Hash :
e6e5b67d
Author :
Date :
2021-04-23T21:33:03
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
/****************************************************************************
*
* ftsdf.c
*
* Signed Distance Field support for outline fonts (body).
*
* Copyright (C) 2020-2021 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* Written by Anuj Verma.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/ftoutln.h>
#include <freetype/fttrigon.h>
#include "ftsdf.h"
#include "ftsdferrs.h"
/**************************************************************************
*
* A brief technical overview of how the SDF rasterizer works
* ----------------------------------------------------------
*
* [Notes]:
* * SDF stands for Signed Distance Field everywhere.
*
* * This renderer generates SDF directly from outlines. There is
* another renderer called 'bsdf', which converts bitmaps to SDF; see
* file `ftbsdf.c` for more.
*
* * The basic idea of generating the SDF is taken from Viktor Chlumsky's
* research paper.
*
* Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance
* Fields. Master's thesis. Czech Technical University in Prague,
* Faculty of InformationTechnology, 2015.
*
* For more information: https://github.com/Chlumsky/msdfgen
*
* ========================================================================
*
* Generating SDF from outlines is pretty straightforward.
*
* (1) We have a set of contours that make the outline of a shape/glyph.
* Each contour comprises of several edges, with three types of edges.
*
* * line segments
* * conic Bezier curves
* * cubic Bezier curves
*
* (2) Apart from the outlines we also have a two-dimensional grid, namely
* the bitmap that is used to represent the final SDF data.
*
* (3) In order to generate SDF, our task is to find shortest signed
* distance from each grid point to the outline. The 'signed
* distance' means that if the grid point is filled by any contour
* then its sign is positive, otherwise it is negative. The pseudo
* code is as follows.
*
* ```
* foreach grid_point (x, y):
* {
* int min_dist = INT_MAX;
*
* foreach contour in outline:
* {
* foreach edge in contour:
* {
* // get shortest distance from point (x, y) to the edge
* d = get_min_dist(x, y, edge);
*
* if (d < min_dist)
* min_dist = d;
* }
*
* bitmap[x, y] = min_dist;
* }
* }
* ```
*
* (4) After running this algorithm the bitmap contains information about
* the shortest distance from each point to the outline of the shape.
* Of course, while this is the most straightforward way of generating
* SDF, we use various optimizations in our implementation. See the
* `sdf_generate_*' functions in this file for all details.
*
* The optimization currently used by default is subdivision; see
* function `sdf_generate_subdivision` for more.
*
* Also, to see how we compute the shortest distance from a point to
* each type of edge, check out the `get_min_distance_*' functions.
*
*/
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT sdf
/**************************************************************************
*
* definitions
*
*/
/*
* If set to 1, the rasterizer uses Newton-Raphson's method for finding
* the shortest distance from a point to a conic curve.
*
* If set to 0, an analytical method gets used instead, which computes the
* roots of a cubic polynomial to find the shortest distance. However,
* the analytical method can currently underflow; we thus use Newton's
* method by default.
*/
#ifndef USE_NEWTON_FOR_CONIC
#define USE_NEWTON_FOR_CONIC 1
#endif
/*
* The number of intervals a Bezier curve gets sampled and checked to find
* the shortest distance.
*/
#define MAX_NEWTON_DIVISIONS 4
/*
* The number of steps of Newton's iterations in each interval of the
* Bezier curve. Basically, we run Newton's approximation
*
* x -= Q(t) / Q'(t)
*
* for each division to get the shortest distance.
*/
#define MAX_NEWTON_STEPS 4
/*
* The epsilon distance (in 16.16 fractional units) used for corner
* resolving. If the difference of two distances is less than this value
* they will be checked for a corner if they are ambiguous.
*/
#define CORNER_CHECK_EPSILON 32
#if 0
/*
* Coarse grid dimension. Will probably be removed in the future because
* coarse grid optimization is the slowest algorithm.
*/
#define CG_DIMEN 8
#endif
/**************************************************************************
*
* macros
*
*/
#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \
MUL_26D6( p.y, q.y ) )
/**************************************************************************
*
* structures and enums
*
*/
/**************************************************************************
*
* @Struct:
* SDF_TRaster
*
* @Description:
* This struct is used in place of @FT_Raster and is stored within the
* internal FreeType renderer struct. While rasterizing it is passed to
* the @FT_Raster_RenderFunc function, which then can be used however we
* want.
*
* @Fields:
* memory ::
* Used internally to allocate intermediate memory while raterizing.
*
*/
typedef struct SDF_TRaster_
{
FT_Memory memory;
} SDF_TRaster;
/**************************************************************************
*
* @Enum:
* SDF_Edge_Type
*
* @Description:
* Enumeration of all curve types present in fonts.
*
* @Fields:
* SDF_EDGE_UNDEFINED ::
* Undefined edge, simply used to initialize and detect errors.
*
* SDF_EDGE_LINE ::
* Line segment with start and end point.
*
* SDF_EDGE_CONIC ::
* A conic/quadratic Bezier curve with start, end, and one control
* point.
*
* SDF_EDGE_CUBIC ::
* A cubic Bezier curve with start, end, and two control points.
*
*/
typedef enum SDF_Edge_Type_
{
SDF_EDGE_UNDEFINED = 0,
SDF_EDGE_LINE = 1,
SDF_EDGE_CONIC = 2,
SDF_EDGE_CUBIC = 3
} SDF_Edge_Type;
/**************************************************************************
*
* @Enum:
* SDF_Contour_Orientation
*
* @Description:
* Enumeration of all orientation values of a contour. We determine the
* orientation by calculating the area covered by a contour. Contrary
* to values returned by @FT_Outline_Get_Orientation,
* `SDF_Contour_Orientation` is independent of the fill rule, which can
* be different for different font formats.
*
* @Fields:
* SDF_ORIENTATION_NONE ::
* Undefined orientation, used for initialization and error detection.
*
* SDF_ORIENTATION_CW ::
* Clockwise orientation (positive area covered).
*
* SDF_ORIENTATION_CCW ::
* Counter-clockwise orientation (negative area covered).
*
* @Note:
* See @FT_Outline_Get_Orientation for more details.
*
*/
typedef enum SDF_Contour_Orientation_
{
SDF_ORIENTATION_NONE = 0,
SDF_ORIENTATION_CW = 1,
SDF_ORIENTATION_CCW = 2
} SDF_Contour_Orientation;
/**************************************************************************
*
* @Struct:
* SDF_Edge
*
* @Description:
* Represent an edge of a contour.
*
* @Fields:
* start_pos ::
* Start position of an edge. Valid for all types of edges.
*
* end_pos ::
* Etart position of an edge. Valid for all types of edges.
*
* control_a ::
* A control point of the edge. Valid only for `SDF_EDGE_CONIC`
* and `SDF_EDGE_CUBIC`.
*
* control_b ::
* Another control point of the edge. Valid only for
* `SDF_EDGE_CONIC`.
*
* edge_type ::
* Type of the edge, see @SDF_Edge_Type for all possible edge types.
*
* next ::
* Used to create a singly linked list, which can be interpreted
* as a contour.
*
*/
typedef struct SDF_Edge_
{
FT_26D6_Vec start_pos;
FT_26D6_Vec end_pos;
FT_26D6_Vec control_a;
FT_26D6_Vec control_b;
SDF_Edge_Type edge_type;
struct SDF_Edge_* next;
} SDF_Edge;
/**************************************************************************
*
* @Struct:
* SDF_Contour
*
* @Description:
* Represent a complete contour, which contains a list of edges.
*
* @Fields:
* last_pos ::
* Contains the value of `end_pos' of the last edge in the list of
* edges. Useful while decomposing the outline with
* @FT_Outline_Decompose.
*
* edges ::
* Linked list of all the edges that make the contour.
*
* next ::
* Used to create a singly linked list, which can be interpreted as a
* complete shape or @FT_Outline.
*
*/
typedef struct SDF_Contour_
{
FT_26D6_Vec last_pos;
SDF_Edge* edges;
struct SDF_Contour_* next;
} SDF_Contour;
/**************************************************************************
*
* @Struct:
* SDF_Shape
*
* @Description:
* Represent a complete shape, which is the decomposition of
* @FT_Outline.
*
* @Fields:
* memory ::
* Used internally to allocate memory.
*
* contours ::
* Linked list of all the contours that make the shape.
*
*/
typedef struct SDF_Shape_
{
FT_Memory memory;
SDF_Contour* contours;
} SDF_Shape;
/**************************************************************************
*
* @Struct:
* SDF_Signed_Distance
*
* @Description:
* Represent signed distance of a point, i.e., the distance of the edge
* nearest to the point.
*
* @Fields:
* distance ::
* Distance of the point from the nearest edge. Can be squared or
* absolute depending on the `USE_SQUARED_DISTANCES` macro defined in
* file `ftsdfcommon.h`.
*
* cross ::
* Cross product of the shortest distance vector (i.e., the vector
* from the point to the nearest edge) and the direction of the edge
* at the nearest point. This is used to resolve ambiguities of
* `sign`.
*
* sign ::
* A value used to indicate whether the distance vector is outside or
* inside the contour corresponding to the edge.
*
* @Note:
* `sign` may or may not be correct, therefore it must be checked
* properly in case there is an ambiguity.
*
*/
typedef struct SDF_Signed_Distance_
{
FT_16D16 distance;
FT_16D16 cross;
FT_Char sign;
} SDF_Signed_Distance;
/**************************************************************************
*
* @Struct:
* SDF_Params
*
* @Description:
* Yet another internal parameters required by the rasterizer.
*
* @Fields:
* orientation ::
* This is not the @SDF_Contour_Orientation value but @FT_Orientation,
* which determines whether clockwise-oriented outlines are to be
* filled or counter-clockwise-oriented ones.
*
* flip_sign ::
* If set to true, flip the sign. By default the points filled by the
* outline are positive.
*
* flip_y ::
* If set to true the output bitmap is upside-down. Can be useful
* because OpenGL and DirectX use different coordinate systems for
* textures.
*
* overload_sign ::
* In the subdivision and bounding box optimization, the default
* outside sign is taken as -1. This parameter can be used to modify
* that behaviour. For example, while generating SDF for a single
* counter-clockwise contour, the outside sign should be 1.
*
*/
typedef struct SDF_Params_
{
FT_Orientation orientation;
FT_Bool flip_sign;
FT_Bool flip_y;
FT_Int overload_sign;
} SDF_Params;
/**************************************************************************
*
* constants, initializer, and destructor
*
*/
static
const FT_Vector zero_vector = { 0, 0 };
static
const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 },
SDF_EDGE_UNDEFINED, NULL };
static
const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL };
static
const SDF_Shape null_shape = { NULL, NULL };
static
const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 };
/* Create a new @SDF_Edge on the heap and assigns the `edge` */
/* pointer to the newly allocated memory. */
static FT_Error
sdf_edge_new( FT_Memory memory,
SDF_Edge** edge )
{
FT_Error error = FT_Err_Ok;
SDF_Edge* ptr = NULL;
if ( !memory || !edge )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QALLOC( ptr, sizeof ( *ptr ) ) )
{
*ptr = null_edge;
*edge = ptr;
}
Exit:
return error;
}
/* Free the allocated `edge` variable. */
static void
sdf_edge_done( FT_Memory memory,
SDF_Edge** edge )
{
if ( !memory || !edge || !*edge )
return;
FT_FREE( *edge );
}
/* Create a new @SDF_Contour on the heap and assign */
/* the `contour` pointer to the newly allocated memory. */
static FT_Error
sdf_contour_new( FT_Memory memory,
SDF_Contour** contour )
{
FT_Error error = FT_Err_Ok;
SDF_Contour* ptr = NULL;
if ( !memory || !contour )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QALLOC( ptr, sizeof ( *ptr ) ) )
{
*ptr = null_contour;
*contour = ptr;
}
Exit:
return error;
}
/* Free the allocated `contour` variable. */
/* Also free the list of edges. */
static void
sdf_contour_done( FT_Memory memory,
SDF_Contour** contour )
{
SDF_Edge* edges;
SDF_Edge* temp;
if ( !memory || !contour || !*contour )
return;
edges = (*contour)->edges;
/* release all edges */
while ( edges )
{
temp = edges;
edges = edges->next;
sdf_edge_done( memory, &temp );
}
FT_FREE( *contour );
}
/* Create a new @SDF_Shape on the heap and assign */
/* the `shape` pointer to the newly allocated memory. */
static FT_Error
sdf_shape_new( FT_Memory memory,
SDF_Shape** shape )
{
FT_Error error = FT_Err_Ok;
SDF_Shape* ptr = NULL;
if ( !memory || !shape )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QALLOC( ptr, sizeof ( *ptr ) ) )
{
*ptr = null_shape;
ptr->memory = memory;
*shape = ptr;
}
Exit:
return error;
}
/* Free the allocated `shape` variable. */
/* Also free the list of contours. */
static void
sdf_shape_done( SDF_Shape** shape )
{
FT_Memory memory;
SDF_Contour* contours;
SDF_Contour* temp;
if ( !shape || !*shape )
return;
memory = (*shape)->memory;
contours = (*shape)->contours;
if ( !memory )
return;
/* release all contours */
while ( contours )
{
temp = contours;
contours = contours->next;
sdf_contour_done( memory, &temp );
}
/* release the allocated shape struct */
FT_FREE( *shape );
}
/**************************************************************************
*
* shape decomposition functions
*
*/
/* This function is called when starting a new contour at `to`, */
/* which gets added to the shape's list. */
static FT_Error
sdf_move_to( const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
FT_CALL( sdf_contour_new( memory, &contour ) );
contour->last_pos = *to;
contour->next = shape->contours;
shape->contours = contour;
Exit:
return error;
}
/* This function is called when there is a line in the */
/* contour. The line starts at the previous edge point and */
/* stops at `to`. */
static FT_Error
sdf_line_to( const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
if ( contour->last_pos.x == to->x &&
contour->last_pos.y == to->y )
goto Exit;
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_LINE;
edge->start_pos = contour->last_pos;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* This function is called when there is a conic Bezier curve */
/* in the contour. The curve starts at the previous edge point */
/* and stops at `to`, with control point `control_1`. */
static FT_Error
sdf_conic_to( const FT_26D6_Vec* control_1,
const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !control_1 || !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_CONIC;
edge->start_pos = contour->last_pos;
edge->control_a = *control_1;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* This function is called when there is a cubic Bezier curve */
/* in the contour. The curve starts at the previous edge point */
/* and stops at `to`, with two control points `control_1` and */
/* `control_2`. */
static FT_Error
sdf_cubic_to( const FT_26D6_Vec* control_1,
const FT_26D6_Vec* control_2,
const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !control_2 || !control_1 || !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_CUBIC;
edge->start_pos = contour->last_pos;
edge->control_a = *control_1;
edge->control_b = *control_2;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* Construct the structure to hold all four outline */
/* decomposition functions. */
FT_DEFINE_OUTLINE_FUNCS(
sdf_decompose_funcs,
(FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */
(FT_Outline_LineTo_Func) sdf_line_to, /* line_to */
(FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */
(FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */
0, /* shift */
0 /* delta */
)
/* Decompose `outline` and put it into the `shape` structure. */
static FT_Error
sdf_outline_decompose( FT_Outline* outline,
SDF_Shape* shape )
{
FT_Error error = FT_Err_Ok;
if ( !outline || !shape )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
error = FT_Outline_Decompose( outline,
&sdf_decompose_funcs,
(void*)shape );
Exit:
return error;
}
/**************************************************************************
*
* utility functions
*
*/
/* Return the control box of a edge. The control box is a rectangle */
/* in which all the control points can fit tightly. */
static FT_CBox
get_control_box( SDF_Edge edge )
{
FT_CBox cbox;
FT_Bool is_set = 0;
switch ( edge.edge_type )
{
case SDF_EDGE_CUBIC:
cbox.xMin = edge.control_b.x;
cbox.xMax = edge.control_b.x;
cbox.yMin = edge.control_b.y;
cbox.yMax = edge.control_b.y;
is_set = 1;
/* fall through */
case SDF_EDGE_CONIC:
if ( is_set )
{
cbox.xMin = edge.control_a.x < cbox.xMin
? edge.control_a.x
: cbox.xMin;
cbox.xMax = edge.control_a.x > cbox.xMax
? edge.control_a.x
: cbox.xMax;
cbox.yMin = edge.control_a.y < cbox.yMin
? edge.control_a.y
: cbox.yMin;
cbox.yMax = edge.control_a.y > cbox.yMax
? edge.control_a.y
: cbox.yMax;
}
else
{
cbox.xMin = edge.control_a.x;
cbox.xMax = edge.control_a.x;
cbox.yMin = edge.control_a.y;
cbox.yMax = edge.control_a.y;
is_set = 1;
}
/* fall through */
case SDF_EDGE_LINE:
if ( is_set )
{
cbox.xMin = edge.start_pos.x < cbox.xMin
? edge.start_pos.x
: cbox.xMin;
cbox.xMax = edge.start_pos.x > cbox.xMax
? edge.start_pos.x
: cbox.xMax;
cbox.yMin = edge.start_pos.y < cbox.yMin
? edge.start_pos.y
: cbox.yMin;
cbox.yMax = edge.start_pos.y > cbox.yMax
? edge.start_pos.y
: cbox.yMax;
}
else
{
cbox.xMin = edge.start_pos.x;
cbox.xMax = edge.start_pos.x;
cbox.yMin = edge.start_pos.y;
cbox.yMax = edge.start_pos.y;
}
cbox.xMin = edge.end_pos.x < cbox.xMin
? edge.end_pos.x
: cbox.xMin;
cbox.xMax = edge.end_pos.x > cbox.xMax
? edge.end_pos.x
: cbox.xMax;
cbox.yMin = edge.end_pos.y < cbox.yMin
? edge.end_pos.y
: cbox.yMin;
cbox.yMax = edge.end_pos.y > cbox.yMax
? edge.end_pos.y
: cbox.yMax;
break;
default:
break;
}
return cbox;
}
/* Return orientation of a single contour. */
/* Note that the orientation is independent of the fill rule! */
/* So, for TTF a clockwise-oriented contour has to be filled */
/* and the opposite for OTF fonts. */
static SDF_Contour_Orientation
get_contour_orientation ( SDF_Contour* contour )
{
SDF_Edge* head = NULL;
FT_26D6 area = 0;
/* return none if invalid parameters */
if ( !contour || !contour->edges )
return SDF_ORIENTATION_NONE;
head = contour->edges;
/* Calculate the area of the control box for all edges. */
while ( head )
{
switch ( head->edge_type )
{
case SDF_EDGE_LINE:
area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
( head->end_pos.y + head->start_pos.y ) );
break;
case SDF_EDGE_CONIC:
area += MUL_26D6( head->control_a.x - head->start_pos.x,
head->control_a.y + head->start_pos.y );
area += MUL_26D6( head->end_pos.x - head->control_a.x,
head->end_pos.y + head->control_a.y );
break;
case SDF_EDGE_CUBIC:
area += MUL_26D6( head->control_a.x - head->start_pos.x,
head->control_a.y + head->start_pos.y );
area += MUL_26D6( head->control_b.x - head->control_a.x,
head->control_b.y + head->control_a.y );
area += MUL_26D6( head->end_pos.x - head->control_b.x,
head->end_pos.y + head->control_b.y );
break;
default:
return SDF_ORIENTATION_NONE;
}
head = head->next;
}
/* Clockwise contours cover a positive area, and counter-clockwise */
/* contours cover a negative area. */
if ( area > 0 )
return SDF_ORIENTATION_CW;
else
return SDF_ORIENTATION_CCW;
}
/* This function is exactly the same as the one */
/* in the smooth renderer. It splits a conic */
/* into two conics exactly half way at t = 0.5. */
static void
split_conic( FT_26D6_Vec* base )
{
FT_26D6 a, b;
base[4].x = base[2].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
base[3].x = b / 2;
base[2].x = ( a + b ) / 4;
base[1].x = a / 2;
base[4].y = base[2].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
base[3].y = b / 2;
base[2].y = ( a + b ) / 4;
base[1].y = a / 2;
}
/* This function is exactly the same as the one */
/* in the smooth renderer. It splits a cubic */
/* into two cubics exactly half way at t = 0.5. */
static void
split_cubic( FT_26D6_Vec* base )
{
FT_26D6 a, b, c;
base[6].x = base[3].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
c = base[2].x + base[3].x;
base[5].x = c / 2;
c += b;
base[4].x = c / 4;
base[1].x = a / 2;
a += b;
base[2].x = a / 4;
base[3].x = ( a + c ) / 8;
base[6].y = base[3].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
c = base[2].y + base[3].y;
base[5].y = c / 2;
c += b;
base[4].y = c / 4;
base[1].y = a / 2;
a += b;
base[2].y = a / 4;
base[3].y = ( a + c ) / 8;
}
/* Split a conic Bezier curve into a number of lines */
/* and add them to `out'. */
/* */
/* This function uses recursion; we thus need */
/* parameter `max_splits' for stopping. */
static FT_Error
split_sdf_conic( FT_Memory memory,
FT_26D6_Vec* control_points,
FT_Int max_splits,
SDF_Edge** out )
{
FT_Error error = FT_Err_Ok;
FT_26D6_Vec cpos[5];
SDF_Edge* left,* right;
if ( !memory || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* split conic outline */
cpos[0] = control_points[0];
cpos[1] = control_points[1];
cpos[2] = control_points[2];
split_conic( cpos );
/* If max number of splits is done */
/* then stop and add the lines to */
/* the list. */
if ( max_splits <= 2 )
goto Append;
/* Otherwise keep splitting. */
FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
/* [NOTE]: This is not an efficient way of */
/* splitting the curve. Check the deviation */
/* instead and stop if the deviation is less */
/* than a pixel. */
goto Exit;
Append:
/* Do allocation and add the lines to the list. */
FT_CALL( sdf_edge_new( memory, &left ) );
FT_CALL( sdf_edge_new( memory, &right ) );
left->start_pos = cpos[0];
left->end_pos = cpos[2];
left->edge_type = SDF_EDGE_LINE;
right->start_pos = cpos[2];
right->end_pos = cpos[4];
right->edge_type = SDF_EDGE_LINE;
left->next = right;
right->next = (*out);
*out = left;
Exit:
return error;
}
/* Split a cubic Bezier curve into a number of lines */
/* and add them to `out`. */
/* */
/* This function uses recursion; we thus need */
/* parameter `max_splits' for stopping. */
static FT_Error
split_sdf_cubic( FT_Memory memory,
FT_26D6_Vec* control_points,
FT_Int max_splits,
SDF_Edge** out )
{
FT_Error error = FT_Err_Ok;
FT_26D6_Vec cpos[7];
SDF_Edge* left,* right;
if ( !memory || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* split the conic */
cpos[0] = control_points[0];
cpos[1] = control_points[1];
cpos[2] = control_points[2];
cpos[3] = control_points[3];
split_cubic( cpos );
/* If max number of splits is done */
/* then stop and add the lines to */
/* the list. */
if ( max_splits <= 2 )
goto Append;
/* Otherwise keep splitting. */
FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
/* [NOTE]: This is not an efficient way of */
/* splitting the curve. Check the deviation */
/* instead and stop if the deviation is less */
/* than a pixel. */
goto Exit;
Append:
/* Do allocation and add the lines to the list. */
FT_CALL( sdf_edge_new( memory, &left) );
FT_CALL( sdf_edge_new( memory, &right) );
left->start_pos = cpos[0];
left->end_pos = cpos[3];
left->edge_type = SDF_EDGE_LINE;
right->start_pos = cpos[3];
right->end_pos = cpos[6];
right->edge_type = SDF_EDGE_LINE;
left->next = right;
right->next = (*out);
*out = left;
Exit:
return error;
}
/* Subdivide an entire shape into line segments */
/* such that it doesn't look visually different */
/* from the original curve. */
static FT_Error
split_sdf_shape( SDF_Shape* shape )
{
FT_Error error = FT_Err_Ok;
FT_Memory memory;
SDF_Contour* contours;
SDF_Contour* new_contours = NULL;
if ( !shape || !shape->memory )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contours = shape->contours;
memory = shape->memory;
/* for each contour */
while ( contours )
{
SDF_Edge* edges = contours->edges;
SDF_Edge* new_edges = NULL;
SDF_Contour* tempc;
/* for each edge */
while ( edges )
{
SDF_Edge* edge = edges;
SDF_Edge* temp;
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
/* Just create a duplicate edge in case */
/* it is a line. We can use the same edge. */
FT_CALL( sdf_edge_new( memory, &temp ) );
ft_memcpy( temp, edge, sizeof ( *edge ) );
temp->next = new_edges;
new_edges = temp;
break;
case SDF_EDGE_CONIC:
/* Subdivide the curve and add it to the list. */
{
FT_26D6_Vec ctrls[3];
ctrls[0] = edge->start_pos;
ctrls[1] = edge->control_a;
ctrls[2] = edge->end_pos;
error = split_sdf_conic( memory, ctrls, 32, &new_edges );
}
break;
case SDF_EDGE_CUBIC:
/* Subdivide the curve and add it to the list. */
{
FT_26D6_Vec ctrls[4];
ctrls[0] = edge->start_pos;
ctrls[1] = edge->control_a;
ctrls[2] = edge->control_b;
ctrls[3] = edge->end_pos;
error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
}
break;
default:
error = FT_THROW( Invalid_Argument );
goto Exit;
}
edges = edges->next;
}
/* add to the contours list */
FT_CALL( sdf_contour_new( memory, &tempc ) );
tempc->next = new_contours;
tempc->edges = new_edges;
new_contours = tempc;
new_edges = NULL;
/* deallocate the contour */
tempc = contours;
contours = contours->next;
sdf_contour_done( memory, &tempc );
}
shape->contours = new_contours;
Exit:
return error;
}
/**************************************************************************
*
* for debugging
*
*/
#ifdef FT_DEBUG_LEVEL_TRACE
static void
sdf_shape_dump( SDF_Shape* shape )
{
FT_UInt num_contours = 0;
FT_UInt total_edges = 0;
FT_UInt total_lines = 0;
FT_UInt total_conic = 0;
FT_UInt total_cubic = 0;
SDF_Contour* contour_list;
if ( !shape )
{
FT_TRACE5(( "sdf_shape_dump: null shape\n" ));
return;
}
contour_list = shape->contours;
FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" ));
while ( contour_list )
{
FT_UInt num_edges = 0;
SDF_Edge* edge_list;
SDF_Contour* contour = contour_list;
FT_TRACE5(( " Contour %d\n", num_contours ));
edge_list = contour->edges;
while ( edge_list )
{
SDF_Edge* edge = edge_list;
FT_TRACE5(( " %3d: ", num_edges ));
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->end_pos.x, edge->end_pos.y ));
total_lines++;
break;
case SDF_EDGE_CONIC:
FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->control_a.x, edge->control_a.y,
edge->end_pos.x, edge->end_pos.y ));
total_conic++;
break;
case SDF_EDGE_CUBIC:
FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)"
" .. (%ld, %ld) .. (%ld %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->control_a.x, edge->control_a.y,
edge->control_b.x, edge->control_b.y,
edge->end_pos.x, edge->end_pos.y ));
total_cubic++;
break;
default:
break;
}
num_edges++;
total_edges++;
edge_list = edge_list->next;
}
num_contours++;
contour_list = contour_list->next;
}
FT_TRACE5(( "\n" ));
FT_TRACE5(( " total number of contours = %d\n", num_contours ));
FT_TRACE5(( " total number of edges = %d\n", total_edges ));
FT_TRACE5(( " |__lines = %d\n", total_lines ));
FT_TRACE5(( " |__conic = %d\n", total_conic ));
FT_TRACE5(( " |__cubic = %d\n", total_cubic ));
}
#endif /* FT_DEBUG_LEVEL_TRACE */
/**************************************************************************
*
* math functions
*
*/
#if !USE_NEWTON_FOR_CONIC
/* [NOTE]: All the functions below down until rasterizer */
/* can be avoided if we decide to subdivide the */
/* curve into lines. */
/* This function uses Newton's iteration to find */
/* the cube root of a fixed-point integer. */
static FT_16D16
cube_root( FT_16D16 val )
{
/* [IMPORTANT]: This function is not good as it may */
/* not break, so use a lookup table instead. Or we */
/* can use an algorithm similar to `square_root`. */
FT_Int v, g, c;
if ( val == 0 ||
val == -FT_INT_16D16( 1 ) ||
val == FT_INT_16D16( 1 ) )
return val;
v = val < 0 ? -val : val;
g = square_root( v );
c = 0;
while ( 1 )
{
c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
g -= c;
if ( ( c < 0 ? -c : c ) < 30 )
break;
}
return val < 0 ? -g : g;
}
/* Calculate the perpendicular by using '1 - base^2'. */
/* Then use arctan to compute the angle. */
static FT_16D16
arc_cos( FT_16D16 val )
{
FT_16D16 p;
FT_16D16 b = val;
FT_16D16 one = FT_INT_16D16( 1 );
if ( b > one )
b = one;
if ( b < -one )
b = -one;
p = one - FT_MulFix( b, b );
p = square_root( p );
return FT_Atan2( b, p );
}
/* Compute roots of a quadratic polynomial, assign them to `out`, */
/* and return number of real roots. */
/* */
/* The procedure can be found at */
/* */
/* https://mathworld.wolfram.com/QuadraticFormula.html */
static FT_UShort
solve_quadratic_equation( FT_26D6 a,
FT_26D6 b,
FT_26D6 c,
FT_16D16 out[2] )
{
FT_16D16 discriminant = 0;
a = FT_26D6_16D16( a );
b = FT_26D6_16D16( b );
c = FT_26D6_16D16( c );
if ( a == 0 )
{
if ( b == 0 )
return 0;
else
{
out[0] = FT_DivFix( -c, b );
return 1;
}
}
discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
if ( discriminant < 0 )
return 0;
else if ( discriminant == 0 )
{
out[0] = FT_DivFix( -b, 2 * a );
return 1;
}
else
{
discriminant = square_root( discriminant );
out[0] = FT_DivFix( -b + discriminant, 2 * a );
out[1] = FT_DivFix( -b - discriminant, 2 * a );
return 2;
}
}
/* Compute roots of a cubic polynomial, assign them to `out`, */
/* and return number of real roots. */
/* */
/* The procedure can be found at */
/* */
/* https://mathworld.wolfram.com/CubicFormula.html */
static FT_UShort
solve_cubic_equation( FT_26D6 a,
FT_26D6 b,
FT_26D6 c,
FT_26D6 d,
FT_16D16 out[3] )
{
FT_16D16 q = 0; /* intermediate */
FT_16D16 r = 0; /* intermediate */
FT_16D16 a2 = b; /* x^2 coefficients */
FT_16D16 a1 = c; /* x coefficients */
FT_16D16 a0 = d; /* constant */
FT_16D16 q3 = 0;
FT_16D16 r2 = 0;
FT_16D16 a23 = 0;
FT_16D16 a22 = 0;
FT_16D16 a1x2 = 0;
/* cutoff value for `a` to be a cubic, otherwise solve quadratic */
if ( a == 0 || FT_ABS( a ) < 16 )
return solve_quadratic_equation( b, c, d, out );
if ( d == 0 )
{
out[0] = 0;
return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
}
/* normalize the coefficients; this also makes them 16.16 */
a2 = FT_DivFix( a2, a );
a1 = FT_DivFix( a1, a );
a0 = FT_DivFix( a0, a );
/* compute intermediates */
a1x2 = FT_MulFix( a1, a2 );
a22 = FT_MulFix( a2, a2 );
a23 = FT_MulFix( a22, a2 );
q = ( 3 * a1 - a22 ) / 9;
r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
/* [BUG]: `q3` and `r2` still cause underflow. */
q3 = FT_MulFix( q, q );
q3 = FT_MulFix( q3, q );
r2 = FT_MulFix( r, r );
if ( q3 < 0 && r2 < -q3 )
{
FT_16D16 t = 0;
q3 = square_root( -q3 );
t = FT_DivFix( r, q3 );
if ( t > ( 1 << 16 ) )
t = ( 1 << 16 );
if ( t < -( 1 << 16 ) )
t = -( 1 << 16 );
t = arc_cos( t );
a2 /= 3;
q = 2 * square_root( -q );
out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
return 3;
}
else if ( r2 == -q3 )
{
FT_16D16 s = 0;
s = cube_root( r );
a2 /= -3;
out[0] = a2 + ( 2 * s );
out[1] = a2 - s;
return 2;
}
else
{
FT_16D16 s = 0;
FT_16D16 t = 0;
FT_16D16 dis = 0;
if ( q3 == 0 )
dis = FT_ABS( r );
else
dis = square_root( q3 + r2 );
s = cube_root( r + dis );
t = cube_root( r - dis );
a2 /= -3;
out[0] = ( a2 + ( s + t ) );
return 1;
}
}
#endif /* !USE_NEWTON_FOR_CONIC */
/*************************************************************************/
/*************************************************************************/
/** **/
/** RASTERIZER **/
/** **/
/*************************************************************************/
/*************************************************************************/
/**************************************************************************
*
* @Function:
* resolve_corner
*
* @Description:
* At some places on the grid two edges can give opposite directions;
* this happens when the closest point is on one of the endpoint. In
* that case we need to check the proper sign.
*
* This can be visualized by an example:
*
* ```
* x
*
* o
* ^ \
* / \
* / \
* (a) / \ (b)
* / \
* / \
* / v
* ```
*
* Suppose `x` is the point whose shortest distance from an arbitrary
* contour we want to find out. It is clear that `o` is the nearest
* point on the contour. Now to determine the sign we do a cross
* product of the shortest distance vector and the edge direction, i.e.,
*
* ```
* => sign = cross(x - o, direction(a))
* ```
*
* Using the right hand thumb rule we can see that the sign will be
* positive.
*
* If we use `b', however, we have
*
* ```
* => sign = cross(x - o, direction(b))
* ```
*
* In this case the sign will be negative. To determine the correct
* sign we thus divide the plane in two halves and check which plane the
* point lies in.
*
* ```
* |
* x |
* |
* o
* ^|\
* / | \
* / | \
* (a) / | \ (b)
* / | \
* / \
* / v
* ```
*
* We can see that `x` lies in the plane of `a`, so we take the sign
* determined by `a`. This test can be easily done by calculating the
* orthogonality and taking the greater one.
*
* The orthogonality is simply the sinus of the two vectors (i.e.,
* x - o) and the corresponding direction. We efficiently pre-compute
* the orthogonality with the corresponding `get_min_distance_*`
* functions.
*
* @Input:
* sdf1 ::
* First signed distance (can be any of `a` or `b`).
*
* sdf1 ::
* Second signed distance (can be any of `a` or `b`).
*
* @Return:
* The correct signed distance, which is computed by using the above
* algorithm.
*
* @Note:
* The function does not care about the actual distance, it simply
* returns the signed distance which has a larger cross product. As a
* consequence, this function should not be used if the two distances
* are fairly apart. In that case simply use the signed distance with
* a shorter absolute distance.
*
*/
static SDF_Signed_Distance
resolve_corner( SDF_Signed_Distance sdf1,
SDF_Signed_Distance sdf2 )
{
return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
}
/**************************************************************************
*
* @Function:
* get_min_distance_line
*
* @Description:
* Find the shortest distance from the `line` segment to a given `point`
* and assign it to `out`. Use it for line segments only.
*
* @Input:
* line ::
* The line segment to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `line`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
*
*/
static FT_Error
get_min_distance_line( SDF_Edge* line,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* In order to calculate the shortest distance from a point to
* a line segment, we do the following. Let's assume that
*
* ```
* a = start point of the line segment
* b = end point of the line segment
* p = point from which shortest distance is to be calculated
* ```
*
* (1) Write the parametric equation of the line.
*
* ```
* point_on_line = a + (b - a) * t (t is the factor)
* ```
*
* (2) Find the projection of point `p` on the line. The projection
* will be perpendicular to the line, which allows us to get the
* solution by making the dot product zero.
*
* ```
* (point_on_line - a) . (p - point_on_line) = 0
*
* (point_on_line)
* (a) x-------o----------------x (b)
* |_|
* |
* |
* (p)
* ```
*
* (3) Simplification of the above equation yields the factor of
* `point_on_line`:
*
* ```
* t = ((p - a) . (b - a)) / |b - a|^2
* ```
*
* (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
* can be outside of the line segment:
*
* ```
* (point_on_line)
* (a) x------------------------x (b) -----o---
* |_|
* |
* |
* (p)
* ```
*
* (5) Finally, the distance we are interested in is
*
* ```
* |point_on_line - p|
* ```
*/
FT_Error error = FT_Err_Ok;
FT_Vector a; /* start position */
FT_Vector b; /* end position */
FT_Vector p; /* current point */
FT_26D6_Vec line_segment; /* `b` - `a` */
FT_26D6_Vec p_sub_a; /* `p` - `a` */
FT_26D6 sq_line_length; /* squared length of `line_segment` */
FT_16D16 factor; /* factor of the nearest point */
FT_26D6 cross; /* used to determine sign */
FT_16D16_Vec nearest_point; /* `point_on_line` */
FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
if ( !line || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( line->edge_type != SDF_EDGE_LINE )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
a = line->start_pos;
b = line->end_pos;
p = point;
line_segment.x = b.x - a.x;
line_segment.y = b.y - a.y;
p_sub_a.x = p.x - a.x;
p_sub_a.y = p.y - a.y;
sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
( line_segment.y * line_segment.y ) / 64;
/* currently factor is 26.6 */
factor = ( p_sub_a.x * line_segment.x ) / 64 +
( p_sub_a.y * line_segment.y ) / 64;
/* now factor is 16.16 */
factor = FT_DivFix( factor, sq_line_length );
/* clamp the factor between 0.0 and 1.0 in fixed point */
if ( factor > FT_INT_16D16( 1 ) )
factor = FT_INT_16D16( 1 );
if ( factor < 0 )
factor = 0;
nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
factor );
nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
factor );
nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
FT_MulFix( nearest_vector.y, line_segment.x );
/* assign the output */
out->sign = cross < 0 ? 1 : -1;
out->distance = VECTOR_LENGTH_16D16( nearest_vector );
/* Instead of finding `cross` for checking corner we */
/* directly set it here. This is more efficient */
/* because if the distance is perpendicular we can */
/* directly set it to 1. */
if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 );
else
{
/* [OPTIMIZATION]: Pre-compute this direction. */
/* If not perpendicular then compute `cross`. */
FT_Vector_NormLen( &line_segment );
FT_Vector_NormLen( &nearest_vector );
out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
FT_MulFix( line_segment.y, nearest_vector.x );
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* get_min_distance_conic
*
* @Description:
* Find the shortest distance from the `conic` Bezier curve to a given
* `point` and assign it to `out`. Use it for conic/quadratic curves
* only.
*
* @Input:
* conic ::
* The conic Bezier curve to which the shortest distance is to be
* computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `conic`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
*
*/
#if !USE_NEWTON_FOR_CONIC
/*
* The function uses an analytical method to find the shortest distance
* which is faster than the Newton-Raphson method, but has underflows at
* the moment. Use Newton's method if you can see artifacts in the SDF.
*/
static FT_Error
get_min_distance_conic( SDF_Edge* conic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* The procedure to find the shortest distance from a point to a
* quadratic Bezier curve is similar to the line segment algorithm. The
* shortest distance is perpendicular to the Bezier curve; the only
* difference from line is that there can be more than one
* perpendicular, and we also have to check the endpoints, because the
* perpendicular may not be the shortest.
*
* Let's assume that
* ```
* p0 = first endpoint
* p1 = control point
* p2 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a quadratic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
* ```
*
* with `t` a factor in the range [0.0f, 1.0f]. This equation can
* be rewritten as
*
* ```
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
* ```
*
* With
*
* ```
* A = p0 - 2p1 + p2
* B = p1 - p0
* ```
*
* we have
*
* ```
* B(t) = t^2 * A + 2t * B + p0
* ```
*
* (2) The derivative of the last equation above is
*
* ```
* B'(t) = 2 *(tA + B)
* ```
*
* (3) To find the shortest distance from `p` to `B(t)` we find the
* point on the curve at which the shortest distance vector (i.e.,
* `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
* In other words, we make the dot product zero.
*
* ```
* (B(t) - p) . (B'(t)) = 0
* (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
* ```
*
* After simplifying we get a cubic equation
*
* ```
* at^3 + bt^2 + ct + d = 0
* ```
*
* with
*
* ```
* a = A.A
* b = 3A.B
* c = 2B.B + A.p0 - A.p
* d = p0.B - p.B
* ```
*
* (4) Now the roots of the equation can be computed using 'Cardano's
* Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB; /* A, B in the above comment */
FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_26D6 a, b, c, d; /* cubic coefficients */
FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
FT_16D16 min_factor; /* factor at `nearest_point` */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
FT_UShort num_roots; /* number of real roots of cubic */
FT_UShort i;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( conic->edge_type != SDF_EDGE_CONIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = conic->start_pos;
p1 = conic->control_a;
p2 = conic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = p0.x - 2 * p1.x + p2.x;
aA.y = p0.y - 2 * p1.y + p2.y;
bB.x = p1.x - p0.x;
bB.y = p1.y - p0.y;
/* compute cubic coefficients */
a = VEC_26D6_DOT( aA, aA );
b = 3 * VEC_26D6_DOT( aA, bB );
c = 2 * VEC_26D6_DOT( bB, bB ) +
VEC_26D6_DOT( aA, p0 ) -
VEC_26D6_DOT( aA, p );
d = VEC_26D6_DOT( p0, bB ) -
VEC_26D6_DOT( p, bB );
/* find the roots */
num_roots = solve_cubic_equation( a, b, c, d, roots );
if ( num_roots == 0 )
{
roots[0] = 0;
roots[1] = FT_INT_16D16( 1 );
num_roots = 2;
}
/* [OPTIMIZATION]: Check the roots, clamp them and discard */
/* duplicate roots. */
/* convert these values to 16.16 for further computation */
aA.x = FT_26D6_16D16( aA.x );
aA.y = FT_26D6_16D16( aA.y );
bB.x = FT_26D6_16D16( bB.x );
bB.y = FT_26D6_16D16( bB.y );
p0.x = FT_26D6_16D16( p0.x );
p0.y = FT_26D6_16D16( p0.y );
p.x = FT_26D6_16D16( p.x );
p.y = FT_26D6_16D16( p.y );
for ( i = 0; i < num_roots; i++ )
{
FT_16D16 t = roots[i];
FT_16D16 t2 = 0;
FT_16D16 dist = 0;
FT_16D16_Vec curve_point;
FT_16D16_Vec dist_vector;
/*
* Ideally we should discard the roots which are outside the range
* [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
* Esfahbod proved the following lemma.
*
* Lemma:
*
* (1) If the closest point on the curve [0, 1] is to the endpoint at
* `t` = 1 and the cubic has no real roots at `t` = 1 then the
* cubic must have a real root at some `t` > 1.
*
* (2) Similarly, if the closest point on the curve [0, 1] is to the
* endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
* then the cubic must have a real root at some `t` < 0.
*
* Now because of this lemma we only need to clamp the roots and that
* will take care of the endpoints.
*
* For more details see
*
* https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html
*/
if ( t < 0 )
t = 0;
if ( t > FT_INT_16D16( 1 ) )
t = FT_INT_16D16( 1 );
t2 = FT_MulFix( t, t );
/* B(t) = t^2 * A + 2t * B + p0 - p */
curve_point.x = FT_MulFix( aA.x, t2 ) +
2 * FT_MulFix( bB.x, t ) + p0.x;
curve_point.y = FT_MulFix( aA.y, t2 ) +
2 * FT_MulFix( bB.y, t ) + p0.y;
/* `curve_point` - `p` */
dist_vector.x = curve_point.x - p.x;
dist_vector.y = curve_point.y - p.y;
dist = VECTOR_LENGTH_16D16( dist_vector );
if ( dist < min )
{
min = dist;
nearest_point = curve_point;
min_factor = t;
}
}
/* B'(t) = 2 * (tA + B) */
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
FT_MulFix( nearest_point.y - p.y, direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
#else /* USE_NEWTON_FOR_CONIC */
/*
* The function uses Newton's approximation to find the shortest distance,
* which is a bit slower than the analytical method but doesn't cause
* underflow.
*/
static FT_Error
get_min_distance_conic( SDF_Edge* conic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* This method uses Newton-Raphson's approximation to find the shortest
* distance from a point to a conic curve. It does not involve solving
* any cubic equation, that is why there is no risk of underflow.
*
* Let's assume that
*
* ```
* p0 = first endpoint
* p1 = control point
* p3 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a quadratic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
* ```
*
* with `t` the factor in the range [0.0f, 1.0f]. The above
* equation can be rewritten as
*
* ```
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
* ```
*
* With
*
* ```
* A = p0 - 2p1 + p2
* B = 2 * (p1 - p0)
* ```
*
* we have
*
* ```
* B(t) = t^2 * A + t * B + p0
* ```
*
* (2) The derivative of the above equation is
*
* ```
* B'(t) = 2t * A + B
* ```
*
* (3) The second derivative of the above equation is
*
* ```
* B''(t) = 2A
* ```
*
* (4) The equation `P(t)` of the distance from point `p` to the curve
* can be written as
*
* ```
* P(t) = t^2 * A + t^2 * B + p0 - p
* ```
*
* With
*
* ```
* C = p0 - p
* ```
*
* we have
*
* ```
* P(t) = t^2 * A + t * B + C
* ```
*
* (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
* be written as
*
* ```
* Q(t) = P(t) . B'(t)
* ```
*
* (6) Our task is to find a value of `t` such that the above equation
* `Q(t)` becomes zero, this is, the point-to-curve vector makes
* 90~degrees with the curve. We solve this with the Newton-Raphson
* method.
*
* (7) We first assume an arbitary value of factor `t`, which we then
* improve.
*
* ```
* t := Q(t) / Q'(t)
* ```
*
* Putting the value of `Q(t)` from the above equation gives
*
* ```
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
* t := P(t) . B'(t) /
* (P'(t) . B'(t) + P(t) . B''(t))
* ```
*
* Note that `P'(t)` is the same as `B'(t)` because the constant is
* gone due to the derivative.
*
* (8) Finally we get the equation to improve the factor as
*
* ```
* t := P(t) . B'(t) /
* (B'(t) . B'(t) + P(t) . B''(t))
* ```
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_16D16 min_factor = 0; /* factor at `nearest_point' */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
FT_UShort iterations;
FT_UShort steps;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( conic->edge_type != SDF_EDGE_CONIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = conic->start_pos;
p1 = conic->control_a;
p2 = conic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = p0.x - 2 * p1.x + p2.x;
aA.y = p0.y - 2 * p1.y + p2.y;
bB.x = 2 * ( p1.x - p0.x );
bB.y = 2 * ( p1.y - p0.y );
cC.x = p0.x;
cC.y = p0.y;
/* do Newton's iterations */
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
FT_16D16 factor2;
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
/* B(t) = t^2 * A + t * B + p0 */
curve_point.x = FT_MulFix( aA.x, factor2 ) +
FT_MulFix( bB.x, factor ) + cC.x;
curve_point.y = FT_MulFix( aA.y, factor2 ) +
FT_MulFix( bB.y, factor ) + cC.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* P(t) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
nearest_point = curve_point;
}
/* This is Newton's approximation. */
/* */
/* t := P(t) . B'(t) / */
/* (B'(t) . B'(t) + P(t) . B''(t)) */
/* B'(t) = 2tA + B */
d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
/* B''(t) = 2A */
d2.x = 2 * aA.x;
d2.y = 2 * aA.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P(t) . B'(t) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B'(t) = 2t * A + B */
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
#endif /* USE_NEWTON_FOR_CONIC */
/**************************************************************************
*
* @Function:
* get_min_distance_cubic
*
* @Description:
* Find the shortest distance from the `cubic` Bezier curve to a given
* `point` and assigns it to `out`. Use it for cubic curves only.
*
* @Input:
* cubic ::
* The cubic Bezier curve to which the shortest distance is to be
* computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `cubic`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function uses Newton's approximation to find the shortest
* distance. Another way would be to divide the cubic into conic or
* subdivide the curve into lines, but that is not implemented.
*
* The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
*
*/
static FT_Error
get_min_distance_cubic( SDF_Edge* cubic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* The procedure to find the shortest distance from a point to a cubic
* Bezier curve is similar to quadratic curve algorithm. The only
* difference is that while calculating factor `t`, instead of a cubic
* polynomial equation we have to find the roots of a 5th degree
* polynomial equation. Solving this would require a significant amount
* of time, and still the results may not be accurate. We are thus
* going to directly approximate the value of `t` using the Newton-Raphson
* method.
*
* Let's assume that
*
* ```
* p0 = first endpoint
* p1 = first control point
* p2 = second control point
* p3 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a cubic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
* 3(1 - t)t^2 * p2 + t^3 * p3
* ```
*
* The equation can be expanded and written as
*
* ```
* B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
* 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
* ```
*
* With
*
* ```
* A = -p0 + 3p1 - 3p2 + p3
* B = 3(p0 - 2p1 + p2)
* C = 3(-p0 + p1)
* ```
*
* we have
*
* ```
* B(t) = t^3 * A + t^2 * B + t * C + p0
* ```
*
* (2) The derivative of the above equation is
*
* ```
* B'(t) = 3t^2 * A + 2t * B + C
* ```
*
* (3) The second derivative of the above equation is
*
* ```
* B''(t) = 6t * A + 2B
* ```
*
* (4) The equation `P(t)` of the distance from point `p` to the curve
* can be written as
*
* ```
* P(t) = t^3 * A + t^2 * B + t * C + p0 - p
* ```
*
* With
*
* ```
* D = p0 - p
* ```
*
* we have
*
* ```
* P(t) = t^3 * A + t^2 * B + t * C + D
* ```
*
* (5) Finally the equation of the angle between `B(t)` and `P(t)` can
* be written as
*
* ```
* Q(t) = P(t) . B'(t)
* ```
*
* (6) Our task is to find a value of `t` such that the above equation
* `Q(t)` becomes zero, this is, the point-to-curve vector makes
* 90~degree with curve. We solve this with the Newton-Raphson
* method.
*
* (7) We first assume an arbitary value of factor `t`, which we then
* improve.
*
* ```
* t := Q(t) / Q'(t)
* ```
*
* Putting the value of `Q(t)` from the above equation gives
*
* ```
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
* t := P(t) . B'(t) /
* (P'(t) . B'(t) + P(t) . B''(t))
* ```
*
* Note that `P'(t)` is the same as `B'(t)` because the constant is
* gone due to the derivative.
*
* (8) Finally we get the equation to improve the factor as
*
* ```
* t := P(t) . B'(t) /
* (B'(t) . B'( t ) + P(t) . B''(t))
* ```
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */
FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */
FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_16D16 min_factor = 0; /* factor at shortest distance */
FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest distance */
FT_UShort iterations;
FT_UShort steps;
if ( !cubic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( cubic->edge_type != SDF_EDGE_CUBIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = cubic->start_pos;
p1 = cubic->control_a;
p2 = cubic->control_b;
p3 = cubic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
cC.x = 3 * ( p1.x - p0.x );
cC.y = 3 * ( p1.y - p0.y );
dD.x = p0.x;
dD.y = p0.y;
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
FT_16D16 factor2; /* factor^2 */
FT_16D16 factor3; /* factor^3 */
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
factor3 = FT_MulFix( factor2, factor );
/* B(t) = t^3 * A + t^2 * B + t * C + D */
curve_point.x = FT_MulFix( aA.x, factor3 ) +
FT_MulFix( bB.x, factor2 ) +
FT_MulFix( cC.x, factor ) + dD.x;
curve_point.y = FT_MulFix( aA.y, factor3 ) +
FT_MulFix( bB.y, factor2 ) +
FT_MulFix( cC.y, factor ) + dD.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* P(t) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
min_factor_sq = factor2;
nearest_point = curve_point;
}
/* This the Newton's approximation. */
/* */
/* t := P(t) . B'(t) / */
/* (B'(t) . B'(t) + P(t) . B''(t)) */
/* B'(t) = 3t^2 * A + 2t * B + C */
d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
FT_MulFix( bB.x, 2 * factor ) + cC.x;
d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
FT_MulFix( bB.y, 2 * factor ) + cC.y;
/* B''(t) = 6t * A + 2B */
d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P(t) . B'(t) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B'(t) = 3t^2 * A + 2t * B + C */
direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_edge_get_min_distance
*
* @Description:
* Find shortest distance from `point` to any type of `edge`. It checks
* the edge type and then calls the relevant `get_min_distance_*`
* function.
*
* @Input:
* edge ::
* An edge to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `edge`.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_edge_get_min_distance( SDF_Edge* edge,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
FT_Error error = FT_Err_Ok;
if ( !edge || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* edge-specific distance calculation */
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
get_min_distance_line( edge, point, out );
break;
case SDF_EDGE_CONIC:
get_min_distance_conic( edge, point, out );
break;
case SDF_EDGE_CUBIC:
get_min_distance_cubic( edge, point, out );
break;
default:
error = FT_THROW( Invalid_Argument );
}
Exit:
return error;
}
/* `sdf_generate' is not used at the moment */
#if 0
/**************************************************************************
*
* @Function:
* sdf_contour_get_min_distance
*
* @Description:
* Iterate over all edges that make up the contour, find the shortest
* distance from a point to this contour, and assigns result to `out`.
*
* @Input:
* contour ::
* A contour to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from the `point' to the `contour'.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function does not return a signed distance for each edge which
* makes up the contour, it simply returns the shortest of all the
* edges.
*
*/
static FT_Error
sdf_contour_get_min_distance( SDF_Contour* contour,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
FT_Error error = FT_Err_Ok;
SDF_Signed_Distance min_dist = max_sdf;
SDF_Edge* edge_list;
if ( !contour || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
edge_list = contour->edges;
/* iterate over all the edges manually */
while ( edge_list )
{
SDF_Signed_Distance current_dist = max_sdf;
FT_16D16 diff;
FT_CALL( sdf_edge_get_min_distance( edge_list,
point,
¤t_dist ) );
if ( current_dist.distance >= 0 )
{
diff = current_dist.distance - min_dist.distance;
if ( FT_ABS(diff ) < CORNER_CHECK_EPSILON )
min_dist = resolve_corner( min_dist, current_dist );
else if ( diff < 0 )
min_dist = current_dist;
}
else
FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" ));
edge_list = edge_list->next;
}
*out = min_dist;
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate
*
* @Description:
* This is the main function that is responsible for generating signed
* distance fields. The function does not align or compute the size of
* `bitmap`; therefore the calling application must set up `bitmap`
* properly and transform the `shape' appropriately in advance.
*
* Currently we check all pixels against all contours and all edges.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer. See
* @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate( const SDF_Params internal_params,
const SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_UInt width = 0;
FT_UInt rows = 0;
FT_UInt x = 0; /* used to loop in x direction, i.e., width */
FT_UInt y = 0; /* used to loop in y direction, i.e., rows */
FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */
FT_Short* buffer;
if ( !shape || !bitmap )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
width = bitmap->width;
rows = bitmap->rows;
buffer = (FT_Short*)bitmap->buffer;
if ( USE_SQUARED_DISTANCES )
sp_sq = FT_INT_16D16( spread * spread );
else
sp_sq = FT_INT_16D16( spread );
if ( width == 0 || rows == 0 )
{
FT_TRACE0(( "sdf_generate:"
" Cannot render glyph with width/height == 0\n" ));
FT_TRACE0(( " "
" (width, height provided [%d, %d])\n",
width, rows ));
error = FT_THROW( Cannot_Render_Glyph );
goto Exit;
}
/* loop over all rows */
for ( y = 0; y < rows; y++ )
{
/* loop over all pixels of a row */
for ( x = 0; x < width; x++ )
{
/* `grid_point` is the current pixel position; */
/* our task is to find the shortest distance */
/* from this point to the entire shape. */
FT_26D6_Vec grid_point = zero_vector;
SDF_Signed_Distance min_dist = max_sdf;
SDF_Contour* contour_list;
FT_UInt index;
FT_Short value;
grid_point.x = FT_INT_26D6( x );
grid_point.y = FT_INT_26D6( y );
/* This `grid_point' is at the corner, but we */
/* use the center of the pixel. */
grid_point.x += FT_INT_26D6( 1 ) / 2;
grid_point.y += FT_INT_26D6( 1 ) / 2;
contour_list = shape->contours;
/* iterate over all contours manually */
while ( contour_list )
{
SDF_Signed_Distance current_dist = max_sdf;
FT_CALL( sdf_contour_get_min_distance( contour_list,
grid_point,
¤t_dist ) );
if ( current_dist.distance < min_dist.distance )
min_dist = current_dist;
contour_list = contour_list->next;
}
/* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */
/* the value to spread to avoid square_root */
/* clamp the values to spread */
if ( min_dist.distance > sp_sq )
min_dist.distance = sp_sq;
/* square_root the values and fit in a 6.10 fixed point */
if ( USE_SQUARED_DISTANCES )
min_dist.distance = square_root( min_dist.distance );
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
min_dist.sign = -min_dist.sign;
if ( internal_params.flip_sign )
min_dist.sign = -min_dist.sign;
min_dist.distance /= 64; /* convert from 16.16 to 22.10 */
value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */
value *= min_dist.sign;
if ( internal_params.flip_y )
index = y * width + x;
else
index = ( rows - y - 1 ) * width + x;
buffer[index] = value;
}
}
Exit:
return error;
}
#endif /* 0 */
/**************************************************************************
*
* @Function:
* sdf_generate_bounding_box
*
* @Description:
* This function does basically the same thing as `sdf_generate` above
* but more efficiently.
*
* Instead of checking all pixels against all edges, we loop over all
* edges and only check pixels around the control box of the edge; the
* control box is increased by the spread in all directions. Anything
* outside of the control box that exceeds `spread` doesn't need to be
* computed.
*
* Lastly, to determine the sign of unchecked pixels, we do a single
* pass of all rows starting with a '+' sign and flipping when we come
* across a '-' sign and continue. This also eliminates the possibility
* of overflow because we only check the proximity of the curve.
* Therefore we can use squared distanced safely.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer.
* See @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate_bounding_box( const SDF_Params internal_params,
const SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_Memory memory = NULL;
FT_Int width, rows, i, j;
FT_Int sp_sq; /* max value to check */
SDF_Contour* contours; /* list of all contours */
FT_Short* buffer; /* the bitmap buffer */
/* This buffer has the same size in indices as the */
/* bitmap buffer. When we check a pixel position for */
/* a shortest distance we keep it in this buffer. */
/* This way we can find out which pixel is set, */
/* and also determine the signs properly. */
SDF_Signed_Distance* dists = NULL;
if ( !shape || !bitmap )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
memory = shape->memory;
if ( !memory )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contours = shape->contours;
width = (FT_Int)bitmap->width;
rows = (FT_Int)bitmap->rows;
buffer = (FT_Short*)bitmap->buffer;
if ( FT_ALLOC( dists, width * rows * sizeof ( *dists ) ) )
goto Exit;
if ( USE_SQUARED_DISTANCES )
sp_sq = FT_INT_16D16( spread * spread );
else
sp_sq = FT_INT_16D16( spread );
if ( width == 0 || rows == 0 )
{
FT_TRACE0(( "sdf_generate:"
" Cannot render glyph with width/height == 0\n" ));
FT_TRACE0(( " "
" (width, height provided [%d, %d])", width, rows ));
error = FT_THROW( Cannot_Render_Glyph );
goto Exit;
}
/* loop over all contours */
while ( contours )
{
SDF_Edge* edges = contours->edges;
/* loop over all edges */
while ( edges )
{
FT_CBox cbox;
FT_Int x, y;
/* get the control box and increase it by `spread' */
cbox = get_control_box( *edges );
cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread;
cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread;
cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread;
cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread;
/* now loop over the pixels in the control box. */
for ( y = cbox.yMin; y < cbox.yMax; y++ )
{
for ( x = cbox.xMin; x < cbox.xMax; x++ )
{
FT_26D6_Vec grid_point = zero_vector;
SDF_Signed_Distance dist = max_sdf;
FT_UInt index = 0;
if ( x < 0 || x >= width )
continue;
if ( y < 0 || y >= rows )
continue;
grid_point.x = FT_INT_26D6( x );
grid_point.y = FT_INT_26D6( y );
/* This `grid_point` is at the corner, but we */
/* use the center of the pixel. */
grid_point.x += FT_INT_26D6( 1 ) / 2;
grid_point.y += FT_INT_26D6( 1 ) / 2;
FT_CALL( sdf_edge_get_min_distance( edges,
grid_point,
&dist ) );
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
dist.sign = -dist.sign;
/* ignore if the distance is greater than spread; */
/* otherwise it creates artifacts due to the wrong sign */
if ( dist.distance > sp_sq )
continue;
/* square_root the values and fit in a 6.10 fixed-point */
if ( USE_SQUARED_DISTANCES )
dist.distance = square_root( dist.distance );
if ( internal_params.flip_y )
index = y * width + x;
else
index = ( rows - y - 1 ) * width + x;
/* check whether the pixel is set or not */
if ( dists[index].sign == 0 )
dists[index] = dist;
else if ( dists[index].distance > dist.distance )
dists[index] = dist;
else if ( FT_ABS( dists[index].distance - dist.distance )
< CORNER_CHECK_EPSILON )
dists[index] = resolve_corner( dists[index], dist );
}
}
edges = edges->next;
}
contours = contours->next;
}
/* final pass */
for ( j = 0; j < rows; j++ )
{
/* We assume the starting pixel of each row is outside. */
FT_Char current_sign = -1;
FT_UInt index;
if ( internal_params.overload_sign != 0 )
current_sign = internal_params.overload_sign < 0 ? -1 : 1;
for ( i = 0; i < width; i++ )
{
index = j * width + i;
/* if the pixel is not set */
/* its shortest distance is more than `spread` */
if ( dists[index].sign == 0 )
dists[index].distance = FT_INT_16D16( spread );
else
current_sign = dists[index].sign;
/* clamp the values */
if ( dists[index].distance > (FT_Int)FT_INT_16D16( spread ) )
dists[index].distance = FT_INT_16D16( spread );
/* convert from 16.16 to 6.10 */
dists[index].distance /= 64;
if ( internal_params.flip_sign )
buffer[index] = (FT_Short)dists[index].distance * -current_sign;
else
buffer[index] = (FT_Short)dists[index].distance * current_sign;
}
}
Exit:
FT_FREE( dists );
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate_subdivision
*
* @Description:
* Subdivide the shape into a number of straight lines, then use the
* above `sdf_generate_bounding_box` function to generate the SDF.
*
* Note: After calling this function `shape` no longer has the original
* edges, it only contains lines.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer.
* See @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed inthe output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate_subdivision( const SDF_Params internal_params,
SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
/*
* Thanks to Alexei for providing the idea of this optimization.
*
* We take advantage of two facts.
*
* (1) Computing the shortest distance from a point to a line segment is
* very fast.
* (2) We don't have to compute the shortest distance for the entire
* two-dimensional grid.
*
* Both ideas lead to the following optimization.
*
* (1) Split the outlines into a number of line segments.
*
* (2) For each line segment, only process its neighborhood.
*
* (3) Compute the closest distance to the line only for neighborhood
* grid points.
*
* This greatly reduces the number of grid points to check.
*/
FT_Error error = FT_Err_Ok;
FT_CALL( split_sdf_shape( shape ) );
FT_CALL( sdf_generate_bounding_box( internal_params,
shape, spread, bitmap ) );
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate_with_overlaps
*
* @Description:
* This function can be used to generate SDF for glyphs with overlapping
* contours. The function generates SDF for contours separately on
* separate bitmaps (to generate SDF it uses
* `sdf_generate_subdivision`). At the end it simply combines all the
* SDF into the output bitmap; this fixes all the signs and removes
* overlaps.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer. See
* @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function cannot generate a proper SDF for glyphs with
* self-intersecting contours because we cannot separate them into two
* separate bitmaps. In case of self-intersecting contours it is
* necessary to remove the overlaps before generating the SDF.
*
*/
static FT_Error
sdf_generate_with_overlaps( SDF_Params internal_params,
SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_Int num_contours; /* total number of contours */
FT_Int i, j; /* iterators */
FT_Int width, rows; /* width and rows of the bitmap */
FT_Bitmap* bitmaps; /* separate bitmaps for contours */
SDF_Contour* contour; /* temporary variable to iterate */
SDF_Contour* temp_contour; /* temporary contour */
SDF_Contour* head; /* head of the contour list */
SDF_Shape temp_shape; /* temporary shape */
FT_Memory memory; /* to allocate memory */
FT_6D10* t; /* target bitmap buffer */
FT_Bool flip_sign; /* filp sign? */
/* orientation of all the separate contours */
SDF_Contour_Orientation* orientations;
bitmaps = NULL;
orientations = NULL;
head = NULL;
if ( !shape || !bitmap || !shape->memory )
return FT_THROW( Invalid_Argument );
contour = shape->contours;
memory = shape->memory;
temp_shape.memory = memory;
width = (FT_Int)bitmap->width;
rows = (FT_Int)bitmap->rows;
num_contours = 0;
/* find the number of contours in the shape */
while ( contour )
{
num_contours++;
contour = contour->next;
}
/* allocate the bitmaps to generate SDF for separate contours */
if ( FT_ALLOC( bitmaps, num_contours * sizeof ( *bitmaps ) ) )
goto Exit;
/* allocate array to hold orientation for all contours */
if ( FT_ALLOC( orientations, num_contours * sizeof ( *orientations ) ) )
goto Exit;
/* Disable `flip_sign` to avoid extra complication */
/* during the combination phase. */
flip_sign = internal_params.flip_sign;
internal_params.flip_sign = 0;
contour = shape->contours;
/* Iterate over all contours and generate SDF separately. */
for ( i = 0; i < num_contours; i++ )
{
/* initialize the corresponding bitmap */
FT_Bitmap_Init( &bitmaps[i] );
bitmaps[i].width = bitmap->width;
bitmaps[i].rows = bitmap->rows;
bitmaps[i].pitch = bitmap->pitch;
bitmaps[i].num_grays = bitmap->num_grays;
bitmaps[i].pixel_mode = bitmap->pixel_mode;
/* allocate memory for the buffer */
if ( FT_ALLOC( bitmaps[i].buffer, bitmap->rows * bitmap->pitch ) )
goto Exit;
/* determine the orientation */
orientations[i] = get_contour_orientation( contour );
/* The `overload_sign` property is specific to */
/* `sdf_generate_bounding_box`. This basically */
/* overloads the default sign of the outside */
/* pixels, which is necessary for */
/* counter-clockwise contours. */
if ( orientations[i] == SDF_ORIENTATION_CCW &&
internal_params.orientation == FT_ORIENTATION_FILL_RIGHT )
internal_params.overload_sign = 1;
else if ( orientations[i] == SDF_ORIENTATION_CW &&
internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
internal_params.overload_sign = 1;
else
internal_params.overload_sign = 0;
/* Make `contour->next` NULL so that there is */
/* one contour in the list. Also hold the next */
/* contour in a temporary variable so as to */
/* restore the original value. */
temp_contour = contour->next;
contour->next = NULL;
/* Use `temp_shape` to hold the new contour. */
/* Now, `temp_shape` has only one contour. */
temp_shape.contours = contour;
/* finally generate the SDF */
FT_CALL( sdf_generate_subdivision( internal_params,
&temp_shape,
spread,
&bitmaps[i] ) );
/* Restore the original `next` variable. */
contour->next = temp_contour;
/* Since `split_sdf_shape` deallocated the original */
/* contours list we need to assign the new value to */
/* the shape's contour. */
temp_shape.contours->next = head;
head = temp_shape.contours;
/* Simply flip the orientation in case of post-script fonts */
/* so as to avoid modificatons in the combining phase. */
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
{
if ( orientations[i] == SDF_ORIENTATION_CW )
orientations[i] = SDF_ORIENTATION_CCW;
else if ( orientations[i] == SDF_ORIENTATION_CCW )
orientations[i] = SDF_ORIENTATION_CW;
}
contour = contour->next;
}
/* assign the new contour list to `shape->contours` */
shape->contours = head;
/* cast the output bitmap buffer */
t = (FT_6D10*)bitmap->buffer;
/* Iterate over all pixels and combine all separate */
/* contours. These are the rules for combining: */
/* */
/* (1) For all clockwise contours, compute the largest */
/* value. Name this as `val_c`. */
/* (2) For all counter-clockwise contours, compute the */
/* smallest value. Name this as `val_ac`. */
/* (3) Now, finally use the smaller value of `val_c' */
/* and `val_ac'. */
for ( j = 0; j < rows; j++ )
{
for ( i = 0; i < width; i++ )
{
FT_Int id = j * width + i; /* index of current pixel */
FT_Int c; /* contour iterator */
FT_6D10 val_c = SHRT_MIN; /* max clockwise value */
FT_6D10 val_ac = SHRT_MAX; /* min counter-clockwise val */
/* iterate through all the contours */
for ( c = 0; c < num_contours; c++ )
{
/* current contour value */
FT_6D10 temp = ((FT_6D10*)bitmaps[c].buffer)[id];
if ( orientations[c] == SDF_ORIENTATION_CW )
val_c = FT_MAX( val_c, temp ); /* clockwise */
else
val_ac = FT_MIN( val_ac, temp ); /* counter-clockwise */
}
/* Finally find the smaller of the two and assign to output. */
/* Also apply `flip_sign` if set. */
t[id] = FT_MIN( val_c, val_ac ) * ( flip_sign ? -1 : 1 );
}
}
Exit:
/* deallocate orientations array */
if ( orientations )
FT_FREE( orientations );
/* deallocate temporary bitmaps */
if ( bitmaps )
{
if ( num_contours == 0 )
error = FT_THROW( Raster_Corrupted );
else
{
for ( i = 0; i < num_contours; i++ )
FT_FREE( bitmaps[i].buffer );
FT_FREE( bitmaps );
}
}
return error;
}
/**************************************************************************
*
* interface functions
*
*/
static FT_Error
sdf_raster_new( FT_Memory memory,
FT_Raster* araster)
{
FT_Error error = FT_Err_Ok;
SDF_TRaster* raster = NULL;
FT_Int line = __LINE__;
/* in non-debugging mode this is not used */
FT_UNUSED( line );
*araster = 0;
if ( !FT_ALLOC( raster, sizeof ( SDF_TRaster ) ) )
{
raster->memory = memory;
*araster = (FT_Raster)raster;
}
return error;
}
static void
sdf_raster_reset( FT_Raster raster,
unsigned char* pool_base,
unsigned long pool_size )
{
FT_UNUSED( raster );
FT_UNUSED( pool_base );
FT_UNUSED( pool_size );
}
static FT_Error
sdf_raster_set_mode( FT_Raster raster,
unsigned long mode,
void* args )
{
FT_UNUSED( raster );
FT_UNUSED( mode );
FT_UNUSED( args );
return FT_Err_Ok;
}
static FT_Error
sdf_raster_render( FT_Raster raster,
const FT_Raster_Params* params )
{
FT_Error error = FT_Err_Ok;
SDF_TRaster* sdf_raster = (SDF_TRaster*)raster;
FT_Outline* outline = NULL;
const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
FT_Memory memory = NULL;
SDF_Shape* shape = NULL;
SDF_Params internal_params;
/* check for valid arguments */
if ( !sdf_raster || !sdf_params )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
outline = (FT_Outline*)sdf_params->root.source;
/* check whether outline is valid */
if ( !outline )
{
error = FT_THROW( Invalid_Outline );
goto Exit;
}
/* if the outline is empty, return */
if ( outline->n_points <= 0 || outline->n_contours <= 0 )
goto Exit;
/* check whether the outline has valid fields */
if ( !outline->contours || !outline->points )
{
error = FT_THROW( Invalid_Outline );
goto Exit;
}
/* check whether spread is set properly */
if ( sdf_params->spread > MAX_SPREAD ||
sdf_params->spread < MIN_SPREAD )
{
FT_TRACE0(( "sdf_raster_render:"
" The `spread' field of `SDF_Raster_Params' is invalid,\n" ));
FT_TRACE0(( " "
" the value of this field must be within [%d, %d].\n",
MIN_SPREAD, MAX_SPREAD ));
FT_TRACE0(( " "
" Also, you must pass `SDF_Raster_Params' instead of\n" ));
FT_TRACE0(( " "
" the default `FT_Raster_Params' while calling\n" ));
FT_TRACE0(( " "
" this function and set the fields properly.\n" ));
error = FT_THROW( Invalid_Argument );
goto Exit;
}
memory = sdf_raster->memory;
if ( !memory )
{
FT_TRACE0(( "sdf_raster_render:"
" Raster not setup properly,\n" ));
FT_TRACE0(( " "
" unable to find memory handle.\n" ));
error = FT_THROW( Invalid_Handle );
goto Exit;
}
/* set up the parameters */
internal_params.orientation = FT_Outline_Get_Orientation( outline );
internal_params.flip_sign = sdf_params->flip_sign;
internal_params.flip_y = sdf_params->flip_y;
internal_params.overload_sign = 0;
FT_CALL( sdf_shape_new( memory, &shape ) );
FT_CALL( sdf_outline_decompose( outline, shape ) );
if ( sdf_params->overlaps )
FT_CALL( sdf_generate_with_overlaps( internal_params,
shape, sdf_params->spread,
sdf_params->root.target ) );
else
FT_CALL( sdf_generate_subdivision( internal_params,
shape, sdf_params->spread,
sdf_params->root.target ) );
if ( shape )
sdf_shape_done( &shape );
Exit:
return error;
}
static void
sdf_raster_done( FT_Raster raster )
{
FT_Memory memory = (FT_Memory)((SDF_TRaster*)raster)->memory;
FT_FREE( raster );
}
FT_DEFINE_RASTER_FUNCS(
ft_sdf_raster,
FT_GLYPH_FORMAT_OUTLINE,
(FT_Raster_New_Func) sdf_raster_new, /* raster_new */
(FT_Raster_Reset_Func) sdf_raster_reset, /* raster_reset */
(FT_Raster_Set_Mode_Func)sdf_raster_set_mode, /* raster_set_mode */
(FT_Raster_Render_Func) sdf_raster_render, /* raster_render */
(FT_Raster_Done_Func) sdf_raster_done /* raster_done */
)
/* END */