[sdf] Add functions to compute pixel edge distances. * src/sdf/ftbsdf.c (compute_edge_distance, bsdf_approximate_edge): New functions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
diff --git a/ChangeLog b/ChangeLog
index 86a6308..950d7d5 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,12 @@
2020-08-20 Anuj Verma <anujv@iitbhilai.ac.in>
+ [sdf] Add functions to compute pixel edge distances.
+
+ * src/sdf/ftbsdf.c (compute_edge_distance, bsdf_approximate_edge):
+ New functions.
+
+2020-08-20 Anuj Verma <anujv@iitbhilai.ac.in>
+
[sdf] Add function to find edge pixels in a grid of alpha values.
* src/sdf/ftbsdf.c (bsdf_is_edge): New function.
diff --git a/src/sdf/ftbsdf.c b/src/sdf/ftbsdf.c
index 2229354..9dc6953 100644
--- a/src/sdf/ftbsdf.c
+++ b/src/sdf/ftbsdf.c
@@ -192,7 +192,7 @@
FT_Int w, /* width */
FT_Int r ) /* rows */
{
- FT_Bool is_edge = 0;
+ FT_Bool is_edge = 0;
ED* to_check = NULL;
FT_Int num_neighbors = 0;
@@ -240,4 +240,258 @@
#undef CHECK_NEIGHBOR
+ /**************************************************************************
+ *
+ * @Function:
+ * compute_edge_distance
+ *
+ * @Description:
+ * Approximate the outline and compute the distance from `current`
+ * to the approximated outline.
+ *
+ * @Input:
+ * current ::
+ * Array of Euclidean distances. `current` must point to the position
+ * for which the distance is to be caculated. We treat this array as
+ * a two-dimensional array mapped to a one-dimensional array.
+ *
+ * x ::
+ * The x coordinate of the `current` parameter in the array.
+ *
+ * y ::
+ * The y coordinate of the `current` parameter in the array.
+ *
+ * w ::
+ * The width of the distances array.
+ *
+ * r ::
+ * Number of rows in the distances array.
+ *
+ * @Return:
+ * A vector pointing to the approximate edge distance.
+ *
+ * @Note:
+ * This is a computationally expensive function. Try to reduce the
+ * number of calls to this function. Moreover, this must only be used
+ * for edge pixel positions.
+ *
+ */
+ static FT_16D16_Vec
+ compute_edge_distance( ED* current,
+ FT_Int x,
+ FT_Int y,
+ FT_Int w,
+ FT_Int r )
+ {
+ /*
+ * This function, based on the paper presented by Stefan Gustavson and
+ * Robin Strand, gets used to approximate edge distances from
+ * anti-aliased bitmaps.
+ *
+ * The algorithm is as follows.
+ *
+ * (1) In anti-aliased images, the pixel's alpha value is the coverage
+ * of the pixel by the outline. For example, if the alpha value is
+ * 0.5f we can assume that the outline passes through the center of
+ * the pixel.
+ *
+ * (2) For this reason we can use that alpha value to approximate the real
+ * distance of the pixel to edge pretty accurately. A simple
+ * approximation is `(0.5f - alpha)`, assuming that the outline is
+ * parallel to the x or y~axis. However, in this algorithm we use a
+ * different approximation which is quite accurate even for
+ * non-axis-aligned edges.
+ *
+ * (3) The only remaining piece of information that we cannot
+ * approximate directly from the alpha is the direction of the edge.
+ * This is where we use Sobel's operator to compute the gradient of
+ * the pixel. The gradient give us a pretty good approximation of
+ * the edge direction. We use a 3x3 kernel filter to compute the
+ * gradient.
+ *
+ * (4) After the above two steps we have both the direction and the
+ * distance to the edge which is used to generate the Signed
+ * Distance Field.
+ *
+ * References:
+ *
+ * - Anti-Aliased Euclidean Distance Transform:
+ * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf
+ * - Sobel Operator:
+ * https://en.wikipedia.org/wiki/Sobel_operator
+ */
+
+ FT_16D16_Vec g = { 0, 0 };
+ FT_16D16 dist, current_alpha;
+ FT_16D16 a1, temp;
+ FT_16D16 gx, gy;
+ FT_16D16 alphas[9];
+
+
+ /* Since our spread cannot be 0, this condition */
+ /* can never be true. */
+ if ( x <= 0 || x >= w - 1 ||
+ y <= 0 || y >= r - 1 )
+ return g;
+
+ /* initialize the alphas */
+ alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha;
+ alphas[1] = 256 * (FT_16D16)current[-w ].alpha;
+ alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha;
+ alphas[3] = 256 * (FT_16D16)current[ -1].alpha;
+ alphas[4] = 256 * (FT_16D16)current[ 0].alpha;
+ alphas[5] = 256 * (FT_16D16)current[ 1].alpha;
+ alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha;
+ alphas[7] = 256 * (FT_16D16)current[ w ].alpha;
+ alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha;
+
+ current_alpha = alphas[4];
+
+ /* Compute the gradient using the Sobel operator. */
+ /* In this case we use the following 3x3 filters: */
+ /* */
+ /* For x: | -1 0 -1 | */
+ /* | -root(2) 0 root(2) | */
+ /* | -1 0 1 | */
+ /* */
+ /* For y: | -1 -root(2) -1 | */
+ /* | 0 0 0 | */
+ /* | 1 root(2) 1 | */
+ /* */
+ /* [Note]: 92681 is root(2) in 16.16 format. */
+ g.x = -alphas[0] -
+ FT_MulFix( alphas[3], 92681 ) -
+ alphas[6] +
+ alphas[2] +
+ FT_MulFix( alphas[5], 92681 ) +
+ alphas[8];
+
+ g.y = -alphas[0] -
+ FT_MulFix( alphas[1], 92681 ) -
+ alphas[2] +
+ alphas[6] +
+ FT_MulFix( alphas[7], 92681 ) +
+ alphas[8];
+
+ FT_Vector_NormLen( &g );
+
+ /* The gradient gives us the direction of the */
+ /* edge for the current pixel. Once we have the */
+ /* approximate direction of the edge, we can */
+ /* approximate the edge distance much better. */
+
+ if ( g.x == 0 || g.y == 0 )
+ dist = ONE / 2 - alphas[4];
+ else
+ {
+ gx = g.x;
+ gy = g.y;
+
+ gx = FT_ABS( gx );
+ gy = FT_ABS( gy );
+
+ if ( gx < gy )
+ {
+ temp = gx;
+ gx = gy;
+ gy = temp;
+ }
+
+ a1 = FT_DivFix( gy, gx ) / 2;
+
+ if ( current_alpha < a1 )
+ dist = ( gx + gy ) / 2 -
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ current_alpha ) ) );
+
+ else if ( current_alpha < ( ONE - a1 ) )
+ dist = FT_MulFix( ONE / 2 - current_alpha, gx );
+
+ else
+ dist = -( gx + gy ) / 2 +
+ square_root( 2 * FT_MulFix( gx,
+ FT_MulFix( gy,
+ ONE - current_alpha ) ) );
+ }
+
+ g.x = FT_MulFix( g.x, dist );
+ g.y = FT_MulFix( g.y, dist );
+
+ return g;
+ }
+
+
+ /**************************************************************************
+ *
+ * @Function:
+ * bsdf_approximate_edge
+ *
+ * @Description:
+ * Loops over all the pixels and call `compute_edge_distance` only for
+ * edge pixels. This maked the process a lot faster since
+ * `compute_edge_distance` uses functions such as `FT_Vector_NormLen',
+ * which are quite slow.
+ *
+ * @InOut:
+ * worker ::
+ * Contains the distance map as well as all the relevant parameters
+ * required by the function.
+ *
+ * @Return:
+ * FreeType error, 0 means success.
+ *
+ * @Note:
+ * The function directly manipulates `worker->distance_map`.
+ *
+ */
+ static FT_Error
+ bsdf_approximate_edge( BSDF_Worker* worker )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Int i, j;
+ FT_Int index;
+ ED* ed;
+
+
+ if ( !worker || !worker->distance_map )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ ed = worker->distance_map;
+
+ for ( j = 0; j < worker->rows; j++ )
+ {
+ for ( i = 0; i < worker->width; i++ )
+ {
+ index = j * worker->width + i;
+
+ if ( bsdf_is_edge( worker->distance_map + index,
+ i, j,
+ worker->width,
+ worker->rows ) )
+ {
+ /* approximate the edge distance for edge pixels */
+ ed[index].near = compute_edge_distance( ed + index,
+ i, j,
+ worker->width,
+ worker->rows );
+ ed[index].dist = VECTOR_LENGTH_16D16( ed[index].near );
+ }
+ else
+ {
+ /* for non-edge pixels assign far away distances */
+ ed[index].dist = 400 * ONE;
+ ed[index].near.x = 200 * ONE;
+ ed[index].near.y = 200 * ONE;
+ }
+ }
+ }
+
+ Exit:
+ return error;
+ }
+
/* END */