1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/***************************************************************************/
/* */
/* ftcalc.c */
/* */
/* Arithmetic computations (body). */
/* */
/* Copyright 1996-2000 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/***************************************************************************/
/*************************************************************************/
/* */
/* Support for 1-complement arithmetic has been totally dropped in this */
/* release. You can still write your own code if you need it. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* Implementing basic computation routines. */
/* */
/* FT_MulDiv(), FT_MulFix(), and FT_DivFix() are declared in freetype.h. */
/* */
/*************************************************************************/
#include <freetype/internal/ftcalc.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftobjs.h> /* for ABS() */
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef FT_COMPONENT
#define FT_COMPONENT trace_calc
#ifdef FT_CONFIG_OPTION_OLD_CALCS
static const FT_Long ft_square_roots[63] =
{
1L, 1L, 2L, 3L, 4L, 5L, 8L, 11L,
16L, 22L, 32L, 45L, 64L, 90L, 128L, 181L,
256L, 362L, 512L, 724L, 1024L, 1448L, 2048L, 2896L,
4096L, 5892L, 8192L, 11585L, 16384L, 23170L, 32768L, 46340L,
65536L, 92681L, 131072L, 185363L, 262144L, 370727L,
524288L, 741455L, 1048576L, 1482910L, 2097152L, 2965820L,
4194304L, 5931641L, 8388608L, 11863283L, 16777216L, 23726566L,
33554432L, 47453132L, 67108864L, 94906265L,
134217728L, 189812531L, 268435456L, 379625062L,
536870912L, 759250125L, 1073741824L, 1518500250L,
2147483647L
};
#else
/*************************************************************************/
/* */
/* <Function> */
/* FT_Sqrt32 */
/* */
/* <Description> */
/* Computes the square root of an Int32 integer (which will be */
/* handled as an unsigned long value). */
/* */
/* <Input> */
/* x :: The value to compute the root for. */
/* */
/* <Return> */
/* The result of `sqrt(x)'. */
/* */
FT_EXPORT_FUNC( FT_Int32 ) FT_Sqrt32( FT_Int32 x )
{
FT_ULong val, root, newroot, mask;
root = 0;
mask = 0x40000000L;
val = (FT_ULong)x;
do
{
newroot = root + mask;
if ( newroot <= val )
{
val -= newroot;
root = newroot + mask;
}
root >>= 1;
mask >>= 2;
} while ( mask != 0 );
return root;
}
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
#ifdef FT_LONG64
/*************************************************************************/
/* */
/* <Function> */
/* FT_MulDiv */
/* */
/* <Description> */
/* A very simple function used to perform the computation `(a*b)/c' */
/* with maximal accuracy (it uses a 64-bit intermediate integer */
/* whenever necessary). */
/* */
/* This function isn't necessarily as fast as some processor specific */
/* operations, but is at least completely portable. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. */
/* c :: The divisor. */
/* */
/* <Return> */
/* The result of `(a*b)/c'. This function never traps when trying to */
/* divide by zero; it simply returns `MaxInt' or `MinInt' depending */
/* on the signs of `a' and `b'. */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_MulDiv( FT_Long a,
FT_Long b,
FT_Long c )
{
FT_Int s;
s = 1;
if ( a < 0 ) { a = -a; s = -s; }
if ( b < 0 ) { b = -b; s = -s; }
if ( c < 0 ) { c = -c; s = -s; }
return s * ( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
: 0x7FFFFFFFL );
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_MulFix */
/* */
/* <Description> */
/* A very simple function used to perform the computation */
/* `(a*b)/0x10000' with maximal accuracy. Most of the time this is */
/* used to multiply a given value by a 16.16 fixed float factor. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. Use a 16.16 factor here whenever */
/* possible (see note below). */
/* */
/* <Return> */
/* The result of `(a*b)/0x10000'. */
/* */
/* <Note> */
/* This function has been optimized for the case where the absolute */
/* value of `a' is less than 2048, and `b' is a 16.16 scaling factor. */
/* As this happens mainly when scaling from notional units to */
/* fractional pixels in FreeType, it resulted in noticeable speed */
/* improvements between versions 2.x and 1.x. */
/* */
/* As a conclusion, always try to place a 16.16 factor as the */
/* _second_ argument of this function; this can make a great */
/* difference. */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_MulFix( FT_Long a,
FT_Long b )
{
FT_Int s;
s = 1;
if ( a < 0 ) { a = -a; s = -s; }
if ( b < 0 ) { b = -b; s = -s; }
return s * (FT_Long)( ( (FT_Int64)a * b + 0x8000 ) >> 16 );
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_DivFix */
/* */
/* <Description> */
/* A very simple function used to perform the computation */
/* `(a*0x10000)/b' with maximal accuracy. Most of the time, this is */
/* used to divide a given value by a 16.16 fixed float factor. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. Use a 16.16 factor here whenever */
/* possible (see note below). */
/* */
/* <Return> */
/* The result of `(a*0x10000)/b'. */
/* */
/* <Note> */
/* The optimization for FT_DivFix() is simple: If (a << 16) fits in */
/* 32 bits, then the division is computed directly. Otherwise, we */
/* use a specialized version of the old FT_MulDiv64(). */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_DivFix( FT_Long a,
FT_Long b )
{
FT_Int32 s;
FT_UInt32 q;
s = a; a = ABS(a);
s ^= b; b = ABS(b);
if ( b == 0 )
/* check for division by 0 */
q = 0x7FFFFFFFL;
else
/* compute result directly */
q = ( (FT_Int64)a << 16 ) / b;
return (FT_Int32)( s < 0 ? -q : q );
}
#ifdef FT_CONFIG_OPTION_OLD_CALCS
/* a helper function for FT_Sqrt64() */
static
int ft_order64( FT_Int64 z )
{
int j = 0;
while ( z )
{
z = (unsigned FT_INT64)z >> 1;
j++;
}
return j - 1;
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_Sqrt64 */
/* */
/* <Description> */
/* Computes the square root of a 64-bit value. That sounds stupid, */
/* but it is needed to obtain maximal accuracy in the TrueType */
/* bytecode interpreter. */
/* */
/* <Input> */
/* l :: A 64-bit integer. */
/* */
/* <Return> */
/* The 32-bit square-root. */
/* */
FT_EXPORT_FUNC( FT_Int32 ) FT_Sqrt64( FT_Int64 l )
{
FT_Int64 r, s;
if ( l <= 0 ) return 0;
if ( l == 1 ) return 1;
r = ft_square_roots[ft_order64( l )];
do
{
s = r;
r = ( r + l / r ) >> 1;
} while ( r > s || r * r > l );
return r;
}
FT_EXPORT_DEF( FT_Int32 ) FT_SqrtFixed( FT_Int32 x )
{
FT_Int64 z;
z = (FT_Int64)(x) << 16;
return FT_Sqrt64( z );
}
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
#else /* FT_LONG64 */
/*************************************************************************/
/* */
/* <Function> */
/* FT_MulDiv */
/* */
/* <Description> */
/* A very simple function used to perform the computation `(a*b)/c' */
/* with maximal accuracy (it uses a 64-bit intermediate integer */
/* whenever necessary). */
/* */
/* This function isn't necessarily as fast as some processor specific */
/* operations, but is at least completely portable. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. */
/* c :: The divisor. */
/* */
/* <Return> */
/* The result of `(a*b)/c'. This function never traps when trying to */
/* divide by zero; it simply returns `MaxInt' or `MinInt' depending */
/* on the signs of `a' and `b'. */
/* */
/* <Note> */
/* The FT_MulDiv() function has been optimized thanks to ideas from */
/* Graham Asher. The trick is to optimize computation if everything */
/* fits within 32 bits (a rather common case). */
/* */
/* We compute `a*b+c/2', then divide it by `c' (positive values). */
/* */
/* 46340 is FLOOR(SQRT(2^31-1)). */
/* */
/* if ( a <= 46340 && b <= 46340 ) then ( a*b <= 0x7FFEA810 ) */
/* */
/* 0x7FFFFFFF - 0x7FFEA810 = 0x157F0 */
/* */
/* if ( c < 0x157F0*2 ) then ( a*b+c/2 <= 0x7FFFFFFF ) */
/* */
/* and 2*0x157F0 = 176096. */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_MulDiv( FT_Long a,
FT_Long b,
FT_Long c )
{
long s;
if ( a == 0 || b == c )
return a;
s = a; a = ABS( a );
s ^= b; b = ABS( b );
s ^= c; c = ABS( c );
if ( a <= 46340 && b <= 46340 && c <= 176095L && c > 0 )
{
a = ( a * b + ( c >> 1 ) ) / c;
}
else if ( c > 0 )
{
FT_Int64 temp, temp2;
FT_MulTo64( a, b, &temp );
temp2.hi = (FT_Int32)( c >> 31 );
temp2.lo = (FT_UInt32)( c / 2 );
FT_Add64( &temp, &temp2, &temp );
a = FT_Div64by32( &temp, c );
}
else
a = 0x7FFFFFFFL;
return ( s < 0 ? -a : a );
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_MulFix */
/* */
/* <Description> */
/* A very simple function used to perform the computation */
/* `(a*b)/0x10000' with maximal accuracy. Most of the time, this is */
/* used to multiply a given value by a 16.16 fixed float factor. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. Use a 16.16 factor here whenever */
/* possible (see note below). */
/* */
/* <Return> */
/* The result of `(a*b)/0x10000'. */
/* */
/* <Note> */
/* The optimization for FT_MulFix() is different. We could simply be */
/* happy by applying the same principles as with FT_MulDiv(), because */
/* */
/* c = 0x10000 < 176096 */
/* */
/* However, in most cases, we have a `b' with a value around 0x10000 */
/* which is greater than 46340. */
/* */
/* According to some testing, most cases have `a' < 2048, so a good */
/* idea is to use bounds like 2048 and 1048576 (=floor((2^31-1)/2048) */
/* for `a' and `b', respectively. */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_MulFix( FT_Long a,
FT_Long b )
{
FT_Long s;
FT_ULong ua, ub;
if ( a == 0 || b == 0x10000L )
return a;
s = a; a = ABS(a);
s ^= b; b = ABS(b);
ua = (FT_ULong)a;
ub = (FT_ULong)b;
if ( ua <= 2048 && ub <= 1048576L )
{
ua = ( ua * ub + 0x8000 ) >> 16;
}
else
{
FT_ULong al = ua & 0xFFFF;
ua = ( ua >> 16 ) * ub +
al * ( ub >> 16 ) +
( al * ( ub & 0xFFFF ) >> 16 );
}
return ( s < 0 ? -(FT_Long)ua : ua );
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_DivFix */
/* */
/* <Description> */
/* A very simple function used to perform the computation */
/* `(a*0x10000)/b' with maximal accuracy. Most of the time, this is */
/* used to divide a given value by a 16.16 fixed float factor. */
/* */
/* <Input> */
/* a :: The first multiplier. */
/* b :: The second multiplier. Use a 16.16 factor here whenever */
/* possible (see note below). */
/* */
/* <Return> */
/* The result of `(a*0x10000)/b'. */
/* */
/* <Note> */
/* The optimization for FT_DivFix() is simple: If (a << 16) fits into */
/* 32 bits, then the division is computed directly. Otherwise, we */
/* use a specialized version of the old FT_MulDiv64(). */
/* */
FT_EXPORT_FUNC( FT_Long ) FT_DivFix( FT_Long a,
FT_Long b )
{
FT_Int32 s;
FT_UInt32 q;
s = a; a = ABS(a);
s ^= b; b = ABS(b);
if ( b == 0 )
{
/* check for division by 0 */
q = 0x7FFFFFFFL;
}
else if ( ( a >> 16 ) == 0 )
{
/* compute result directly */
q = (FT_UInt32)( a << 16 ) / (FT_UInt32)b;
}
else
{
/* we need more bits; we have to do it by hand */
FT_Int64 temp, temp2;
temp.hi = (FT_Int32) (a >> 16);
temp.lo = (FT_UInt32)(a << 16);
temp2.hi = (FT_Int32)( b >> 31 );
temp2.lo = (FT_UInt32)( b / 2 );
FT_Add64( &temp, &temp2, &temp );
q = FT_Div64by32( &temp, b );
}
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_Add64 */
/* */
/* <Description> */
/* Add two Int64 values. */
/* */
/* <Input> */
/* x :: A pointer to the first value to be added. */
/* y :: A pointer to the second value to be added. */
/* */
/* <Output> */
/* z :: A pointer to the result of `x + y'. */
/* */
/* <Note> */
/* Will be wrapped by the ADD_64() macro. */
/* */
FT_EXPORT_FUNC( void ) FT_Add64( FT_Int64* x,
FT_Int64* y,
FT_Int64* z )
{
register FT_UInt32 lo, hi;
lo = x->lo + y->lo;
hi = x->hi + y->hi + ( lo < x->lo );
z->lo = lo;
z->hi = hi;
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_MulTo64 */
/* */
/* <Description> */
/* Multiplies two Int32 integers. Returns an Int64 integer. */
/* */
/* <Input> */
/* x :: The first multiplier. */
/* y :: The second multiplier. */
/* */
/* <Output> */
/* z :: A pointer to the result of `x * y'. */
/* */
/* <Note> */
/* Will be wrapped by the MUL_64() macro. */
/* */
FT_EXPORT_FUNC( void ) FT_MulTo64( FT_Int32 x,
FT_Int32 y,
FT_Int64* z )
{
FT_Int32 s;
s = x; x = ABS( x );
s ^= y; y = ABS( y );
{
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
lo1 = x & 0x0000FFFF; hi1 = x >> 16;
lo2 = y & 0x0000FFFF; hi2 = y >> 16;
lo = lo1 * lo2;
i1 = lo1 * hi2;
i2 = lo2 * hi1;
hi = hi1 * hi2;
/* Check carry overflow of i1 + i2 */
i1 += i2;
if ( i1 < i2 )
hi += 1L << 16;
hi += i1 >> 16;
i1 = i1 << 16;
/* Check carry overflow of i1 + lo */
lo += i1;
hi += ( lo < i1 );
z->lo = lo;
z->hi = hi;
}
if ( s < 0 )
{
z->lo = (FT_UInt32)-(FT_Int32)z->lo;
z->hi = ~z->hi + !( z->lo );
}
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_Div64by32 */
/* */
/* <Description> */
/* Divides an Int64 value by an Int32 value. Returns an Int32 */
/* integer. */
/* */
/* <Input> */
/* x :: A pointer to the dividend. */
/* y :: The divisor. */
/* */
/* <Return> */
/* The result of `x / y'. */
/* */
/* <Note> */
/* Will be wrapped by the DIV_64() macro. */
/* */
FT_EXPORT_FUNC( FT_Int32 ) FT_Div64by32( FT_Int64* x,
FT_Int32 y )
{
FT_Int32 s;
FT_UInt32 q, r, i, lo;
s = x->hi;
if ( s < 0 )
{
x->lo = (FT_UInt32)-(FT_Int32)x->lo;
x->hi = ~x->hi + !( x->lo );
}
s ^= y; y = ABS( y );
/* Shortcut */
if ( x->hi == 0 )
{
if ( y > 0 )
q = x->lo / y;
else
q = 0x7FFFFFFFL;
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
}
r = x->hi;
lo = x->lo;
if ( r >= (FT_UInt32)y ) /* we know y is to be treated as unsigned here */
return ( s < 0 ? 0x80000001UL : 0x7FFFFFFFUL );
/* Return Max/Min Int32 if division overflow. */
/* This includes division by zero! */
q = 0;
for ( i = 0; i < 32; i++ )
{
r <<= 1;
q <<= 1;
r |= lo >> 31;
if ( r >= (FT_UInt32)y )
{
r -= y;
q |= 1;
}
lo <<= 1;
}
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
}
#ifdef FT_CONFIG_OPTION_OLD_CALCS
/* two helper functions for FT_Sqrt64() */
static
void FT_Sub64( FT_Int64* x,
FT_Int64* y,
FT_Int64* z )
{
register FT_UInt32 lo, hi;
lo = x->lo - y->lo;
hi = x->hi - y->hi - ( (FT_Int32)lo < 0 );
z->lo = lo;
z->hi = hi;
}
static
int ft_order64( FT_Int64* z )
{
FT_UInt32 i;
int j;
i = z->lo;
j = 0;
if ( z->hi )
{
i = z->hi;
j = 32;
}
while ( i > 0 )
{
i >>= 1;
j++;
}
return j - 1;
}
/*************************************************************************/
/* */
/* <Function> */
/* FT_Sqrt64 */
/* */
/* <Description> */
/* Computes the square root of a 64-bits value. That sounds stupid, */
/* but it is needed to obtain maximal accuracy in the TrueType */
/* bytecode interpreter. */
/* */
/* <Input> */
/* z :: A pointer to a 64-bit integer. */
/* */
/* <Return> */
/* The 32-bit square-root. */
/* */
FT_EXPORT_FUNC( FT_Int32 ) FT_Sqrt64( FT_Int64* l )
{
FT_Int64 l2;
FT_Int32 r, s;
if ( (FT_Int32)l->hi < 0 ||
( l->hi == 0 && l->lo == 0 ) )
return 0;
s = ft_order64( l );
if ( s == 0 )
return 1;
r = ft_square_roots[s];
do
{
s = r;
r = ( r + FT_Div64by32( l, r ) ) >> 1;
FT_MulTo64( r, r, &l2 );
FT_Sub64 ( l, &l2, &l2 );
} while ( r > s || (FT_Int32)l2.hi < 0 );
return r;
}
FT_EXPORT_DEF( FT_Int32 ) FT_SqrtFixed( FT_Int32 x )
{
FT_Int64 z;
z.hi = (FT_UInt32)((FT_Int32)(x) >> 16);
z.lo = (FT_UInt32)( x << 16 );
return FT_Sqrt64( &z );
}
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
#endif /* FT_LONG64 */
/* END */