Hash :
c23cb1e8
Author :
Date :
2013-12-12T10:43:05
Support for OSX build; tested using OSX 10.9/clang-500.2.79
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
#ifndef BROTLI_ENC_HASH_H_
#define BROTLI_ENC_HASH_H_
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <cstdlib>
#include "./fast_log.h"
#include "./find_match_length.h"
#include "./port.h"
namespace brotli {
// kHashMul32 multiplier has these properties:
// * The multiplier must be odd. Otherwise we may lose the highest bit.
// * No long streaks of 1s or 0s.
// * There is no effort to ensure that it is a prime, the oddity is enough
// for this use.
// * The number has been tuned heuristically against compression benchmarks.
static const uint32_t kHashMul32 = 0x1e35a7bd;
inline uint32_t Hash3Bytes(const uint8_t *data, const int bits) {
uint32_t h = (BROTLI_UNALIGNED_LOAD32(data) & 0xffffff) * kHashMul32;
// The higher bits contain more mixture from the multiplication,
// so we take our results from there.
return h >> (32 - bits);
}
// Usually, we always choose the longest backward reference. This function
// allows for the exception of that rule.
//
// If we choose a backward reference that is further away, it will
// usually be coded with more bits. We approximate this by assuming
// log2(distance). If the distance can be expressed in terms of the
// last four distances, we use some heuristic constants to estimate
// the bits cost. For the first up to four literals we use the bit
// cost of the literals from the literal cost model, after that we
// use the average bit cost of the cost model.
//
// This function is used to sometimes discard a longer backward reference
// when it is not much longer and the bit cost for encoding it is more
// than the saved literals.
inline double BackwardReferenceScore(double average_cost,
double start_cost4,
double start_cost3,
double start_cost2,
int copy_length,
int backward_reference_offset,
int last_distance1,
int last_distance2,
int last_distance3,
int last_distance4) {
double retval = 0;
switch (copy_length) {
case 2: retval = start_cost2; break;
case 3: retval = start_cost3; break;
default: retval = start_cost4 + (copy_length - 4) * average_cost; break;
}
int diff_last1 = abs(backward_reference_offset - last_distance1);
int diff_last2 = abs(backward_reference_offset - last_distance2);
if (diff_last1 == 0) {
retval += 0.6;
} else if (diff_last1 < 4) {
retval -= 0.9 + 0.03 * diff_last1;
} else if (diff_last2 < 4) {
retval -= 0.95 + 0.1 * diff_last2;
} else if (backward_reference_offset == last_distance3) {
retval -= 1.17;
} else if (backward_reference_offset == last_distance4) {
retval -= 1.27;
} else {
retval -= 1.20 * Log2Floor(backward_reference_offset);
}
return retval;
}
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
//
// This is a hash map of fixed size (kBucketSize) to a ring buffer of
// fixed size (kBlockSize). The ring buffer contains the last kBlockSize
// index positions of the given hash key in the compressed data.
template <int kBucketBits, int kBlockBits>
class HashLongestMatch {
public:
HashLongestMatch()
: last_distance1_(4),
last_distance2_(11),
last_distance3_(15),
last_distance4_(16),
insert_length_(0),
average_cost_(5.4) {
Reset();
}
void Reset() {
std::fill(&num_[0], &num_[sizeof(num_) / sizeof(num_[0])], 0);
}
// Look at 3 bytes at data.
// Compute a hash from these, and store the value of ix at that position.
inline void Store(const uint8_t *data, const int ix) {
const uint32_t key = Hash3Bytes(data, kBucketBits);
const int minor_ix = num_[key] & kBlockMask;
buckets_[key][minor_ix] = ix;
++num_[key];
}
// Store hashes for a range of data.
void StoreHashes(const uint8_t *data, size_t len, int startix, int mask) {
for (int p = 0; p < len; ++p) {
Store(&data[p & mask], startix + p);
}
}
// Find a longest backward match of &data[cur_ix] up to the length of
// max_length.
//
// Does not look for matches longer than max_length.
// Does not look for matches further away than max_backward.
// Writes the best found match length into best_len_out.
// Writes the index (&data[index]) offset from the start of the best match
// into best_distance_out.
// Write the score of the best match into best_score_out.
bool FindLongestMatch(const uint8_t * __restrict data,
const float * __restrict literal_cost,
const size_t ring_buffer_mask,
const uint32_t cur_ix,
uint32_t max_length,
const uint32_t max_backward,
size_t * __restrict best_len_out,
size_t * __restrict best_len_code_out,
size_t * __restrict best_distance_out,
double * __restrict best_score_out) {
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
const double start_cost4 = literal_cost == NULL ? 20 :
literal_cost[cur_ix_masked] +
literal_cost[(cur_ix + 1) & ring_buffer_mask] +
literal_cost[(cur_ix + 2) & ring_buffer_mask] +
literal_cost[(cur_ix + 3) & ring_buffer_mask];
const double start_cost3 = literal_cost == NULL ? 15 :
literal_cost[cur_ix_masked] +
literal_cost[(cur_ix + 1) & ring_buffer_mask] +
literal_cost[(cur_ix + 2) & ring_buffer_mask] + 0.3;
double start_cost2 = literal_cost == NULL ? 10 :
literal_cost[cur_ix_masked] +
literal_cost[(cur_ix + 1) & ring_buffer_mask] + 1.2;
bool match_found = false;
// Don't accept a short copy from far away.
double best_score = 8.25;
if (insert_length_ < 4) {
double cost_diff[4] = { 0.20, 0.09, 0.05, 0.03 };
best_score += cost_diff[insert_length_];
}
size_t best_len = *best_len_out;
*best_len_out = 0;
size_t best_ix = 1;
// Try last distance first.
for (int i = 0; i < 16; ++i) {
size_t prev_ix = cur_ix;
switch(i) {
case 0: prev_ix -= last_distance1_; break;
case 1: prev_ix -= last_distance2_; break;
case 2: prev_ix -= last_distance3_; break;
case 3: prev_ix -= last_distance4_; break;
case 4: prev_ix -= last_distance1_ - 1; break;
case 5: prev_ix -= last_distance1_ + 1; break;
case 6: prev_ix -= last_distance1_ - 2; break;
case 7: prev_ix -= last_distance1_ + 2; break;
case 8: prev_ix -= last_distance1_ - 3; break;
case 9: prev_ix -= last_distance1_ + 3; break;
case 10: prev_ix -= last_distance2_ - 1; break;
case 11: prev_ix -= last_distance2_ + 1; break;
case 12: prev_ix -= last_distance2_ - 2; break;
case 13: prev_ix -= last_distance2_ + 2; break;
case 14: prev_ix -= last_distance2_ - 3; break;
case 15: prev_ix -= last_distance2_ + 3; break;
}
if (prev_ix >= cur_ix) {
continue;
}
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward > max_backward)) {
continue;
}
prev_ix &= ring_buffer_mask;
if (data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
max_length);
if (len >= 3 || (len == 2 && i < 2)) {
// Comparing for >= 2 does not change the semantics, but just saves for
// a few unnecessary binary logarithms in backward reference score,
// since we are not interested in such short matches.
const double score = BackwardReferenceScore(average_cost_,
start_cost4,
start_cost3,
start_cost2,
len, backward,
last_distance1_,
last_distance2_,
last_distance3_,
last_distance4_);
if (best_score < score) {
best_score = score;
best_len = len;
best_ix = backward;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = best_ix;
*best_score_out = best_score;
match_found = true;
}
}
}
const uint32_t key = Hash3Bytes(&data[cur_ix_masked], kBucketBits);
const int * __restrict const bucket = &buckets_[key][0];
const int down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0;
int stop = int(cur_ix) - 64;
if (stop < 0) { stop = 0; }
start_cost2 -= 1.0;
for (int i = cur_ix - 1; i > stop; --i) {
size_t prev_ix = i;
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (data[cur_ix_masked] != data[prev_ix] ||
data[cur_ix_masked + 1] != data[prev_ix + 1]) {
continue;
}
int len = 2;
const double score = start_cost2 - 1.70 * Log2Floor(backward);
if (best_score < score) {
best_score = score;
best_len = len;
best_ix = backward;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = best_ix;
match_found = true;
}
}
for (int i = num_[key] - 1; i >= down; --i) {
int prev_ix = bucket[i & kBlockMask];
if (prev_ix < 0) {
continue;
} else {
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
max_length);
if (len >= 3) {
// Comparing for >= 3 does not change the semantics, but just saves
// for a few unnecessary binary logarithms in backward reference
// score, since we are not interested in such short matches.
const double score = BackwardReferenceScore(average_cost_,
start_cost4,
start_cost3,
start_cost2,
len, backward,
last_distance1_,
last_distance2_,
last_distance3_,
last_distance4_);
if (best_score < score) {
best_score = score;
best_len = len;
best_ix = backward;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = best_ix;
*best_score_out = best_score;
match_found = true;
}
}
}
}
return match_found;
}
void set_last_distance(int v) {
if (last_distance1_ != v) {
last_distance4_ = last_distance3_;
last_distance3_ = last_distance2_;
last_distance2_ = last_distance1_;
last_distance1_ = v;
}
}
int last_distance() const { return last_distance1_; }
void set_insert_length(int v) { insert_length_ = v; }
void set_average_cost(double v) { average_cost_ = v; }
private:
// Number of hash buckets.
static const uint32_t kBucketSize = 1 << kBucketBits;
// Only kBlockSize newest backward references are kept,
// and the older are forgotten.
static const uint32_t kBlockSize = 1 << kBlockBits;
// Mask for accessing entries in a block (in a ringbuffer manner).
static const uint32_t kBlockMask = (1 << kBlockBits) - 1;
// Number of entries in a particular bucket.
uint16_t num_[kBucketSize];
// Buckets containing kBlockSize of backward references.
int buckets_[kBucketSize][kBlockSize];
int last_distance1_;
int last_distance2_;
int last_distance3_;
int last_distance4_;
// Cost adjustment for how many literals we are planning to insert
// anyway.
int insert_length_;
double average_cost_;
};
typedef HashLongestMatch<13, 11> Hasher;
} // namespace brotli
#endif // BROTLI_ENC_HASH_H_