Hash :
1cdcbd85
Author :
Date :
2013-11-19T14:32:56
Added Brotli compress/decompress utilities and makefiles
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation of Brotli compressor.
#include "./encode.h"
#include <algorithm>
#include <limits>
#include "./backward_references.h"
#include "./bit_cost.h"
#include "./block_splitter.h"
#include "./cluster.h"
#include "./context.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./hash.h"
#include "./histogram.h"
#include "./literal_cost.h"
#include "./prefix.h"
#include "./write_bits.h"
namespace brotli {
static const int kWindowBits = 22;
// To make decoding faster, we allow the decoder to write 16 bytes ahead in
// its ringbuffer, therefore the encoder has to decrease max distance by this
// amount.
static const int kDecoderRingBufferWriteAheadSlack = 16;
static const int kMaxBackwardDistance =
(1 << kWindowBits) - kDecoderRingBufferWriteAheadSlack;
static const int kMetaBlockSizeBits = 21;
static const int kRingBufferBits = 23;
static const int kRingBufferMask = (1 << kRingBufferBits) - 1;
template<int kSize>
double Entropy(const std::vector<Histogram<kSize> >& histograms) {
double retval = 0;
for (int i = 0; i < histograms.size(); ++i) {
retval += histograms[i].EntropyBitCost();
}
return retval;
}
template<int kSize>
double TotalBitCost(const std::vector<Histogram<kSize> >& histograms) {
double retval = 0;
for (int i = 0; i < histograms.size(); ++i) {
retval += PopulationCost(histograms[i]);
}
return retval;
}
void EncodeSize(size_t len, int* storage_ix, uint8_t* storage) {
std::vector<uint8_t> len_bytes;
do {
len_bytes.push_back(len & 0xff);
len >>= 8;
} while (len > 0);
WriteBits(3, len_bytes.size(), storage_ix, storage);
for (int i = 0; i < len_bytes.size(); ++i) {
WriteBits(8, len_bytes[i], storage_ix, storage);
}
}
void EncodeMetaBlockLength(size_t meta_block_size,
int* storage_ix, uint8_t* storage) {
WriteBits(1, 0, storage_ix, storage);
int num_bits = Log2Floor(meta_block_size) + 1;
WriteBits(3, (num_bits + 3) >> 2, storage_ix, storage);
while (num_bits > 0) {
WriteBits(4, meta_block_size & 0xf, storage_ix, storage);
meta_block_size >>= 4;
num_bits -= 4;
}
if (num_bits > 0) {
WriteBits(num_bits, meta_block_size, storage_ix, storage);
}
}
template<int kSize>
void EntropyEncode(int val, const EntropyCode<kSize>& code,
int* storage_ix, uint8_t* storage) {
if (code.count_ <= 1) {
return;
};
WriteBits(code.depth_[val], code.bits_[val], storage_ix, storage);
}
void StoreHuffmanTreeOfHuffmanTreeToBitMask(
const uint8_t* code_length_bitdepth,
int* storage_ix, uint8_t* storage) {
static const uint8_t kStorageOrder[kCodeLengthCodes] = {
1, 2, 3, 4, 0, 17, 18, 5, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
// Throw away trailing zeros:
int codes_to_store = kCodeLengthCodes;
for (; codes_to_store > 4; --codes_to_store) {
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
break;
}
}
WriteBits(4, codes_to_store - 4, storage_ix, storage);
const int skip_two_first =
code_length_bitdepth[kStorageOrder[0]] == 0 &&
code_length_bitdepth[kStorageOrder[1]] == 0;
WriteBits(1, skip_two_first, storage_ix, storage);
for (int i = skip_two_first * 2; i < codes_to_store; ++i) {
uint8_t len[] = { 2, 4, 3, 2, 2, 4 };
uint8_t bits[] = { 0, 7, 3, 1, 2, 15 };
int v = code_length_bitdepth[kStorageOrder[i]];
WriteBits(len[v], bits[v], storage_ix, storage);
}
}
void StoreHuffmanTreeToBitMask(
const uint8_t* huffman_tree,
const uint8_t* huffman_tree_extra_bits,
const int huffman_tree_size,
const EntropyCode<kCodeLengthCodes>& entropy,
int* storage_ix, uint8_t* storage) {
for (int i = 0; i < huffman_tree_size; ++i) {
const int ix = huffman_tree[i];
const int extra_bits = huffman_tree_extra_bits[i];
EntropyEncode(ix, entropy, storage_ix, storage);
switch (ix) {
case 16:
WriteBits(2, extra_bits, storage_ix, storage);
break;
case 17:
WriteBits(3, extra_bits, storage_ix, storage);
break;
case 18:
WriteBits(7, extra_bits, storage_ix, storage);
break;
}
}
}
template<int kSize>
void StoreHuffmanCode(const EntropyCode<kSize>& code, int alphabet_size,
int* storage_ix, uint8_t* storage) {
const uint8_t *depth = &code.depth_[0];
int max_bits_counter = alphabet_size - 1;
int max_bits = 0;
while (max_bits_counter) {
max_bits_counter >>= 1;
++max_bits;
}
if (code.count_ == 0) { // emit minimal tree for empty cases
// bits: small tree marker: 1, count-1: 0, max_bits-sized encoding for 0
WriteBits(3 + max_bits, 0x01, storage_ix, storage);
return;
}
if (code.count_ <= 4) {
int symbols[4];
// Quadratic sort.
int k, j;
for (k = 0; k < code.count_; ++k) {
symbols[k] = code.symbols_[k];
}
for (k = 0; k < code.count_; ++k) {
for (j = k + 1; j < code.count_; ++j) {
if (depth[symbols[j]] < depth[symbols[k]]) {
int t = symbols[k];
symbols[k] = symbols[j];
symbols[j] = t;
}
}
}
// Small tree marker to encode 1-4 symbols.
WriteBits(1, 1, storage_ix, storage);
WriteBits(2, code.count_ - 1, storage_ix, storage);
for (int i = 0; i < code.count_; ++i) {
WriteBits(max_bits, symbols[i], storage_ix, storage);
}
if (code.count_ == 4) {
if (depth[symbols[0]] == 2 &&
depth[symbols[1]] == 2 &&
depth[symbols[2]] == 2 &&
depth[symbols[3]] == 2) {
WriteBits(1, 0, storage_ix, storage);
} else {
WriteBits(1, 1, storage_ix, storage);
}
}
return;
}
WriteBits(1, 0, storage_ix, storage);
uint8_t huffman_tree[kSize];
uint8_t huffman_tree_extra_bits[kSize];
int huffman_tree_size = 0;
WriteHuffmanTree(depth,
alphabet_size,
&huffman_tree[0],
&huffman_tree_extra_bits[0],
&huffman_tree_size);
Histogram<kCodeLengthCodes> huffman_tree_histogram;
memset(huffman_tree_histogram.data_, 0, sizeof(huffman_tree_histogram.data_));
for (int i = 0; i < huffman_tree_size; ++i) {
huffman_tree_histogram.Add(huffman_tree[i]);
}
EntropyCode<kCodeLengthCodes> huffman_tree_entropy;
BuildEntropyCode(huffman_tree_histogram, 5, kCodeLengthCodes,
&huffman_tree_entropy);
Histogram<kCodeLengthCodes> trimmed_histogram = huffman_tree_histogram;
uint8_t* last_code = &huffman_tree[huffman_tree_size - 1];
while (*last_code == 0 || *last_code >= 17) {
trimmed_histogram.Remove(*last_code--);
}
int trimmed_size = trimmed_histogram.total_count_;
bool write_length = false;
if (trimmed_size > 1 && trimmed_size < huffman_tree_size) {
EntropyCode<kCodeLengthCodes> trimmed_entropy;
BuildEntropyCode(trimmed_histogram, 5, kCodeLengthCodes, &trimmed_entropy);
int huffman_bit_cost = HuffmanTreeBitCost(huffman_tree_histogram,
huffman_tree_entropy);
int trimmed_bit_cost = HuffmanTreeBitCost(trimmed_histogram,
trimmed_entropy);;
const int nbits = Log2Ceiling(trimmed_size - 1);
const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2;
if (trimmed_bit_cost + 3 + 2 * nbitpairs < huffman_bit_cost) {
write_length = true;
huffman_tree_size = trimmed_size;
huffman_tree_entropy = trimmed_entropy;
}
}
StoreHuffmanTreeOfHuffmanTreeToBitMask(
&huffman_tree_entropy.depth_[0], storage_ix, storage);
WriteBits(1, write_length, storage_ix, storage);
if (write_length) {
const int nbits = Log2Ceiling(huffman_tree_size - 1);
const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2;
WriteBits(3, nbitpairs - 1, storage_ix, storage);
WriteBits(nbitpairs * 2, huffman_tree_size - 2, storage_ix, storage);
}
StoreHuffmanTreeToBitMask(&huffman_tree[0], &huffman_tree_extra_bits[0],
huffman_tree_size, huffman_tree_entropy,
storage_ix, storage);
}
template<int kSize>
void StoreHuffmanCodes(const std::vector<EntropyCode<kSize> >& codes,
int alphabet_size,
int* storage_ix, uint8_t* storage) {
for (int i = 0; i < codes.size(); ++i) {
StoreHuffmanCode(codes[i], alphabet_size, storage_ix, storage);
}
}
void EncodeCommand(const Command& cmd,
const EntropyCodeCommand& entropy,
int* storage_ix, uint8_t* storage) {
int code = cmd.command_prefix_;
EntropyEncode(code, entropy, storage_ix, storage);
if (code >= 128) {
code -= 128;
}
int insert_extra_bits = InsertLengthExtraBits(code);
uint64_t insert_extra_bits_val =
cmd.insert_length_ - InsertLengthOffset(code);
int copy_extra_bits = CopyLengthExtraBits(code);
uint64_t copy_extra_bits_val = cmd.copy_length_code_ - CopyLengthOffset(code);
if (insert_extra_bits > 0) {
WriteBits(insert_extra_bits, insert_extra_bits_val, storage_ix, storage);
}
if (copy_extra_bits > 0) {
WriteBits(copy_extra_bits, copy_extra_bits_val, storage_ix, storage);
}
}
void EncodeCopyDistance(const Command& cmd, const EntropyCodeDistance& entropy,
int* storage_ix, uint8_t* storage) {
int code = cmd.distance_prefix_;
int extra_bits = cmd.distance_extra_bits_;
uint64_t extra_bits_val = cmd.distance_extra_bits_value_;
EntropyEncode(code, entropy, storage_ix, storage);
if (extra_bits > 0) {
WriteBits(extra_bits, extra_bits_val, storage_ix, storage);
}
}
void ComputeDistanceShortCodes(std::vector<Command>* cmds,
int* dist_ringbuffer,
size_t* ringbuffer_idx) {
static const int kIndexOffset[16] = {
3, 2, 1, 0, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
};
static const int kValueOffset[16] = {
0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3
};
for (int i = 0; i < cmds->size(); ++i) {
int cur_dist = (*cmds)[i].copy_distance_;
if (cur_dist == 0) break;
int dist_code = cur_dist + 16;
for (int k = 0; k < 16; ++k) {
// Only accept more popular choices.
if (cur_dist < 11 && ((k >= 2 && k < 4) || k >= 6)) {
// Typically unpopular ranges, don't replace a short distance
// with them.
continue;
}
int comp = (dist_ringbuffer[(*ringbuffer_idx + kIndexOffset[k]) & 3] +
kValueOffset[k]);
if (cur_dist == comp) {
dist_code = k + 1;
break;
}
}
if (dist_code > 1) {
dist_ringbuffer[*ringbuffer_idx & 3] = cur_dist;
++(*ringbuffer_idx);
}
(*cmds)[i].distance_code_ = dist_code;
}
}
void ComputeCommandPrefixes(std::vector<Command>* cmds,
int num_direct_distance_codes,
int distance_postfix_bits) {
for (int i = 0; i < cmds->size(); ++i) {
Command* cmd = &(*cmds)[i];
cmd->command_prefix_ = CommandPrefix(cmd->insert_length_,
cmd->copy_length_code_);
if (cmd->copy_length_code_ > 0) {
PrefixEncodeCopyDistance(cmd->distance_code_,
num_direct_distance_codes,
distance_postfix_bits,
&cmd->distance_prefix_,
&cmd->distance_extra_bits_,
&cmd->distance_extra_bits_value_);
}
if (cmd->command_prefix_ < 128 && cmd->distance_prefix_ == 0) {
cmd->distance_prefix_ = 0xffff;
} else {
cmd->command_prefix_ += 128;
}
}
}
int IndexOf(const std::vector<int>& v, int value) {
for (int i = 0; i < v.size(); ++i) {
if (v[i] == value) return i;
}
return -1;
}
void MoveToFront(std::vector<int>* v, int index) {
int value = (*v)[index];
for (int i = index; i > 0; --i) {
(*v)[i] = (*v)[i - 1];
}
(*v)[0] = value;
}
std::vector<int> MoveToFrontTransform(const std::vector<int>& v) {
if (v.empty()) return v;
std::vector<int> mtf(*max_element(v.begin(), v.end()) + 1);
for (int i = 0; i < mtf.size(); ++i) mtf[i] = i;
std::vector<int> result(v.size());
for (int i = 0; i < v.size(); ++i) {
int index = IndexOf(mtf, v[i]);
result[i] = index;
MoveToFront(&mtf, index);
}
return result;
}
// Finds runs of zeros in v_in and replaces them with a prefix code of the run
// length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are
// shifted by *max_length_prefix. Will not create prefix codes bigger than the
// initial value of *max_run_length_prefix. The prefix code of run length L is
// simply Log2Floor(L) and the number of extra bits is the same as the prefix
// code.
void RunLengthCodeZeros(const std::vector<int>& v_in,
int* max_run_length_prefix,
std::vector<int>* v_out,
std::vector<int>* extra_bits) {
int max_reps = 0;
for (int i = 0; i < v_in.size();) {
for (; i < v_in.size() && v_in[i] != 0; ++i) ;
int reps = 0;
for (; i < v_in.size() && v_in[i] == 0; ++i) {
++reps;
}
max_reps = std::max(reps, max_reps);
}
int max_prefix = max_reps > 0 ? Log2Floor(max_reps) : 0;
*max_run_length_prefix = std::min(max_prefix, *max_run_length_prefix);
for (int i = 0; i < v_in.size();) {
if (v_in[i] != 0) {
v_out->push_back(v_in[i] + *max_run_length_prefix);
extra_bits->push_back(0);
++i;
} else {
int reps = 1;
for (uint32_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) {
++reps;
}
i += reps;
while (reps) {
if (reps < (2 << *max_run_length_prefix)) {
int run_length_prefix = Log2Floor(reps);
v_out->push_back(run_length_prefix);
extra_bits->push_back(reps - (1 << run_length_prefix));
break;
} else {
v_out->push_back(*max_run_length_prefix);
extra_bits->push_back((1 << *max_run_length_prefix) - 1);
reps -= (2 << *max_run_length_prefix) - 1;
}
}
}
}
}
// Returns a maximum zero-run-length-prefix value such that run-length coding
// zeros in v with this maximum prefix value and then encoding the resulting
// histogram and entropy-coding v produces the least amount of bits.
int BestMaxZeroRunLengthPrefix(const std::vector<int>& v) {
int min_cost = std::numeric_limits<int>::max();
int best_max_prefix = 0;
for (int max_prefix = 0; max_prefix <= 16; ++max_prefix) {
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = max_prefix;
RunLengthCodeZeros(v, &max_run_length_prefix, &rle_symbols, &extra_bits);
if (max_run_length_prefix < max_prefix) break;
HistogramLiteral histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
histogram.Add(rle_symbols[i]);
}
int bit_cost = PopulationCost(histogram);
if (max_prefix > 0) {
bit_cost += 4;
}
for (int i = 1; i <= max_prefix; ++i) {
bit_cost += histogram.data_[i] * i; // extra bits
}
if (bit_cost < min_cost) {
min_cost = bit_cost;
best_max_prefix = max_prefix;
}
}
return best_max_prefix;
}
void EncodeContextMap(const std::vector<int>& context_map,
int num_clusters,
int* storage_ix, uint8_t* storage) {
WriteBits(8, num_clusters - 1, storage_ix, storage);
if (num_clusters == 1) {
return;
}
std::vector<int> transformed_symbols = MoveToFrontTransform(context_map);
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = BestMaxZeroRunLengthPrefix(transformed_symbols);
RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix,
&rle_symbols, &extra_bits);
HistogramLiteral symbol_histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
symbol_histogram.Add(rle_symbols[i]);
}
EntropyCodeLiteral symbol_code;
BuildEntropyCode(symbol_histogram, 15, num_clusters + max_run_length_prefix,
&symbol_code);
bool use_rle = max_run_length_prefix > 0;
WriteBits(1, use_rle, storage_ix, storage);
if (use_rle) {
WriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
}
StoreHuffmanCode(symbol_code, num_clusters + max_run_length_prefix,
storage_ix, storage);
for (int i = 0; i < rle_symbols.size(); ++i) {
EntropyEncode(rle_symbols[i], symbol_code, storage_ix, storage);
if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) {
WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage);
}
}
WriteBits(1, 1, storage_ix, storage); // use move-to-front
}
template<int kSize>
void BuildEntropyCodes(const std::vector<Histogram<kSize> >& histograms,
int alphabet_size,
std::vector<EntropyCode<kSize> >* entropy_codes) {
entropy_codes->resize(histograms.size());
for (int i = 0; i < histograms.size(); ++i) {
BuildEntropyCode(histograms[i], 15, alphabet_size, &(*entropy_codes)[i]);
}
}
struct BlockSplitCode {
EntropyCodeLiteral block_type_code;
EntropyCodeBlockLength block_len_code;
};
void EncodeBlockLength(const EntropyCodeBlockLength& entropy,
int length,
int* storage_ix, uint8_t* storage) {
int len_code = BlockLengthPrefix(length);
int extra_bits = BlockLengthExtraBits(len_code);
int extra_bits_value = length - BlockLengthOffset(len_code);
EntropyEncode(len_code, entropy, storage_ix, storage);
if (extra_bits > 0) {
WriteBits(extra_bits, extra_bits_value, storage_ix, storage);
}
}
void ComputeBlockTypeShortCodes(BlockSplit* split) {
if (split->num_types_ <= 1) {
split->num_types_ = 1;
return;
}
int ringbuffer[2] = { 0, 1 };
size_t index = 0;
for (int i = 0; i < split->types_.size(); ++i) {
int type = split->types_[i];
int type_code;
if (type == ringbuffer[index & 1]) {
type_code = 0;
} else if (type == ringbuffer[(index - 1) & 1] + 1) {
type_code = 1;
} else {
type_code = type + 2;
}
ringbuffer[index & 1] = type;
++index;
split->type_codes_.push_back(type_code);
}
}
void BuildAndEncodeBlockSplitCode(const BlockSplit& split,
BlockSplitCode* code,
int* storage_ix, uint8_t* storage) {
if (split.num_types_ <= 1) {
WriteBits(1, 0, storage_ix, storage);
return;
}
WriteBits(1, 1, storage_ix, storage);
HistogramLiteral type_histo;
for (int i = 0; i < split.type_codes_.size(); ++i) {
type_histo.Add(split.type_codes_[i]);
}
BuildEntropyCode(type_histo, 15, split.num_types_ + 2,
&code->block_type_code);
HistogramBlockLength length_histo;
for (int i = 0; i < split.lengths_.size(); ++i) {
length_histo.Add(BlockLengthPrefix(split.lengths_[i]));
}
BuildEntropyCode(length_histo, 15, kNumBlockLenPrefixes,
&code->block_len_code);
WriteBits(8, split.num_types_ - 1, storage_ix, storage);
StoreHuffmanCode(code->block_type_code, split.num_types_ + 2,
storage_ix, storage);
StoreHuffmanCode(code->block_len_code, kNumBlockLenPrefixes,
storage_ix, storage);
EncodeBlockLength(code->block_len_code, split.lengths_[0],
storage_ix, storage);
}
void MoveAndEncode(const BlockSplitCode& code,
BlockSplitIterator* it,
int* storage_ix, uint8_t* storage) {
if (it->length_ == 0) {
++it->idx_;
it->type_ = it->split_.types_[it->idx_];
it->length_ = it->split_.lengths_[it->idx_];
uint8_t type_code = it->split_.type_codes_[it->idx_];
EntropyEncode(type_code, code.block_type_code, storage_ix, storage);
EncodeBlockLength(code.block_len_code, it->length_, storage_ix, storage);
}
--it->length_;
}
struct EncodingParams {
int num_direct_distance_codes;
int distance_postfix_bits;
int literal_context_mode;
};
struct MetaBlock {
std::vector<Command> cmds;
EncodingParams params;
BlockSplit literal_split;
BlockSplit command_split;
BlockSplit distance_split;
std::vector<int> literal_context_modes;
std::vector<int> literal_context_map;
std::vector<int> distance_context_map;
std::vector<HistogramLiteral> literal_histograms;
std::vector<HistogramCommand> command_histograms;
std::vector<HistogramDistance> distance_histograms;
};
void BuildMetaBlock(const EncodingParams& params,
const std::vector<Command>& cmds,
const uint8_t* ringbuffer,
const size_t pos,
const size_t mask,
MetaBlock* mb) {
mb->cmds = cmds;
mb->params = params;
ComputeCommandPrefixes(&mb->cmds,
mb->params.num_direct_distance_codes,
mb->params.distance_postfix_bits);
SplitBlock(mb->cmds,
&ringbuffer[pos & mask],
&mb->literal_split,
&mb->command_split,
&mb->distance_split);
ComputeBlockTypeShortCodes(&mb->literal_split);
ComputeBlockTypeShortCodes(&mb->command_split);
ComputeBlockTypeShortCodes(&mb->distance_split);
mb->literal_context_modes.resize(mb->literal_split.num_types_,
mb->params.literal_context_mode);
int num_literal_contexts =
mb->literal_split.num_types_ << kLiteralContextBits;
int num_distance_contexts =
mb->distance_split.num_types_ << kDistanceContextBits;
std::vector<HistogramLiteral> literal_histograms(num_literal_contexts);
mb->command_histograms.resize(mb->command_split.num_types_);
std::vector<HistogramDistance> distance_histograms(num_distance_contexts);
BuildHistograms(mb->cmds,
mb->literal_split,
mb->command_split,
mb->distance_split,
ringbuffer,
pos,
mask,
mb->literal_context_modes,
&literal_histograms,
&mb->command_histograms,
&distance_histograms);
// Histogram ids need to fit in one byte and there are 16 ids reserved for
// run length codes, which leaves a maximum number of 240 histograms.
static const int kMaxNumberOfHistograms = 240;
mb->literal_histograms = literal_histograms;
ClusterHistograms(literal_histograms,
1 << kLiteralContextBits,
mb->literal_split.num_types_,
kMaxNumberOfHistograms,
&mb->literal_histograms,
&mb->literal_context_map);
mb->distance_histograms = distance_histograms;
ClusterHistograms(distance_histograms,
1 << kDistanceContextBits,
mb->distance_split.num_types_,
kMaxNumberOfHistograms,
&mb->distance_histograms,
&mb->distance_context_map);
}
size_t MetaBlockLength(const std::vector<Command>& cmds) {
size_t length = 0;
for (int i = 0; i < cmds.size(); ++i) {
const Command& cmd = cmds[i];
length += cmd.insert_length_ + cmd.copy_length_;
}
return length;
}
void StoreMetaBlock(const MetaBlock& mb,
const uint8_t* ringbuffer,
const size_t mask,
size_t* pos,
int* storage_ix, uint8_t* storage) {
size_t length = MetaBlockLength(mb.cmds);
const size_t end_pos = *pos + length;
EncodeMetaBlockLength(length - 1,
storage_ix, storage);
BlockSplitCode literal_split_code;
BlockSplitCode command_split_code;
BlockSplitCode distance_split_code;
BuildAndEncodeBlockSplitCode(mb.literal_split, &literal_split_code,
storage_ix, storage);
BuildAndEncodeBlockSplitCode(mb.command_split, &command_split_code,
storage_ix, storage);
BuildAndEncodeBlockSplitCode(mb.distance_split, &distance_split_code,
storage_ix, storage);
WriteBits(2, mb.params.distance_postfix_bits, storage_ix, storage);
WriteBits(4,
mb.params.num_direct_distance_codes >>
mb.params.distance_postfix_bits, storage_ix, storage);
int num_distance_codes =
kNumDistanceShortCodes + mb.params.num_direct_distance_codes +
(48 << mb.params.distance_postfix_bits);
for (int i = 0; i < mb.literal_split.num_types_; ++i) {
WriteBits(2, mb.literal_context_modes[i], storage_ix, storage);
}
EncodeContextMap(mb.literal_context_map, mb.literal_histograms.size(), storage_ix, storage);
EncodeContextMap(mb.distance_context_map, mb.distance_histograms.size(), storage_ix, storage);
std::vector<EntropyCodeLiteral> literal_codes;
std::vector<EntropyCodeCommand> command_codes;
std::vector<EntropyCodeDistance> distance_codes;
BuildEntropyCodes(mb.literal_histograms, 256, &literal_codes);
BuildEntropyCodes(mb.command_histograms, kNumCommandPrefixes,
&command_codes);
BuildEntropyCodes(mb.distance_histograms, num_distance_codes,
&distance_codes);
StoreHuffmanCodes(literal_codes, 256, storage_ix, storage);
StoreHuffmanCodes(command_codes, kNumCommandPrefixes, storage_ix, storage);
StoreHuffmanCodes(distance_codes, num_distance_codes, storage_ix, storage);
BlockSplitIterator literal_it(mb.literal_split);
BlockSplitIterator command_it(mb.command_split);
BlockSplitIterator distance_it(mb.distance_split);
for (int i = 0; i < mb.cmds.size(); ++i) {
const Command& cmd = mb.cmds[i];
MoveAndEncode(command_split_code, &command_it, storage_ix, storage);
EncodeCommand(cmd, command_codes[command_it.type_], storage_ix, storage);
for (int j = 0; j < cmd.insert_length_; ++j) {
MoveAndEncode(literal_split_code, &literal_it, storage_ix, storage);
int histogram_idx = literal_it.type_;
uint8_t prev_byte = *pos > 0 ? ringbuffer[(*pos - 1) & mask] : 0;
uint8_t prev_byte2 = *pos > 1 ? ringbuffer[(*pos - 2) & mask] : 0;
int context = ((literal_it.type_ << kLiteralContextBits) +
Context(prev_byte, prev_byte2,
mb.literal_context_modes[literal_it.type_]));
histogram_idx = mb.literal_context_map[context];
EntropyEncode(ringbuffer[*pos & mask],
literal_codes[histogram_idx], storage_ix, storage);
++(*pos);
}
if (*pos < end_pos && cmd.distance_prefix_ != 0xffff) {
MoveAndEncode(distance_split_code, &distance_it, storage_ix, storage);
int context = (distance_it.type_ << 2) +
((cmd.copy_length_code_ > 4) ? 3 : cmd.copy_length_code_ - 2);
int histogram_index = mb.distance_context_map[context];
size_t max_distance = std::min(*pos, (size_t)kMaxBackwardDistance);
EncodeCopyDistance(cmd, distance_codes[histogram_index],
storage_ix, storage);
}
*pos += cmd.copy_length_;
}
}
BrotliCompressor::BrotliCompressor()
: window_bits_(kWindowBits),
hasher_(new Hasher),
dist_ringbuffer_idx_(0),
input_pos_(0),
ringbuffer_(kRingBufferBits, kMetaBlockSizeBits),
literal_cost_(1 << kRingBufferBits),
storage_ix_(0),
storage_(new uint8_t[2 << kMetaBlockSizeBits]) {
dist_ringbuffer_[0] = 4;
dist_ringbuffer_[1] = 11;
dist_ringbuffer_[2] = 15;
dist_ringbuffer_[3] = 16;
storage_[0] = 0;
}
BrotliCompressor::~BrotliCompressor() {
delete hasher_;
delete[] storage_;
}
void BrotliCompressor::WriteStreamHeader() {
// Don't encode input size.
WriteBits(3, 0, &storage_ix_, storage_);
// Encode window size.
if (window_bits_ == 16) {
WriteBits(1, 0, &storage_ix_, storage_);
} else {
WriteBits(1, 1, &storage_ix_, storage_);
WriteBits(3, window_bits_ - 17, &storage_ix_, storage_);
}
}
void BrotliCompressor::WriteMetaBlock(const size_t input_size,
const uint8_t* input_buffer,
size_t* encoded_size,
uint8_t* encoded_buffer) {
ringbuffer_.Write(input_buffer, input_size);
EstimateBitCostsForLiterals(input_pos_, input_size,
kRingBufferMask, ringbuffer_.start(),
&literal_cost_[0]);
std::vector<Command> commands;
CreateBackwardReferences(input_size, input_pos_,
ringbuffer_.start(),
&literal_cost_[0],
kRingBufferMask, kMaxBackwardDistance,
hasher_,
&commands);
ComputeDistanceShortCodes(&commands, dist_ringbuffer_,
&dist_ringbuffer_idx_);
EncodingParams params;
params.num_direct_distance_codes = 12;
params.distance_postfix_bits = 1;
params.literal_context_mode = CONTEXT_SIGNED;
MetaBlock mb;
BuildMetaBlock(params, commands, ringbuffer_.start(), input_pos_,
kRingBufferMask, &mb);
StoreMetaBlock(mb, ringbuffer_.start(), kRingBufferMask,
&input_pos_, &storage_ix_, storage_);
size_t output_size = storage_ix_ >> 3;
memcpy(encoded_buffer, storage_, output_size);
*encoded_size = output_size;
storage_ix_ -= output_size << 3;
storage_[storage_ix_ >> 3] = storage_[output_size];
}
void BrotliCompressor::FinishStream(
size_t* encoded_size, uint8_t* encoded_buffer) {
WriteBits(1, 1, &storage_ix_, storage_);
*encoded_size = (storage_ix_ + 7) >> 3;
memcpy(encoded_buffer, storage_, *encoded_size);
}
int BrotliCompressBuffer(size_t input_size,
const uint8_t* input_buffer,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (input_size == 0) {
encoded_buffer[0] = 1;
encoded_buffer[1] = 0;
*encoded_size = 2;
return 1;
}
BrotliCompressor compressor;
compressor.WriteStreamHeader();
const int max_block_size = 1 << kMetaBlockSizeBits;
size_t max_output_size = *encoded_size;
const uint8_t* input_end = input_buffer + input_size;
*encoded_size = 0;
while (input_buffer < input_end) {
int block_size = max_block_size;
if (block_size >= input_end - input_buffer) {
block_size = input_end - input_buffer;
}
size_t output_size = max_output_size;
compressor.WriteMetaBlock(block_size, input_buffer,
&output_size, &encoded_buffer[*encoded_size]);
input_buffer += block_size;
*encoded_size += output_size;
max_output_size -= output_size;
}
size_t output_size = max_output_size;
compressor.FinishStream(&output_size, &encoded_buffer[*encoded_size]);
*encoded_size += output_size;
return 1;
}
} // namespace brotli