Hash :
c6b9c7c5
Author :
Date :
2013-11-15T19:02:17
Updates to Brotli compression format, decoder and encoder This commit contains a batch of changes that were made to the Brotli compression algorithm in the last three weeks. Most important changes: * Added UTF8 context model for good text compression. * Simplified context modeling by having only 4 context modes. * Per-block context mode selection. * Faster backward copying and bit reading functions. * More efficient histogram coding. * Streaming support for the decoder and encoder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Functions to estimate the bit cost of Huffman trees.
#ifndef BROTLI_ENC_BIT_COST_H_
#define BROTLI_ENC_BIT_COST_H_
#include <stdint.h>
#include "./entropy_encode.h"
#include "./fast_log.h"
namespace brotli {
static const int kHuffmanExtraBits[kCodeLengthCodes] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7,
};
static inline int HuffmanTreeBitCost(const int* counts, const uint8_t* depth) {
int nbits = 0;
for (int i = 0; i < kCodeLengthCodes; ++i) {
nbits += counts[i] * (depth[i] + kHuffmanExtraBits[i]);
}
return nbits;
}
static inline int HuffmanTreeBitCost(
const Histogram<kCodeLengthCodes>& histogram,
const EntropyCode<kCodeLengthCodes>& entropy) {
return HuffmanTreeBitCost(&histogram.data_[0], &entropy.depth_[0]);
}
static inline int HuffmanBitCost(const uint8_t* depth, int length) {
int max_depth = 1;
int histogram[kCodeLengthCodes] = { 0 };
int tail_start = 0;
// compute histogram of compacted huffman tree
for (int i = 0; i < length;) {
const int value = depth[i];
if (value > max_depth) {
max_depth = value;
}
int reps = 1;
for (int k = i + 1; k < length && depth[k] == value; ++k) {
++reps;
}
i += reps;
if (value == 0) {
while (reps > 10) {
++histogram[18];
reps -= 138;
}
if (reps > 2) {
++histogram[17];
} else if (reps > 0) {
histogram[0] += reps;
}
} else {
tail_start = i;
++histogram[value];
--reps;
while (reps > 2) {
++histogram[16];
reps -= 6;
}
if (reps > 0) {
histogram[value] += reps;
}
}
}
// create huffman tree of huffman tree
uint8_t cost[kCodeLengthCodes] = { 0 };
CreateHuffmanTree(histogram, kCodeLengthCodes, 7, cost);
// account for rle extra bits
cost[16] += 2;
cost[17] += 3;
cost[18] += 7;
int tree_size = 0;
int bits = 6 + 3 * max_depth; // huffman tree of huffman tree cost
for (int i = 0; i < kCodeLengthCodes; ++i) {
bits += histogram[i] * cost[i]; // huffman tree bit cost
tree_size += histogram[i];
}
// bit cost adjustment for long trailing zero sequence
int tail_size = length - tail_start;
int tail_bits = 0;
while (tail_size >= 1) {
if (tail_size < 3) {
tail_bits += tail_size * cost[0];
tree_size -= tail_size;
break;
} else if (tail_size < 11) {
tail_bits += cost[17];
--tree_size;
break;
} else {
tail_bits += cost[18];
tail_size -= 138;
--tree_size;
}
}
if (tail_bits > 12) {
bits += ((Log2Ceiling(tree_size - 1) + 1) & ~1) + 3 - tail_bits;
}
return bits;
}
template<int kSize>
double PopulationCost(const Histogram<kSize>& histogram) {
if (histogram.total_count_ == 0) {
return 11;
}
int count = 0;
for (int i = 0; i < kSize && count < 5; ++i) {
if (histogram.data_[i] > 0) {
++count;
}
}
if (count == 1) {
return 11;
}
if (count == 2) {
return 19 + histogram.total_count_;
}
uint8_t depth[kSize] = { 0 };
CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth);
int bits = 0;
for (int i = 0; i < kSize; ++i) {
bits += histogram.data_[i] * depth[i];
}
if (count == 3) {
bits += 27;
} else {
bits += HuffmanBitCost(depth, kSize);
}
return bits;
}
} // namespace brotli
#endif // BROTLI_ENC_BIT_COST_H_