Hash :
98539223
        
        Author :
  
        
        Date :
2015-04-23T16:20:29
        
      
Remove quality parameter from bitstream writing functions. Fix a few crashes related to some quality and param combinations.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Entropy encoding (Huffman) utilities.
#include "./entropy_encode.h"
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <vector>
#include <cstdlib>
#include "./histogram.h"
namespace brotli {
namespace {
struct HuffmanTree {
  HuffmanTree();
  HuffmanTree(int count, int16_t left, int16_t right)
      : total_count_(count),
        index_left_(left),
        index_right_or_value_(right) {
  }
  int total_count_;
  int16_t index_left_;
  int16_t index_right_or_value_;
};
HuffmanTree::HuffmanTree() {}
// Sort the root nodes, least popular first.
bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
  return v0.total_count_ < v1.total_count_;
}
void SetDepth(const HuffmanTree &p,
              HuffmanTree *pool,
              uint8_t *depth,
              int level) {
  if (p.index_left_ >= 0) {
    ++level;
    SetDepth(pool[p.index_left_], pool, depth, level);
    SetDepth(pool[p.index_right_or_value_], pool, depth, level);
  } else {
    depth[p.index_right_or_value_] = level;
  }
}
}  // namespace
// This function will create a Huffman tree.
//
// The catch here is that the tree cannot be arbitrarily deep.
// Brotli specifies a maximum depth of 15 bits for "code trees"
// and 7 bits for "code length code trees."
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
void CreateHuffmanTree(const int *data,
                       const int length,
                       const int tree_limit,
                       uint8_t *depth) {
  // For block sizes below 64 kB, we never need to do a second iteration
  // of this loop. Probably all of our block sizes will be smaller than
  // that, so this loop is mostly of academic interest. If we actually
  // would need this, we would be better off with the Katajainen algorithm.
  for (int count_limit = 1; ; count_limit *= 2) {
    std::vector<HuffmanTree> tree;
    tree.reserve(2 * length + 1);
    for (int i = length - 1; i >= 0; --i) {
      if (data[i]) {
        const int count = std::max(data[i], count_limit);
        tree.push_back(HuffmanTree(count, -1, i));
      }
    }
    const int n = tree.size();
    if (n == 1) {
      depth[tree[0].index_right_or_value_] = 1;      // Only one element.
      break;
    }
    std::stable_sort(tree.begin(), tree.end(), SortHuffmanTree);
    // The nodes are:
    // [0, n): the sorted leaf nodes that we start with.
    // [n]: we add a sentinel here.
    // [n + 1, 2n): new parent nodes are added here, starting from
    //              (n+1). These are naturally in ascending order.
    // [2n]: we add a sentinel at the end as well.
    // There will be (2n+1) elements at the end.
    const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
    tree.push_back(sentinel);
    tree.push_back(sentinel);
    int i = 0;      // Points to the next leaf node.
    int j = n + 1;  // Points to the next non-leaf node.
    for (int k = n - 1; k > 0; --k) {
      int left, right;
      if (tree[i].total_count_ <= tree[j].total_count_) {
        left = i;
        ++i;
      } else {
        left = j;
        ++j;
      }
      if (tree[i].total_count_ <= tree[j].total_count_) {
        right = i;
        ++i;
      } else {
        right = j;
        ++j;
      }
      // The sentinel node becomes the parent node.
      int j_end = tree.size() - 1;
      tree[j_end].total_count_ =
          tree[left].total_count_ + tree[right].total_count_;
      tree[j_end].index_left_ = left;
      tree[j_end].index_right_or_value_ = right;
      // Add back the last sentinel node.
      tree.push_back(sentinel);
    }
    SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
    // We need to pack the Huffman tree in tree_limit bits.
    // If this was not successful, add fake entities to the lowest values
    // and retry.
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
      break;
    }
  }
}
void Reverse(std::vector<uint8_t>* v, int start, int end) {
  --end;
  while (start < end) {
    int tmp = (*v)[start];
    (*v)[start] = (*v)[end];
    (*v)[end] = tmp;
    ++start;
    --end;
  }
}
void WriteHuffmanTreeRepetitions(
    const int previous_value,
    const int value,
    int repetitions,
    std::vector<uint8_t> *tree,
    std::vector<uint8_t> *extra_bits_data) {
  if (previous_value != value) {
    tree->push_back(value);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions == 7) {
    tree->push_back(value);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions < 3) {
    for (int i = 0; i < repetitions; ++i) {
      tree->push_back(value);
      extra_bits_data->push_back(0);
    }
  } else {
    repetitions -= 3;
    int start = tree->size();
    while (repetitions >= 0) {
      tree->push_back(16);
      extra_bits_data->push_back(repetitions & 0x3);
      repetitions >>= 2;
      --repetitions;
    }
    Reverse(tree, start, tree->size());
    Reverse(extra_bits_data, start, tree->size());
  }
}
void WriteHuffmanTreeRepetitionsZeros(
    int repetitions,
    std::vector<uint8_t> *tree,
    std::vector<uint8_t> *extra_bits_data) {
  if (repetitions == 11) {
    tree->push_back(0);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions < 3) {
    for (int i = 0; i < repetitions; ++i) {
      tree->push_back(0);
      extra_bits_data->push_back(0);
    }
  } else {
    repetitions -= 3;
    int start = tree->size();
    while (repetitions >= 0) {
      tree->push_back(17);
      extra_bits_data->push_back(repetitions & 0x7);
      repetitions >>= 3;
      --repetitions;
    }
    Reverse(tree, start, tree->size());
    Reverse(extra_bits_data, start, tree->size());
  }
}
int OptimizeHuffmanCountsForRle(int length, int* counts) {
  int nonzero_count = 0;
  int stride;
  int limit;
  int sum;
  uint8_t* good_for_rle;
  // Let's make the Huffman code more compatible with rle encoding.
  int i;
  for (i = 0; i < length; i++) {
    if (counts[i]) {
      ++nonzero_count;
    }
  }
  if (nonzero_count < 16) {
    return 1;
  }
  for (; length >= 0; --length) {
    if (length == 0) {
      return 1;  // All zeros.
    }
    if (counts[length - 1] != 0) {
      // Now counts[0..length - 1] does not have trailing zeros.
      break;
    }
  }
  {
    int nonzeros = 0;
    int smallest_nonzero = 1 << 30;
    for (i = 0; i < length; ++i) {
      if (counts[i] != 0) {
        ++nonzeros;
        if (smallest_nonzero > counts[i]) {
          smallest_nonzero = counts[i];
        }
      }
    }
    if (nonzeros < 5) {
      // Small histogram will model it well.
      return 1;
    }
    int zeros = length - nonzeros;
    if (smallest_nonzero < 4) {
      if (zeros < 6) {
        for (i = 1; i < length - 1; ++i) {
          if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
            counts[i] = 1;
          }
        }
      }
    }
    if (nonzeros < 28) {
      return 1;
    }
  }
  // 2) Let's mark all population counts that already can be encoded
  // with an rle code.
  good_for_rle = (uint8_t*)calloc(length, 1);
  if (good_for_rle == NULL) {
    return 0;
  }
  {
    // Let's not spoil any of the existing good rle codes.
    // Mark any seq of 0's that is longer as 5 as a good_for_rle.
    // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
    int symbol = counts[0];
    int stride = 0;
    for (i = 0; i < length + 1; ++i) {
      if (i == length || counts[i] != symbol) {
        if ((symbol == 0 && stride >= 5) ||
            (symbol != 0 && stride >= 7)) {
          int k;
          for (k = 0; k < stride; ++k) {
            good_for_rle[i - k - 1] = 1;
          }
        }
        stride = 1;
        if (i != length) {
          symbol = counts[i];
        }
      } else {
        ++stride;
      }
    }
  }
  // 3) Let's replace those population counts that lead to more rle codes.
  // Math here is in 24.8 fixed point representation.
  const int streak_limit = 1240;
  stride = 0;
  limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
  sum = 0;
  for (i = 0; i < length + 1; ++i) {
    if (i == length || good_for_rle[i] ||
        (i != 0 && good_for_rle[i - 1]) ||
        abs(256 * counts[i] - limit) >= streak_limit) {
      if (stride >= 4 || (stride >= 3 && sum == 0)) {
        int k;
        // The stride must end, collapse what we have, if we have enough (4).
        int count = (sum + stride / 2) / stride;
        if (count < 1) {
          count = 1;
        }
        if (sum == 0) {
          // Don't make an all zeros stride to be upgraded to ones.
          count = 0;
        }
        for (k = 0; k < stride; ++k) {
          // We don't want to change value at counts[i],
          // that is already belonging to the next stride. Thus - 1.
          counts[i - k - 1] = count;
        }
      }
      stride = 0;
      sum = 0;
      if (i < length - 2) {
        // All interesting strides have a count of at least 4,
        // at least when non-zeros.
        limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
      } else if (i < length) {
        limit = 256 * counts[i];
      } else {
        limit = 0;
      }
    }
    ++stride;
    if (i != length) {
      sum += counts[i];
      if (stride >= 4) {
        limit = (256 * sum + stride / 2) / stride;
      }
      if (stride == 4) {
        limit += 120;
      }
    }
  }
  free(good_for_rle);
  return 1;
}
static void DecideOverRleUse(const uint8_t* depth, const int length,
                             bool *use_rle_for_non_zero,
                             bool *use_rle_for_zero) {
  int total_reps_zero = 0;
  int total_reps_non_zero = 0;
  int count_reps_zero = 0;
  int count_reps_non_zero = 0;
  for (uint32_t i = 0; i < length;) {
    const int value = depth[i];
    int reps = 1;
    for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
      ++reps;
    }
    if (reps >= 3 && value == 0) {
      total_reps_zero += reps;
      ++count_reps_zero;
    }
    if (reps >= 4 && value != 0) {
      total_reps_non_zero += reps;
      ++count_reps_non_zero;
    }
    i += reps;
  }
  total_reps_non_zero -= count_reps_non_zero * 2;
  total_reps_zero -= count_reps_zero * 2;
  *use_rle_for_non_zero = total_reps_non_zero > 2;
  *use_rle_for_zero = total_reps_zero > 2;
}
void WriteHuffmanTree(const uint8_t* depth,
                      uint32_t length,
                      std::vector<uint8_t> *tree,
                      std::vector<uint8_t> *extra_bits_data) {
  int previous_value = 8;
  // Throw away trailing zeros.
  int new_length = length;
  for (int i = 0; i < length; ++i) {
    if (depth[length - i - 1] == 0) {
      --new_length;
    } else {
      break;
    }
  }
  // First gather statistics on if it is a good idea to do rle.
  bool use_rle_for_non_zero = false;
  bool use_rle_for_zero = false;
  if (length > 50) {
    // Find rle coding for longer codes.
    // Shorter codes seem not to benefit from rle.
    DecideOverRleUse(depth, new_length,
                     &use_rle_for_non_zero, &use_rle_for_zero);
  }
  // Actual rle coding.
  for (uint32_t i = 0; i < new_length;) {
    const int value = depth[i];
    int reps = 1;
    if ((value != 0 && use_rle_for_non_zero) ||
        (value == 0 && use_rle_for_zero)) {
      for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) {
        ++reps;
      }
    }
    if (value == 0) {
      WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data);
    } else {
      WriteHuffmanTreeRepetitions(previous_value,
                                  value, reps, tree, extra_bits_data);
      previous_value = value;
    }
    i += reps;
  }
}
namespace {
uint16_t ReverseBits(int num_bits, uint16_t bits) {
  static const size_t kLut[16] = {  // Pre-reversed 4-bit values.
    0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
    0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
  };
  size_t retval = kLut[bits & 0xf];
  for (int i = 4; i < num_bits; i += 4) {
    retval <<= 4;
    bits >>= 4;
    retval |= kLut[bits & 0xf];
  }
  retval >>= (-num_bits & 0x3);
  return retval;
}
}  // namespace
void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
  // In Brotli, all bit depths are [1..15]
  // 0 bit depth means that the symbol does not exist.
  const int kMaxBits = 16;  // 0..15 are values for bits
  uint16_t bl_count[kMaxBits] = { 0 };
  {
    for (int i = 0; i < len; ++i) {
      ++bl_count[depth[i]];
    }
    bl_count[0] = 0;
  }
  uint16_t next_code[kMaxBits];
  next_code[0] = 0;
  {
    int code = 0;
    for (int bits = 1; bits < kMaxBits; ++bits) {
      code = (code + bl_count[bits - 1]) << 1;
      next_code[bits] = code;
    }
  }
  for (int i = 0; i < len; ++i) {
    if (depth[i]) {
      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
    }
  }
}
}  // namespace brotli