Hash :
5bc56a17
Author :
Date :
2015-02-25T10:29:24
Fully qualify std::max_element, std::push_heap and std::pop_heap names.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Brotli bit stream functions to support the low level format. There are no
// compression algorithms here, just the right ordering of bits to match the
// specs.
#include "./brotli_bit_stream.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "./bit_cost.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./prefix.h"
#include "./write_bits.h"
namespace brotli {
// returns false if fail
// nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
bool EncodeMlen(size_t length, int* bits, int* numbits, int* nibblesbits) {
length--; // MLEN - 1 is encoded
int lg = length == 0 ? 1 : Log2Floor(length) + 1;
if (lg > 28) return false;
int mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
*nibblesbits = mnibbles - 4;
*numbits = mnibbles * 4;
*bits = length;
return true;
}
void StoreVarLenUint8(int n, int* storage_ix, uint8_t* storage) {
if (n == 0) {
WriteBits(1, 0, storage_ix, storage);
} else {
WriteBits(1, 1, storage_ix, storage);
int nbits = Log2Floor(n);
WriteBits(3, nbits, storage_ix, storage);
WriteBits(nbits, n - (1 << nbits), storage_ix, storage);
}
}
bool StoreCompressedMetaBlockHeader(bool final_block,
int length,
int* storage_ix,
uint8_t* storage) {
// Write ISLAST bit.
WriteBits(1, final_block, storage_ix, storage);
// Write ISEMPTY bit.
if (final_block) {
WriteBits(1, length == 0, storage_ix, storage);
if (length == 0) {
return true;
}
}
if (length == 0) {
// Only the last meta-block can be empty.
return false;
}
int lenbits;
int nlenbits;
int nibblesbits;
if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) {
return false;
}
WriteBits(2, nibblesbits, storage_ix, storage);
WriteBits(nlenbits, lenbits, storage_ix, storage);
if (!final_block) {
// Write ISUNCOMPRESSED bit.
WriteBits(1, 0, storage_ix, storage);
}
return true;
}
bool StoreUncompressedMetaBlockHeader(int length,
int* storage_ix,
uint8_t* storage) {
// Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0.
WriteBits(1, 0, storage_ix, storage);
int lenbits;
int nlenbits;
int nibblesbits;
if (!EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits)) {
return false;
}
WriteBits(2, nibblesbits, storage_ix, storage);
WriteBits(nlenbits, lenbits, storage_ix, storage);
// Write ISUNCOMPRESSED bit.
WriteBits(1, 1, storage_ix, storage);
return true;
}
void StoreHuffmanTreeOfHuffmanTreeToBitMask(
const int num_codes,
const uint8_t *code_length_bitdepth,
int *storage_ix,
uint8_t *storage) {
static const uint8_t kStorageOrder[kCodeLengthCodes] = {
1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
// The bit lengths of the Huffman code over the code length alphabet
// are compressed with the following static Huffman code:
// Symbol Code
// ------ ----
// 0 00
// 1 1110
// 2 110
// 3 01
// 4 10
// 5 1111
static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
0, 7, 3, 2, 1, 15
};
static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
2, 4, 3, 2, 2, 4
};
// Throw away trailing zeros:
int codes_to_store = kCodeLengthCodes;
if (num_codes > 1) {
for (; codes_to_store > 0; --codes_to_store) {
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
break;
}
}
}
int skip_some = 0; // skips none.
if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
code_length_bitdepth[kStorageOrder[1]] == 0) {
skip_some = 2; // skips two.
if (code_length_bitdepth[kStorageOrder[2]] == 0) {
skip_some = 3; // skips three.
}
}
WriteBits(2, skip_some, storage_ix, storage);
for (int i = skip_some; i < codes_to_store; ++i) {
uint8_t l = code_length_bitdepth[kStorageOrder[i]];
WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
}
}
void StoreHuffmanTreeToBitMask(
const std::vector<uint8_t> &huffman_tree,
const std::vector<uint8_t> &huffman_tree_extra_bits,
const uint8_t *code_length_bitdepth,
const std::vector<uint16_t> &code_length_bitdepth_symbols,
int * __restrict storage_ix,
uint8_t * __restrict storage) {
for (int i = 0; i < huffman_tree.size(); ++i) {
int ix = huffman_tree[i];
WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
storage_ix, storage);
// Extra bits
switch (ix) {
case 16:
WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
break;
case 17:
WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
break;
}
}
}
void StoreSimpleHuffmanTree(const uint8_t* depths,
int symbols[4],
int num_symbols,
int max_bits,
int *storage_ix, uint8_t *storage) {
// value of 1 indicates a simple Huffman code
WriteBits(2, 1, storage_ix, storage);
WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1
// Sort
for (int i = 0; i < num_symbols; i++) {
for (int j = i + 1; j < num_symbols; j++) {
if (depths[symbols[j]] < depths[symbols[i]]) {
std::swap(symbols[j], symbols[i]);
}
}
}
if (num_symbols == 2) {
WriteBits(max_bits, symbols[0], storage_ix, storage);
WriteBits(max_bits, symbols[1], storage_ix, storage);
} else if (num_symbols == 3) {
WriteBits(max_bits, symbols[0], storage_ix, storage);
WriteBits(max_bits, symbols[1], storage_ix, storage);
WriteBits(max_bits, symbols[2], storage_ix, storage);
} else {
WriteBits(max_bits, symbols[0], storage_ix, storage);
WriteBits(max_bits, symbols[1], storage_ix, storage);
WriteBits(max_bits, symbols[2], storage_ix, storage);
WriteBits(max_bits, symbols[3], storage_ix, storage);
// tree-select
WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
}
}
// num = alphabet size
// depths = symbol depths
void StoreHuffmanTree(const uint8_t* depths, size_t num,
int quality,
int *storage_ix, uint8_t *storage) {
// Write the Huffman tree into the brotli-representation.
std::vector<uint8_t> huffman_tree;
std::vector<uint8_t> huffman_tree_extra_bits;
// TODO: Consider allocating these from stack.
huffman_tree.reserve(256);
huffman_tree_extra_bits.reserve(256);
WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits);
// Calculate the statistics of the Huffman tree in brotli-representation.
int huffman_tree_histogram[kCodeLengthCodes] = { 0 };
for (int i = 0; i < huffman_tree.size(); ++i) {
++huffman_tree_histogram[huffman_tree[i]];
}
int num_codes = 0;
int code = 0;
for (int i = 0; i < kCodeLengthCodes; ++i) {
if (huffman_tree_histogram[i]) {
if (num_codes == 0) {
code = i;
num_codes = 1;
} else if (num_codes == 1) {
num_codes = 2;
break;
}
}
}
// Calculate another Huffman tree to use for compressing both the
// earlier Huffman tree with.
// TODO: Consider allocating these from stack.
uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 };
std::vector<uint16_t> code_length_bitdepth_symbols(kCodeLengthCodes);
CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes,
5, quality, &code_length_bitdepth[0]);
ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes,
code_length_bitdepth_symbols.data());
// Now, we have all the data, let's start storing it
StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
storage_ix, storage);
if (num_codes == 1) {
code_length_bitdepth[code] = 0;
}
// Store the real huffman tree now.
StoreHuffmanTreeToBitMask(huffman_tree,
huffman_tree_extra_bits,
&code_length_bitdepth[0],
code_length_bitdepth_symbols,
storage_ix, storage);
}
void BuildAndStoreHuffmanTree(const int *histogram,
const int length,
const int quality,
uint8_t* depth,
uint16_t* bits,
int* storage_ix,
uint8_t* storage) {
int count = 0;
int s4[4] = { 0 };
for (size_t i = 0; i < length; i++) {
if (histogram[i]) {
if (count < 4) {
s4[count] = i;
} else if (quality < 3 && count > 4) {
break;
}
count++;
}
}
int max_bits_counter = length - 1;
int max_bits = 0;
while (max_bits_counter) {
max_bits_counter >>= 1;
++max_bits;
}
if (count <= 1) {
WriteBits(4, 1, storage_ix, storage);
WriteBits(max_bits, s4[0], storage_ix, storage);
return;
}
if (length >= 50 && count >= 16 && quality >= 3) {
std::vector<int> counts(length);
memcpy(&counts[0], histogram, sizeof(counts[0]) * length);
OptimizeHuffmanCountsForRle(length, &counts[0]);
CreateHuffmanTree(&counts[0], length, 15, quality, depth);
} else {
CreateHuffmanTree(histogram, length, 15, quality, depth);
}
ConvertBitDepthsToSymbols(depth, length, bits);
if (count <= 4) {
StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
} else {
StoreHuffmanTree(depth, length, quality, storage_ix, storage);
}
}
int IndexOf(const std::vector<int>& v, int value) {
for (int i = 0; i < v.size(); ++i) {
if (v[i] == value) return i;
}
return -1;
}
void MoveToFront(std::vector<int>* v, int index) {
int value = (*v)[index];
for (int i = index; i > 0; --i) {
(*v)[i] = (*v)[i - 1];
}
(*v)[0] = value;
}
std::vector<int> MoveToFrontTransform(const std::vector<int>& v) {
if (v.empty()) return v;
std::vector<int> mtf(*std::max_element(v.begin(), v.end()) + 1);
for (int i = 0; i < mtf.size(); ++i) mtf[i] = i;
std::vector<int> result(v.size());
for (int i = 0; i < v.size(); ++i) {
int index = IndexOf(mtf, v[i]);
result[i] = index;
MoveToFront(&mtf, index);
}
return result;
}
// Finds runs of zeros in v_in and replaces them with a prefix code of the run
// length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are
// shifted by *max_length_prefix. Will not create prefix codes bigger than the
// initial value of *max_run_length_prefix. The prefix code of run length L is
// simply Log2Floor(L) and the number of extra bits is the same as the prefix
// code.
void RunLengthCodeZeros(const std::vector<int>& v_in,
int* max_run_length_prefix,
std::vector<int>* v_out,
std::vector<int>* extra_bits) {
int max_reps = 0;
for (int i = 0; i < v_in.size();) {
for (; i < v_in.size() && v_in[i] != 0; ++i) ;
int reps = 0;
for (; i < v_in.size() && v_in[i] == 0; ++i) {
++reps;
}
max_reps = std::max(reps, max_reps);
}
int max_prefix = max_reps > 0 ? Log2Floor(max_reps) : 0;
*max_run_length_prefix = std::min(max_prefix, *max_run_length_prefix);
for (int i = 0; i < v_in.size();) {
if (v_in[i] != 0) {
v_out->push_back(v_in[i] + *max_run_length_prefix);
extra_bits->push_back(0);
++i;
} else {
int reps = 1;
for (uint32_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) {
++reps;
}
i += reps;
while (reps) {
if (reps < (2 << *max_run_length_prefix)) {
int run_length_prefix = Log2Floor(reps);
v_out->push_back(run_length_prefix);
extra_bits->push_back(reps - (1 << run_length_prefix));
break;
} else {
v_out->push_back(*max_run_length_prefix);
extra_bits->push_back((1 << *max_run_length_prefix) - 1);
reps -= (2 << *max_run_length_prefix) - 1;
}
}
}
}
}
// Returns a maximum zero-run-length-prefix value such that run-length coding
// zeros in v with this maximum prefix value and then encoding the resulting
// histogram and entropy-coding v produces the least amount of bits.
int BestMaxZeroRunLengthPrefix(const std::vector<int>& v) {
int min_cost = std::numeric_limits<int>::max();
int best_max_prefix = 0;
for (int max_prefix = 0; max_prefix <= 16; ++max_prefix) {
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = max_prefix;
RunLengthCodeZeros(v, &max_run_length_prefix, &rle_symbols, &extra_bits);
if (max_run_length_prefix < max_prefix) break;
HistogramContextMap histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
histogram.Add(rle_symbols[i]);
}
int bit_cost = PopulationCost(histogram);
if (max_prefix > 0) {
bit_cost += 4;
}
for (int i = 1; i <= max_prefix; ++i) {
bit_cost += histogram.data_[i] * i; // extra bits
}
if (bit_cost < min_cost) {
min_cost = bit_cost;
best_max_prefix = max_prefix;
}
}
return best_max_prefix;
}
void EncodeContextMap(const std::vector<int>& context_map,
int num_clusters,
int* storage_ix, uint8_t* storage) {
StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
if (num_clusters == 1) {
return;
}
std::vector<int> transformed_symbols = MoveToFrontTransform(context_map);
std::vector<int> rle_symbols;
std::vector<int> extra_bits;
int max_run_length_prefix = BestMaxZeroRunLengthPrefix(transformed_symbols);
RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix,
&rle_symbols, &extra_bits);
HistogramContextMap symbol_histogram;
for (int i = 0; i < rle_symbols.size(); ++i) {
symbol_histogram.Add(rle_symbols[i]);
}
bool use_rle = max_run_length_prefix > 0;
WriteBits(1, use_rle, storage_ix, storage);
if (use_rle) {
WriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
}
EntropyCodeContextMap symbol_code;
memset(symbol_code.depth_, 0, sizeof(symbol_code.depth_));
memset(symbol_code.bits_, 0, sizeof(symbol_code.bits_));
BuildAndStoreHuffmanTree(symbol_histogram.data_,
num_clusters + max_run_length_prefix,
9, // quality
symbol_code.depth_, symbol_code.bits_,
storage_ix, storage);
for (int i = 0; i < rle_symbols.size(); ++i) {
WriteBits(symbol_code.depth_[rle_symbols[i]],
symbol_code.bits_[rle_symbols[i]],
storage_ix, storage);
if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) {
WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage);
}
}
WriteBits(1, 1, storage_ix, storage); // use move-to-front
}
void StoreBlockSwitch(const BlockSplitCode& code,
const int block_ix,
int* storage_ix,
uint8_t* storage) {
if (block_ix > 0) {
int typecode = code.type_code[block_ix];
WriteBits(code.type_depths[typecode], code.type_bits[typecode],
storage_ix, storage);
}
int lencode = code.length_prefix[block_ix];
WriteBits(code.length_depths[lencode], code.length_bits[lencode],
storage_ix, storage);
WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix],
storage_ix, storage);
}
void BuildAndStoreBlockSplitCode(const std::vector<int>& types,
const std::vector<int>& lengths,
const int num_types,
const int quality,
BlockSplitCode* code,
int* storage_ix,
uint8_t* storage) {
const int num_blocks = types.size();
std::vector<int> type_histo(num_types + 2);
std::vector<int> length_histo(26);
int last_type = 1;
int second_last_type = 0;
code->type_code.resize(num_blocks);
code->length_prefix.resize(num_blocks);
code->length_nextra.resize(num_blocks);
code->length_extra.resize(num_blocks);
code->type_depths.resize(num_types + 2);
code->type_bits.resize(num_types + 2);
code->length_depths.resize(26);
code->length_bits.resize(26);
for (int i = 0; i < num_blocks; ++i) {
int type = types[i];
int type_code = (type == last_type + 1 ? 1 :
type == second_last_type ? 0 :
type + 2);
second_last_type = last_type;
last_type = type;
code->type_code[i] = type_code;
if (i > 0) ++type_histo[type_code];
GetBlockLengthPrefixCode(lengths[i],
&code->length_prefix[i],
&code->length_nextra[i],
&code->length_extra[i]);
++length_histo[code->length_prefix[i]];
}
StoreVarLenUint8(num_types - 1, storage_ix, storage);
if (num_types > 1) {
BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, quality,
&code->type_depths[0], &code->type_bits[0],
storage_ix, storage);
BuildAndStoreHuffmanTree(&length_histo[0], 26, quality,
&code->length_depths[0], &code->length_bits[0],
storage_ix, storage);
StoreBlockSwitch(*code, 0, storage_ix, storage);
}
}
void StoreTrivialContextMap(int num_types,
int context_bits,
int* storage_ix,
uint8_t* storage) {
StoreVarLenUint8(num_types - 1, storage_ix, storage);
if (num_types > 1) {
int repeat_code = context_bits - 1;
int repeat_bits = (1 << repeat_code) - 1;
int alphabet_size = num_types + repeat_code;
std::vector<int> histogram(alphabet_size);
std::vector<uint8_t> depths(alphabet_size);
std::vector<uint16_t> bits(alphabet_size);
// Write RLEMAX.
WriteBits(1, 1, storage_ix, storage);
WriteBits(4, repeat_code - 1, storage_ix, storage);
histogram[repeat_code] = num_types;
histogram[0] = 1;
for (int i = context_bits; i < alphabet_size; ++i) {
histogram[i] = 1;
}
BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, 1,
&depths[0], &bits[0],
storage_ix, storage);
for (int i = 0; i < num_types; ++i) {
int code = (i == 0 ? 0 : i + context_bits - 1);
WriteBits(depths[code], bits[code], storage_ix, storage);
WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage);
WriteBits(repeat_code, repeat_bits, storage_ix, storage);
}
// Write IMTF (inverse-move-to-front) bit.
WriteBits(1, 1, storage_ix, storage);
}
}
} // namespace brotli