Hash :
d2e857d8
Author :
Date :
2015-10-23T11:19:04
Fix integer overflow and slowness in entropy estimation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation of Brotli compressor.
#include "./encode.h"
#include <algorithm>
#include <limits>
#include "./backward_references.h"
#include "./bit_cost.h"
#include "./block_splitter.h"
#include "./brotli_bit_stream.h"
#include "./cluster.h"
#include "./context.h"
#include "./metablock.h"
#include "./transform.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./hash.h"
#include "./histogram.h"
#include "./prefix.h"
#include "./utf8_util.h"
#include "./write_bits.h"
namespace brotli {
static const int kMinQualityForBlockSplit = 4;
static const int kMinQualityForContextModeling = 5;
static const int kMinQualityForOptimizeHistograms = 4;
// For quality 1 there is no block splitting, so we buffer at most this much
// literals and commands.
static const int kMaxNumDelayedSymbols = 0x2fff;
void RecomputeDistancePrefixes(Command* cmds,
size_t num_commands,
int num_direct_distance_codes,
int distance_postfix_bits) {
if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) {
return;
}
for (int i = 0; i < num_commands; ++i) {
Command* cmd = &cmds[i];
if (cmd->copy_len_ > 0 && cmd->cmd_prefix_ >= 128) {
PrefixEncodeCopyDistance(cmd->DistanceCode(),
num_direct_distance_codes,
distance_postfix_bits,
&cmd->dist_prefix_,
&cmd->dist_extra_);
}
}
}
uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) {
if (storage_size_ < size) {
delete[] storage_;
storage_ = new uint8_t[size];
storage_size_ = size;
}
return storage_;
}
BrotliCompressor::BrotliCompressor(BrotliParams params)
: params_(params),
hashers_(new Hashers()),
input_pos_(0),
num_commands_(0),
num_literals_(0),
last_insert_len_(0),
last_flush_pos_(0),
last_processed_pos_(0),
prev_byte_(0),
prev_byte2_(0),
storage_size_(0),
storage_(0) {
// Sanitize params.
params_.quality = std::max(1, params_.quality);
if (params_.lgwin < kMinWindowBits) {
params_.lgwin = kMinWindowBits;
} else if (params_.lgwin > kMaxWindowBits) {
params_.lgwin = kMaxWindowBits;
}
if (params_.lgblock == 0) {
params_.lgblock = params_.quality < kMinQualityForBlockSplit ? 14 : 16;
if (params_.quality >= 9 && params_.lgwin > params_.lgblock) {
params_.lgblock = std::min(21, params_.lgwin);
}
} else {
params_.lgblock = std::min(kMaxInputBlockBits,
std::max(kMinInputBlockBits, params_.lgblock));
}
// Set maximum distance, see section 9.1. of the spec.
max_backward_distance_ = (1 << params_.lgwin) - 16;
// Initialize input and literal cost ring buffers.
// We allocate at least lgwin + 1 bits for the ring buffer so that the newly
// added block fits there completely and we still get lgwin bits and at least
// read_block_size_bits + 1 bits because the copy tail length needs to be
// smaller than ringbuffer size.
int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1);
ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock);
commands_ = 0;
cmd_alloc_size_ = 0;
// Initialize last byte with stream header.
if (params_.lgwin == 16) {
last_byte_ = 0;
last_byte_bits_ = 1;
} else if (params_.lgwin == 17) {
last_byte_ = 1;
last_byte_bits_ = 7;
} else if (params_.lgwin > 17) {
last_byte_ = ((params_.lgwin - 17) << 1) | 1;
last_byte_bits_ = 4;
} else {
last_byte_ = ((params_.lgwin - 8) << 4) | 1;
last_byte_bits_ = 7;
}
// Initialize distance cache.
dist_cache_[0] = 4;
dist_cache_[1] = 11;
dist_cache_[2] = 15;
dist_cache_[3] = 16;
// Save the state of the distance cache in case we need to restore it for
// emitting an uncompressed block.
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
// Initialize hashers.
hash_type_ = std::min(9, params_.quality);
hashers_->Init(hash_type_);
}
BrotliCompressor::~BrotliCompressor() {
delete[] storage_;
free(commands_);
delete ringbuffer_;
delete hashers_;
}
void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size,
const uint8_t* input_buffer) {
ringbuffer_->Write(input_buffer, input_size);
input_pos_ += input_size;
// TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the
// hashing not depend on uninitialized data. This makes compression
// deterministic and it prevents uninitialized memory warnings in Valgrind.
// Even without erasing, the output would be valid (but nondeterministic).
//
// Background information: The compressor stores short (at most 8 bytes)
// substrings of the input already read in a hash table, and detects
// repetitions by looking up such substrings in the hash table. If it
// can find a substring, it checks whether the substring is really there
// in the ring buffer (or it's just a hash collision). Should the hash
// table become corrupt, this check makes sure that the output is
// still valid, albeit the compression ratio would be bad.
//
// The compressor populates the hash table from the ring buffer as it's
// reading new bytes from the input. However, at the last few indexes of
// the ring buffer, there are not enough bytes to build full-length
// substrings from. Since the hash table always contains full-length
// substrings, we erase with dummy 0s here to make sure that those
// substrings will contain 0s at the end instead of uninitialized
// data.
//
// Please note that erasing is not necessary (because the
// memory region is already initialized since he ring buffer
// has a `tail' that holds a copy of the beginning,) so we
// skip erasing if we have already gone around at least once in
// the ring buffer.
size_t pos = ringbuffer_->position();
// Only clear during the first round of ringbuffer writes. On
// subsequent rounds data in the ringbuffer would be affected.
if (pos <= ringbuffer_->mask()) {
// This is the first time when the ring buffer is being written.
// We clear 7 bytes just after the bytes that have been copied from
// the input buffer.
//
// The ringbuffer has a "tail" that holds a copy of the beginning,
// but only once the ring buffer has been fully written once, i.e.,
// pos <= mask. For the first time, we need to write values
// in this tail (where index may be larger than mask), so that
// we have exactly defined behavior and don't read un-initialized
// memory. Due to performance reasons, hashing reads data using a
// LOAD64, which can go 7 bytes beyond the bytes written in the
// ringbuffer.
memset(ringbuffer_->start() + pos, 0, 7);
}
}
void BrotliCompressor::BrotliSetCustomDictionary(
const size_t size, const uint8_t* dict) {
CopyInputToRingBuffer(size, dict);
last_flush_pos_ = size;
last_processed_pos_ = size;
if (size > 0) {
prev_byte_ = dict[size - 1];
}
if (size > 1) {
prev_byte2_ = dict[size - 2];
}
hashers_->PrependCustomDictionary(hash_type_, size, dict);
}
bool BrotliCompressor::WriteBrotliData(const bool is_last,
const bool force_flush,
size_t* out_size,
uint8_t** output) {
const size_t bytes = input_pos_ - last_processed_pos_;
const uint8_t* data = ringbuffer_->start();
const size_t mask = ringbuffer_->mask();
if (bytes > input_block_size()) {
return false;
}
// Theoretical max number of commands is 1 per 2 bytes.
size_t newsize = num_commands_ + bytes / 2 + 1;
if (newsize > cmd_alloc_size_) {
// Reserve a bit more memory to allow merging with a next block
// without realloc: that would impact speed.
newsize += bytes / 4;
cmd_alloc_size_ = newsize;
commands_ =
static_cast<Command*>(realloc(commands_, sizeof(Command) * newsize));
}
CreateBackwardReferences(bytes, last_processed_pos_, data, mask,
max_backward_distance_,
params_.quality,
hashers_,
hash_type_,
dist_cache_,
&last_insert_len_,
&commands_[num_commands_],
&num_commands_,
&num_literals_);
int max_length = std::min<int>(mask + 1, 1 << kMaxInputBlockBits);
if (!is_last && !force_flush &&
(params_.quality >= kMinQualityForBlockSplit ||
(num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) &&
input_pos_ + input_block_size() <= last_flush_pos_ + max_length) {
// Merge with next input block. Everything will happen later.
last_processed_pos_ = input_pos_;
*out_size = 0;
return true;
}
// Create the last insert-only command.
if (last_insert_len_ > 0) {
brotli::Command cmd(last_insert_len_);
commands_[num_commands_++] = cmd;
num_literals_ += last_insert_len_;
last_insert_len_ = 0;
}
return WriteMetaBlockInternal(is_last, out_size, output);
}
// Decide about the context map based on the ability of the prediction
// ability of the previous byte UTF8-prefix on the next byte. The
// prediction ability is calculated as shannon entropy. Here we need
// shannon entropy instead of 'BitsEntropy' since the prefix will be
// encoded with the remaining 6 bits of the following byte, and
// BitsEntropy will assume that symbol to be stored alone using Huffman
// coding.
void ChooseContextMap(int quality,
int* bigram_histo,
int* num_literal_contexts,
const int** literal_context_map) {
int monogram_histo[3] = { 0 };
int two_prefix_histo[6] = { 0 };
int total = 0;
for (int i = 0; i < 9; ++i) {
total += bigram_histo[i];
monogram_histo[i % 3] += bigram_histo[i];
int j = i;
if (j >= 6) {
j -= 6;
}
two_prefix_histo[j] += bigram_histo[i];
}
int dummy;
double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy);
double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) +
ShannonEntropy(two_prefix_histo + 3, 3, &dummy));
double entropy3 = 0;
for (int k = 0; k < 3; ++k) {
entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy);
}
assert(total != 0);
entropy1 *= (1.0 / total);
entropy2 *= (1.0 / total);
entropy3 *= (1.0 / total);
static const int kStaticContextMapContinuation[64] = {
1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
static const int kStaticContextMapSimpleUTF8[64] = {
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
if (quality < 7) {
// 3 context models is a bit slower, don't use it at lower qualities.
entropy3 = entropy1 * 10;
}
// If expected savings by symbol are less than 0.2 bits, skip the
// context modeling -- in exchange for faster decoding speed.
if (entropy1 - entropy2 < 0.2 &&
entropy1 - entropy3 < 0.2) {
*num_literal_contexts = 1;
} else if (entropy2 - entropy3 < 0.02) {
*num_literal_contexts = 2;
*literal_context_map = kStaticContextMapSimpleUTF8;
} else {
*num_literal_contexts = 3;
*literal_context_map = kStaticContextMapContinuation;
}
}
void DecideOverLiteralContextModeling(const uint8_t* input,
size_t start_pos,
size_t length,
size_t mask,
int quality,
int* literal_context_mode,
int* num_literal_contexts,
const int** literal_context_map) {
if (quality < kMinQualityForContextModeling || length < 64) {
return;
}
// Gather bigram data of the UTF8 byte prefixes. To make the analysis of
// UTF8 data faster we only examine 64 byte long strides at every 4kB
// intervals.
const size_t end_pos = start_pos + length;
int bigram_prefix_histo[9] = { 0 };
for (; start_pos + 64 <= end_pos; start_pos += 4096) {
static const int lut[4] = { 0, 0, 1, 2 };
const size_t stride_end_pos = start_pos + 64;
int prev = lut[input[start_pos & mask] >> 6] * 3;
for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) {
const uint8_t literal = input[pos & mask];
++bigram_prefix_histo[prev + lut[literal >> 6]];
prev = lut[literal >> 6] * 3;
}
}
*literal_context_mode = CONTEXT_UTF8;
ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts,
literal_context_map);
}
bool BrotliCompressor::WriteMetaBlockInternal(const bool is_last,
size_t* out_size,
uint8_t** output) {
const size_t bytes = input_pos_ - last_flush_pos_;
const uint8_t* data = ringbuffer_->start();
const size_t mask = ringbuffer_->mask();
const size_t max_out_size = 2 * bytes + 500;
uint8_t* storage = GetBrotliStorage(max_out_size);
storage[0] = last_byte_;
int storage_ix = last_byte_bits_;
bool uncompressed = false;
if (num_commands_ < (bytes >> 8) + 2) {
if (num_literals_ > 0.99 * bytes) {
int literal_histo[256] = { 0 };
static const int kSampleRate = 13;
static const double kMinEntropy = 7.92;
const double bit_cost_threshold = bytes * kMinEntropy / kSampleRate;
for (size_t i = last_flush_pos_; i < input_pos_; i += kSampleRate) {
++literal_histo[data[i & mask]];
}
if (BitsEntropy(literal_histo, 256) > bit_cost_threshold) {
uncompressed = true;
}
}
}
if (bytes == 0) {
if (!StoreCompressedMetaBlockHeader(is_last, 0, &storage_ix, &storage[0])) {
return false;
}
storage_ix = (storage_ix + 7) & ~7;
} else if (uncompressed) {
// Restore the distance cache, as its last update by
// CreateBackwardReferences is now unused.
memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_));
if (!StoreUncompressedMetaBlock(is_last,
data, last_flush_pos_, mask, bytes,
&storage_ix,
&storage[0])) {
return false;
}
} else {
int num_direct_distance_codes = 0;
int distance_postfix_bits = 0;
if (params_.quality > 9 && params_.mode == BrotliParams::MODE_FONT) {
num_direct_distance_codes = 12;
distance_postfix_bits = 1;
RecomputeDistancePrefixes(commands_,
num_commands_,
num_direct_distance_codes,
distance_postfix_bits);
}
if (params_.quality < kMinQualityForBlockSplit) {
if (!StoreMetaBlockTrivial(data, last_flush_pos_, bytes, mask, is_last,
commands_, num_commands_,
&storage_ix,
&storage[0])) {
return false;
}
} else {
MetaBlockSplit mb;
int literal_context_mode = CONTEXT_UTF8;
if (params_.quality <= 9) {
int num_literal_contexts = 1;
const int* literal_context_map = NULL;
DecideOverLiteralContextModeling(data, last_flush_pos_, bytes, mask,
params_.quality,
&literal_context_mode,
&num_literal_contexts,
&literal_context_map);
if (literal_context_map == NULL) {
BuildMetaBlockGreedy(data, last_flush_pos_, mask,
commands_, num_commands_,
&mb);
} else {
BuildMetaBlockGreedyWithContexts(data, last_flush_pos_, mask,
prev_byte_, prev_byte2_,
literal_context_mode,
num_literal_contexts,
literal_context_map,
commands_, num_commands_,
&mb);
}
} else {
if (!IsMostlyUTF8(data, last_flush_pos_, mask, bytes, kMinUTF8Ratio)) {
literal_context_mode = CONTEXT_SIGNED;
}
BuildMetaBlock(data, last_flush_pos_, mask,
prev_byte_, prev_byte2_,
commands_, num_commands_,
literal_context_mode,
&mb);
}
if (params_.quality >= kMinQualityForOptimizeHistograms) {
OptimizeHistograms(num_direct_distance_codes,
distance_postfix_bits,
&mb);
}
if (!StoreMetaBlock(data, last_flush_pos_, bytes, mask,
prev_byte_, prev_byte2_,
is_last,
num_direct_distance_codes,
distance_postfix_bits,
literal_context_mode,
commands_, num_commands_,
mb,
&storage_ix,
&storage[0])) {
return false;
}
}
if (bytes + 4 < (storage_ix >> 3)) {
// Restore the distance cache and last byte.
memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_));
storage[0] = last_byte_;
storage_ix = last_byte_bits_;
if (!StoreUncompressedMetaBlock(is_last, data, last_flush_pos_, mask,
bytes, &storage_ix, &storage[0])) {
return false;
}
}
}
last_byte_ = storage[storage_ix >> 3];
last_byte_bits_ = storage_ix & 7;
last_flush_pos_ = input_pos_;
last_processed_pos_ = input_pos_;
prev_byte_ = data[(last_flush_pos_ - 1) & mask];
prev_byte2_ = data[(last_flush_pos_ - 2) & mask];
num_commands_ = 0;
num_literals_ = 0;
// Save the state of the distance cache in case we need to restore it for
// emitting an uncompressed block.
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
*output = &storage[0];
*out_size = storage_ix >> 3;
return true;
}
bool BrotliCompressor::WriteMetaBlock(const size_t input_size,
const uint8_t* input_buffer,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
CopyInputToRingBuffer(input_size, input_buffer);
size_t out_size = 0;
uint8_t* output;
if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) ||
out_size > *encoded_size) {
return false;
}
if (out_size > 0) {
memcpy(encoded_buffer, output, out_size);
}
*encoded_size = out_size;
return true;
}
bool BrotliCompressor::WriteMetadata(const size_t input_size,
const uint8_t* input_buffer,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (input_size > (1 << 24) || input_size + 6 > *encoded_size) {
return false;
}
int storage_ix = last_byte_bits_;
encoded_buffer[0] = last_byte_;
WriteBits(1, 0, &storage_ix, encoded_buffer);
WriteBits(2, 3, &storage_ix, encoded_buffer);
WriteBits(1, 0, &storage_ix, encoded_buffer);
if (input_size == 0) {
WriteBits(2, 0, &storage_ix, encoded_buffer);
*encoded_size = (storage_ix + 7) >> 3;
} else {
size_t nbits = Log2Floor(input_size - 1) + 1;
size_t nbytes = (nbits + 7) / 8;
WriteBits(2, nbytes, &storage_ix, encoded_buffer);
WriteBits(8 * nbytes, input_size - 1, &storage_ix, encoded_buffer);
size_t hdr_size = (storage_ix + 7) >> 3;
memcpy(&encoded_buffer[hdr_size], input_buffer, input_size);
*encoded_size = hdr_size + input_size;
}
if (is_last) {
encoded_buffer[(*encoded_size)++] = 3;
}
last_byte_ = 0;
last_byte_bits_ = 0;
return true;
}
bool BrotliCompressor::FinishStream(
size_t* encoded_size, uint8_t* encoded_buffer) {
return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer);
}
int BrotliCompressBuffer(BrotliParams params,
size_t input_size,
const uint8_t* input_buffer,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (*encoded_size == 0) {
// Output buffer needs at least one byte.
return 0;
}
BrotliMemIn in(input_buffer, input_size);
BrotliMemOut out(encoded_buffer, *encoded_size);
if (!BrotliCompress(params, &in, &out)) {
return 0;
}
*encoded_size = out.position();
return 1;
}
size_t CopyOneBlockToRingBuffer(BrotliIn* r, BrotliCompressor* compressor) {
const size_t block_size = compressor->input_block_size();
size_t bytes_read = 0;
const uint8_t* data = reinterpret_cast<const uint8_t*>(
r->Read(block_size, &bytes_read));
if (data == NULL) {
return 0;
}
compressor->CopyInputToRingBuffer(bytes_read, data);
// Read more bytes until block_size is filled or an EOF (data == NULL) is
// received. This is useful to get deterministic compressed output for the
// same input no matter how r->Read splits the input to chunks.
for (size_t remaining = block_size - bytes_read; remaining > 0; ) {
size_t more_bytes_read = 0;
data = reinterpret_cast<const uint8_t*>(
r->Read(remaining, &more_bytes_read));
if (data == NULL) {
break;
}
compressor->CopyInputToRingBuffer(more_bytes_read, data);
bytes_read += more_bytes_read;
remaining -= more_bytes_read;
}
return bytes_read;
}
bool BrotliInIsFinished(BrotliIn* r) {
size_t read_bytes;
return r->Read(0, &read_bytes) == NULL;
}
int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) {
return BrotliCompressWithCustomDictionary(0, 0, params, in, out);
}
int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict,
BrotliParams params,
BrotliIn* in, BrotliOut* out) {
size_t in_bytes = 0;
size_t out_bytes = 0;
uint8_t* output;
bool final_block = false;
BrotliCompressor compressor(params);
if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict);
while (!final_block) {
in_bytes = CopyOneBlockToRingBuffer(in, &compressor);
final_block = in_bytes == 0 || BrotliInIsFinished(in);
out_bytes = 0;
if (!compressor.WriteBrotliData(final_block,
/* force_flush = */ false,
&out_bytes, &output)) {
return false;
}
if (out_bytes > 0 && !out->Write(output, out_bytes)) {
return false;
}
}
return true;
}
} // namespace brotli