (p1.cost_diff != p2.cost_diff) {
return p1.cost_diff > p2.cost_diff;
}
return abs(p1.idx1 - p1.idx2) > abs(p2.idx1 - p2.idx2);
}
};
// Returns entropy reduction of the context map when we combine two clusters.
inline double ClusterCostDiff(int size_a, int size_b) {
int size_c = size_a + size_b;
return size_a * FastLog2(size_a) + size_b * FastLog2(size_b) -
size_c * FastLog2(size_c);
}
// Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
// it is below a threshold, stores the pair (idx1, idx2) in the *pairs heap.
template<int kSize>
void CompareAndPushToHeap(const Histogram<kSize>* out,
const int* cluster_size,
int idx1, int idx2,
std::vector<HistogramPair>* pairs) {
if (idx1 == idx2) {
return;
}
if (idx2 < idx1) {
int t = idx2;
idx2 = idx1;
idx1 = t;
}
bool store_pair = false;
HistogramPair p;
p.idx1 = idx1;
p.idx2 = idx2;
p.valid = true;
p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
p.cost_diff -= out[idx1].bit_cost_;
p.cost_diff -= out[idx2].bit_cost_;
if (out[idx1].total_count_ == 0) {
p.cost_combo = out[idx2].bit_cost_;
store_pair = true;
} else if (out[idx2].total_count_ == 0) {
p.cost_combo = out[idx1].bit_cost_;
store_pair = true;
} else {
double threshold = pairs->empty() ? 1e99 :
std::max(0.0, (*pairs)[0].cost_diff);
Histogram<kSize> combo = out[idx1];
combo.AddHistogram(out[idx2]);
double cost_combo = PopulationCost(combo);
if (cost_combo < threshold - p.cost_diff) {
p.cost_combo = cost_combo;
store_pair = true;
}
}
if (store_pair) {
p.cost_diff += p.cost_combo;
pairs->push_back(p);
push_heap(pairs->begin(), pairs->end(), HistogramPairComparator());
}
}
template<int kSize>
void HistogramCombine(Histogram<kSize>* out,
int* cluster_size,
int* symbols,
int symbols_size,
int max_clusters) {
double cost_diff_threshold = 0.0;
int min_cluster_size = 1;
std::set<int> all_symbols;
std::vector<int> clusters;
for (int i = 0; i < symbols_size; ++i) {
if (all_symbols.find(symbols[i]) == all_symbols.end()) {
all_symbols.insert(symbols[i]);
clusters.push_back(symbols[i]);
}
}
// We maintain a heap of histogram pairs, ordered by the bit cost reduction.
std::vector<HistogramPair> pairs;
for (int idx1 = 0; idx1 < clusters.size(); ++idx1) {
for (int idx2 = idx1 + 1; idx2 < clusters.size(); ++idx2) {
CompareAndPushToHeap(out, cluster_size, clusters[idx1], clusters[idx2],
&pairs);
}
}
while (clusters.size() > min_cluster_size) {
if (pairs[0].cost_diff >= cost_diff_threshold) {
cost_diff_threshold = 1e99;
min_cluster_size = max_clusters;
continue;
}
// Take the best pair from the top of heap.
int best_idx1 = pairs[0].idx1;
int best_idx2 = pairs[0].idx2;
out[best_idx1].AddHistogram(out[best_idx2]);
out[best_idx1].bit_cost_ = pairs[0].cost_combo;
cluster_size[best_idx1] += cluster_size[best_idx2];
for (int i = 0; i < symbols_size; ++i) {
if (symbols[i] == best_idx2) {
symbols[i] = best_idx1;
}
}
for (int i = 0; i + 1 < clusters.size(); ++i) {
if (clusters[i] >= best_idx2) {
clusters[i] = clusters[i + 1];
}
}
clusters.pop_back();
// Invalidate pairs intersecting the just combined best pair.
for (int i = 0; i < pairs.size(); ++i) {
HistogramPair& p = pairs[i];
if (p.idx1 == best_idx1 || p.idx2 == best_idx1 ||
p.idx1 == best_idx2 || p.idx2 == best_idx2) {
p.valid = false;
}
}
// Pop invalid pairs from the top of the heap.
while (!pairs.empty() && !pairs[0].valid) {
pop_heap(pairs.begin(), pairs.end(), HistogramPairComparator());
pairs.pop_back();
}
// Push new pairs formed with the combined histogram to the heap.
for (int i = 0; i < clusters.size(); ++i) {
CompareAndPushToHeap(out, cluster_size, best_idx1, clusters[i], &pairs);
}
}
}
// -----------------------------------------------------------------------------
// Histogram refinement
// What is the bit cost of moving histogram from cur_symbol to candidate.
template<int kSize>
double HistogramBitCostDistance(const Histogram<kSize>& histogram,
const Histogram<kSize>& candidate) {
if (histogram.total_count_ == 0) {
return 0.0;
}
Histogram<kSize> tmp = histogram;
tmp.AddHistogram(candidate);
return PopulationCost(tmp) - candidate.bit_cost_;
}
// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
template<int kSize>
void HistogramRemap(const Histogram<kSize>* in, int in_size,
Histogram<kSize>* out, int* symbols) {
std::set<int> all_symbols;
for (int i = 0; i < in_size; ++i) {
all_symbols.insert(symbols[i]);
}
for (int i = 0; i < in_size; ++i) {
int best_out = i == 0 ? symbols[0] : symbols[i - 1];
double best_bits = HistogramBitCostDistance(in[i], out[best_out]);
for (std::set<int>::const_iterator k = all_symbols.begin();
k != all_symbols.end(); ++k) {
const double cur_bits = HistogramBitCostDistance(in[i], out[*k]);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = *k;
}
}
symbols[i] = best_out;
}
// Recompute each out based on raw and symbols.
for (std::set<int>::const_iterator k = all_symbols.begin();
k != all_symbols.end(); ++k) {
out[*k].Clear();
}
for (int i = 0; i < in_size; ++i) {
out[symbols[i]].AddHistogram(in[i]);
}
}
// Reorder histograms in *out so that the new symbols in *symbols come in
// increasing order.
template<int kSize>
void HistogramReindex(std::vector<Histogram<kSize> >* out,
std::vector<int>* symbols) {
std::vector<Histogram<kSize> > tmp(*out);
std::map<int, int> new_index;
int next_index = 0;
for (int i = 0; i < symbols->size(); ++i) {
if (new_index.find((*symbols)[i]) == new_index.end()) {
new_index[(*symbols)[i]] = next_index;
(*out)[next_index] = tmp[(*symbols)[i]];
++next_index;
}
}
out->resize(next_index);
for (int i = 0; i < symbols->size(); ++i) {
(*symbols)[i] = new_index[(*symbols)[i]];
}
}
// Clusters similar histograms in 'in' together, the selected histograms are
// placed in 'out', and for each index in 'in', *histogram_symbols will
// indicate which of the 'out' histograms is the best approximation.
template<int kSize>
void ClusterHistograms(const std::vector<Histogram<kSize> >& in,
int num_contexts, int num_blocks,
int max_histograms,
std::vector<Histogram<kSize> >* out,
std::vector<int>* histogram_symbols) {
const int in_size = num_contexts * num_blocks;
std::vector<int> cluster_size(in_size, 1);
out->resize(in_size);
histogram_symbols->resize(in_size);
for (int i = 0; i < in_size; ++i) {
(*out)[i] = in[i];
(*out)[i].bit_cost_ = PopulationCost(in[i]);
(*histogram_symbols)[i] = i;
}
// Collapse similar histograms within a block type.
if (num_contexts > 1) {
for (int i = 0; i < num_blocks; ++i) {
HistogramCombine(&(*out)[0], &cluster_size[0],
&(*histogram_symbols)[i * num_contexts], num_contexts,
max_histograms);
}
}
// Collapse similar histograms.
HistogramCombine(&(*out)[0], &cluster_size[0],
&(*histogram_symbols)[0], in_size,
max_histograms);
// Find the optimal map from original histograms to the final ones.
HistogramRemap(&in[0], in_size, &(*out)[0], &(*histogram_symbols)[0]);
// Convert the context map to a canonical form.
HistogramReindex(out, histogram_symbols);
}
} // namespace brotli
#endif // BROTLI_ENC_CLUSTER_H_