Hash :
fab601e8
Author :
Date :
2015-02-27T16:04:43
Fix encoder compilation error on MSVS 2010. As reported by @anthrotype, log2() is missing from MSVS 2010. This patch uses log() and a multiplication in FastLog2() for _MSV_VER <= 1600 and uses FastLog2() in literal_cost.cc instead of log2().
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Utilities for fast computation of logarithms.
#ifndef BROTLI_ENC_FAST_LOG_H_
#define BROTLI_ENC_FAST_LOG_H_
#include <assert.h>
#include <math.h>
#include <stdint.h>
namespace brotli {
// Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0.
inline int Log2Floor(uint32_t n) {
#if defined(__clang__) || \
(defined(__GNUC__) && \
((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4))
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
#else
if (n == 0)
return -1;
int log = 0;
uint32_t value = n;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
uint32_t x = value >> shift;
if (x != 0) {
value = x;
log += shift;
}
}
assert(value == 1);
return log;
#endif
}
static inline int Log2FloorNonZero(uint32_t n) {
#ifdef __GNUC__
return 31 ^ __builtin_clz(n);
#else
unsigned int result = 0;
while (n >>= 1) result++;
return result;
#endif
}
// Return ceiling(log2(n)) for positive integer n. Returns -1 iff n == 0.
inline int Log2Ceiling(uint32_t n) {
int floor = Log2Floor(n);
if (n == (n &~ (n - 1))) // zero or a power of two
return floor;
else
return floor + 1;
}
// A lookup table for small values of log2(int) to be used in entropy
// computation.
//
// ", ".join(["%.16ff" % x for x in [0.0]+[log2(x) for x in range(1, 256)]])
static const float kLog2Table[] = {
0.0000000000000000f, 0.0000000000000000f, 1.0000000000000000f,
1.5849625007211563f, 2.0000000000000000f, 2.3219280948873622f,
2.5849625007211561f, 2.8073549220576042f, 3.0000000000000000f,
3.1699250014423126f, 3.3219280948873626f, 3.4594316186372978f,
3.5849625007211565f, 3.7004397181410922f, 3.8073549220576037f,
3.9068905956085187f, 4.0000000000000000f, 4.0874628412503400f,
4.1699250014423122f, 4.2479275134435852f, 4.3219280948873626f,
4.3923174227787607f, 4.4594316186372973f, 4.5235619560570131f,
4.5849625007211570f, 4.6438561897747244f, 4.7004397181410926f,
4.7548875021634691f, 4.8073549220576037f, 4.8579809951275728f,
4.9068905956085187f, 4.9541963103868758f, 5.0000000000000000f,
5.0443941193584534f, 5.0874628412503400f, 5.1292830169449664f,
5.1699250014423122f, 5.2094533656289501f, 5.2479275134435852f,
5.2854022188622487f, 5.3219280948873626f, 5.3575520046180838f,
5.3923174227787607f, 5.4262647547020979f, 5.4594316186372973f,
5.4918530963296748f, 5.5235619560570131f, 5.5545888516776376f,
5.5849625007211570f, 5.6147098441152083f, 5.6438561897747244f,
5.6724253419714961f, 5.7004397181410926f, 5.7279204545631996f,
5.7548875021634691f, 5.7813597135246599f, 5.8073549220576046f,
5.8328900141647422f, 5.8579809951275719f, 5.8826430493618416f,
5.9068905956085187f, 5.9307373375628867f, 5.9541963103868758f,
5.9772799234999168f, 6.0000000000000000f, 6.0223678130284544f,
6.0443941193584534f, 6.0660891904577721f, 6.0874628412503400f,
6.1085244567781700f, 6.1292830169449672f, 6.1497471195046822f,
6.1699250014423122f, 6.1898245588800176f, 6.2094533656289510f,
6.2288186904958804f, 6.2479275134435861f, 6.2667865406949019f,
6.2854022188622487f, 6.3037807481771031f, 6.3219280948873617f,
6.3398500028846252f, 6.3575520046180847f, 6.3750394313469254f,
6.3923174227787598f, 6.4093909361377026f, 6.4262647547020979f,
6.4429434958487288f, 6.4594316186372982f, 6.4757334309663976f,
6.4918530963296748f, 6.5077946401986964f, 6.5235619560570131f,
6.5391588111080319f, 6.5545888516776376f, 6.5698556083309478f,
6.5849625007211561f, 6.5999128421871278f, 6.6147098441152092f,
6.6293566200796095f, 6.6438561897747253f, 6.6582114827517955f,
6.6724253419714952f, 6.6865005271832185f, 6.7004397181410917f,
6.7142455176661224f, 6.7279204545631988f, 6.7414669864011465f,
6.7548875021634691f, 6.7681843247769260f, 6.7813597135246599f,
6.7944158663501062f, 6.8073549220576037f, 6.8201789624151887f,
6.8328900141647422f, 6.8454900509443757f, 6.8579809951275719f,
6.8703647195834048f, 6.8826430493618416f, 6.8948177633079437f,
6.9068905956085187f, 6.9188632372745955f, 6.9307373375628867f,
6.9425145053392399f, 6.9541963103868758f, 6.9657842846620879f,
6.9772799234999168f, 6.9886846867721664f, 7.0000000000000000f,
7.0112272554232540f, 7.0223678130284544f, 7.0334230015374501f,
7.0443941193584534f, 7.0552824355011898f, 7.0660891904577721f,
7.0768155970508317f, 7.0874628412503400f, 7.0980320829605272f,
7.1085244567781700f, 7.1189410727235076f, 7.1292830169449664f,
7.1395513523987937f, 7.1497471195046822f, 7.1598713367783891f,
7.1699250014423130f, 7.1799090900149345f, 7.1898245588800176f,
7.1996723448363644f, 7.2094533656289492f, 7.2191685204621621f,
7.2288186904958804f, 7.2384047393250794f, 7.2479275134435861f,
7.2573878426926521f, 7.2667865406949019f, 7.2761244052742384f,
7.2854022188622487f, 7.2946207488916270f, 7.3037807481771031f,
7.3128829552843557f, 7.3219280948873617f, 7.3309168781146177f,
7.3398500028846243f, 7.3487281542310781f, 7.3575520046180847f,
7.3663222142458151f, 7.3750394313469254f, 7.3837042924740528f,
7.3923174227787607f, 7.4008794362821844f, 7.4093909361377026f,
7.4178525148858991f, 7.4262647547020979f, 7.4346282276367255f,
7.4429434958487288f, 7.4512111118323299f, 7.4594316186372973f,
7.4676055500829976f, 7.4757334309663976f, 7.4838157772642564f,
7.4918530963296748f, 7.4998458870832057f, 7.5077946401986964f,
7.5156998382840436f, 7.5235619560570131f, 7.5313814605163119f,
7.5391588111080319f, 7.5468944598876373f, 7.5545888516776376f,
7.5622424242210728f, 7.5698556083309478f, 7.5774288280357487f,
7.5849625007211561f, 7.5924570372680806f, 7.5999128421871278f,
7.6073303137496113f, 7.6147098441152075f, 7.6220518194563764f,
7.6293566200796095f, 7.6366246205436488f, 7.6438561897747244f,
7.6510516911789290f, 7.6582114827517955f, 7.6653359171851765f,
7.6724253419714952f, 7.6794800995054464f, 7.6865005271832185f,
7.6934869574993252f, 7.7004397181410926f, 7.7073591320808825f,
7.7142455176661224f, 7.7210991887071856f, 7.7279204545631996f,
7.7347096202258392f, 7.7414669864011465f, 7.7481928495894596f,
7.7548875021634691f, 7.7615512324444795f, 7.7681843247769260f,
7.7747870596011737f, 7.7813597135246608f, 7.7879025593914317f,
7.7944158663501062f, 7.8008998999203047f, 7.8073549220576037f,
7.8137811912170374f, 7.8201789624151887f, 7.8265484872909159f,
7.8328900141647422f, 7.8392037880969445f, 7.8454900509443757f,
7.8517490414160571f, 7.8579809951275719f, 7.8641861446542798f,
7.8703647195834048f, 7.8765169465650002f, 7.8826430493618425f,
7.8887432488982601f, 7.8948177633079446f, 7.9008668079807496f,
7.9068905956085187f, 7.9128893362299619f, 7.9188632372745955f,
7.9248125036057813f, 7.9307373375628867f, 7.9366379390025719f,
7.9425145053392399f, 7.9483672315846778f, 7.9541963103868758f,
7.9600019320680806f, 7.9657842846620870f, 7.9715435539507720f,
7.9772799234999168f, 7.9829935746943104f, 7.9886846867721664f,
7.9943534368588578f
};
// Faster logarithm for small integers, with the property of log2(0) == 0.
static inline double FastLog2(int v) {
if (v < (int)(sizeof(kLog2Table) / sizeof(kLog2Table[0]))) {
return kLog2Table[v];
}
#if defined(_MSC_VER) && _MSC_VER <= 1600
// Visual Studio 2010 does not have the log2() function defined, so we use
// log() and a multiplication instead.
static const double kLog2Inv = 1.4426950408889634f;
return log(static_cast<double>(v)) * kLog2Inv;
#else
return log2(static_cast<double>(v));
#endif
}
} // namespace brotli
#endif // BROTLI_ENC_FAST_LOG_H_