Hash :
4eb6cb88
Author :
Date :
2021-12-25T09:23:58
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
/****************************************************************************
*
* ftgrays.c
*
* A new `perfect' anti-aliasing renderer (body).
*
* Copyright (C) 2000-2021 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
/**************************************************************************
*
* This file can be compiled without the rest of the FreeType engine, by
* defining the STANDALONE_ macro when compiling it. You also need to
* put the files `ftgrays.h' and `ftimage.h' into the current
* compilation directory. Typically, you could do something like
*
* - copy `src/smooth/ftgrays.c' (this file) to your current directory
*
* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the
* same directory
*
* - compile `ftgrays' with the STANDALONE_ macro defined, as in
*
* cc -c -DSTANDALONE_ ftgrays.c
*
* The renderer can be initialized with a call to
* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated
* with a call to `ft_gray_raster.raster_render'.
*
* See the comments and documentation in the file `ftimage.h' for more
* details on how the raster works.
*
*/
/**************************************************************************
*
* This is a new anti-aliasing scan-converter for FreeType 2. The
* algorithm used here is _very_ different from the one in the standard
* `ftraster' module. Actually, `ftgrays' computes the _exact_
* coverage of the outline on each pixel cell by straight segments.
*
* It is based on ideas that I initially found in Raph Levien's
* excellent LibArt graphics library (see https://www.levien.com/libart
* for more information, though the web pages do not tell anything
* about the renderer; you'll have to dive into the source code to
* understand how it works).
*
* Note, however, that this is a _very_ different implementation
* compared to Raph's. Coverage information is stored in a very
* different way, and I don't use sorted vector paths. Also, it doesn't
* use floating point values.
*
* Bézier segments are flattened by splitting them until their deviation
* from straight line becomes much smaller than a pixel. Therefore, the
* pixel coverage by a Bézier curve is calculated approximately. To
* estimate the deviation, we use the distance from the control point
* to the conic chord centre or the cubic chord trisection. These
* distances vanish fast after each split. In the conic case, they vanish
* predictably and the number of necessary splits can be calculated.
*
* This renderer has the following advantages:
*
* - It doesn't need an intermediate bitmap. Instead, one can supply a
* callback function that will be called by the renderer to draw gray
* spans on any target surface. You can thus do direct composition on
* any kind of bitmap, provided that you give the renderer the right
* callback.
*
* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on
* each pixel cell by straight segments.
*
* - It performs a single pass on the outline (the `standard' FT2
* renderer makes two passes).
*
* - It can easily be modified to render to _any_ number of gray levels
* cheaply.
*
* - For small (< 80) pixel sizes, it is faster than the standard
* renderer.
*
*/
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT smooth
#ifdef STANDALONE_
/* The size in bytes of the render pool used by the scan-line converter */
/* to do all of its work. */
#define FT_RENDER_POOL_SIZE 16384L
/* Auxiliary macros for token concatenation. */
#define FT_ERR_XCAT( x, y ) x ## y
#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
#define FT_BEGIN_STMNT do {
#define FT_END_STMNT } while ( 0 )
#define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) )
#define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) )
#define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) )
/*
* Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
* algorithm. We use alpha = 1, beta = 3/8, giving us results with a
* largest error less than 7% compared to the exact value.
*/
#define FT_HYPOT( x, y ) \
( x = FT_ABS( x ), \
y = FT_ABS( y ), \
x > y ? x + ( 3 * y >> 3 ) \
: y + ( 3 * x >> 3 ) )
/* define this to dump debugging information */
/* #define FT_DEBUG_LEVEL_TRACE */
#ifdef FT_DEBUG_LEVEL_TRACE
#include <stdio.h>
#include <stdarg.h>
#endif
#include <stddef.h>
#include <string.h>
#include <setjmp.h>
#include <limits.h>
#define FT_CHAR_BIT CHAR_BIT
#define FT_UINT_MAX UINT_MAX
#define FT_INT_MAX INT_MAX
#define FT_ULONG_MAX ULONG_MAX
#define ADD_INT( a, b ) \
(int)( (unsigned int)(a) + (unsigned int)(b) )
#define FT_STATIC_BYTE_CAST( type, var ) (type)(unsigned char)(var)
#define ft_memset memset
#define ft_setjmp setjmp
#define ft_longjmp longjmp
#define ft_jmp_buf jmp_buf
typedef ptrdiff_t FT_PtrDist;
#define Smooth_Err_Ok 0
#define Smooth_Err_Invalid_Outline -1
#define Smooth_Err_Cannot_Render_Glyph -2
#define Smooth_Err_Invalid_Argument -3
#define Smooth_Err_Raster_Overflow -4
#define FT_BEGIN_HEADER
#define FT_END_HEADER
#include "ftimage.h"
#include "ftgrays.h"
/* This macro is used to indicate that a function parameter is unused. */
/* Its purpose is simply to reduce compiler warnings. Note also that */
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
/* ANSI compilers (e.g. LCC). */
#define FT_UNUSED( x ) (x) = (x)
/* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
#ifdef FT_DEBUG_LEVEL_TRACE
void
FT_Message( const char* fmt,
... )
{
va_list ap;
va_start( ap, fmt );
vfprintf( stderr, fmt, ap );
va_end( ap );
}
/* empty function useful for setting a breakpoint to catch errors */
int
FT_Throw( int error,
int line,
const char* file )
{
FT_UNUSED( error );
FT_UNUSED( line );
FT_UNUSED( file );
return 0;
}
/* we don't handle tracing levels in stand-alone mode; */
#ifndef FT_TRACE5
#define FT_TRACE5( varformat ) FT_Message varformat
#endif
#ifndef FT_TRACE7
#define FT_TRACE7( varformat ) FT_Message varformat
#endif
#ifndef FT_ERROR
#define FT_ERROR( varformat ) FT_Message varformat
#endif
#define FT_THROW( e ) \
( FT_Throw( FT_ERR_CAT( Smooth_Err_, e ), \
__LINE__, \
__FILE__ ) | \
FT_ERR_CAT( Smooth_Err_, e ) )
#else /* !FT_DEBUG_LEVEL_TRACE */
#define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */
#define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
#define FT_THROW( e ) FT_ERR_CAT( Smooth_Err_, e )
#endif /* !FT_DEBUG_LEVEL_TRACE */
#define FT_Trace_Enable() do { } while ( 0 ) /* nothing */
#define FT_Trace_Disable() do { } while ( 0 ) /* nothing */
#define FT_DEFINE_OUTLINE_FUNCS( class_, \
move_to_, line_to_, \
conic_to_, cubic_to_, \
shift_, delta_ ) \
static const FT_Outline_Funcs class_ = \
{ \
move_to_, \
line_to_, \
conic_to_, \
cubic_to_, \
shift_, \
delta_ \
};
#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \
raster_new_, raster_reset_, \
raster_set_mode_, raster_render_, \
raster_done_ ) \
const FT_Raster_Funcs class_ = \
{ \
glyph_format_, \
raster_new_, \
raster_reset_, \
raster_set_mode_, \
raster_render_, \
raster_done_ \
};
#else /* !STANDALONE_ */
#include <ft2build.h>
#include FT_CONFIG_CONFIG_H
#include "ftgrays.h"
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftcalc.h>
#include <freetype/ftoutln.h>
#include "ftsmerrs.h"
#endif /* !STANDALONE_ */
#ifndef FT_MEM_SET
#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
#endif
#ifndef FT_MEM_ZERO
#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
#endif
#ifndef FT_ZERO
#define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) )
#endif
/* as usual, for the speed hungry :-) */
#undef RAS_ARG
#undef RAS_ARG_
#undef RAS_VAR
#undef RAS_VAR_
#ifndef FT_STATIC_RASTER
#define RAS_ARG gray_PWorker worker
#define RAS_ARG_ gray_PWorker worker,
#define RAS_VAR worker
#define RAS_VAR_ worker,
#else /* FT_STATIC_RASTER */
#define RAS_ARG void
#define RAS_ARG_ /* empty */
#define RAS_VAR /* empty */
#define RAS_VAR_ /* empty */
#endif /* FT_STATIC_RASTER */
/* must be at least 6 bits! */
#define PIXEL_BITS 8
#define ONE_PIXEL ( 1 << PIXEL_BITS )
#undef TRUNC
#define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS )
#undef FRACT
#define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) )
#if PIXEL_BITS >= 6
#define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) )
#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
#else
#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
#define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) )
#endif
/* Compute `dividend / divisor' and return both its quotient and */
/* remainder, cast to a specific type. This macro also ensures that */
/* the remainder is always positive. We use the remainder to keep */
/* track of accumulating errors and compensate for them. */
#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
FT_BEGIN_STMNT \
(quotient) = (type)( (dividend) / (divisor) ); \
(remainder) = (type)( (dividend) % (divisor) ); \
if ( (remainder) < 0 ) \
{ \
(quotient)--; \
(remainder) += (type)(divisor); \
} \
FT_END_STMNT
#if defined( __GNUC__ ) && __GNUC__ < 7 && defined( __arm__ )
/* Work around a bug specific to GCC which make the compiler fail to */
/* optimize a division and modulo operation on the same parameters */
/* into a single call to `__aeabi_idivmod'. See */
/* */
/* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */
#undef FT_DIV_MOD
#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
FT_BEGIN_STMNT \
(quotient) = (type)( (dividend) / (divisor) ); \
(remainder) = (type)( (dividend) - (quotient) * (divisor) ); \
if ( (remainder) < 0 ) \
{ \
(quotient)--; \
(remainder) += (type)(divisor); \
} \
FT_END_STMNT
#endif /* __arm__ */
/* Calculating coverages for a slanted line requires a division each */
/* time the line crosses from cell to cell. These macros speed up */
/* the repetitive divisions by replacing them with multiplications */
/* and right shifts so that at most two divisions are performed for */
/* each slanted line. Nevertheless, these divisions are noticeable */
/* in the overall performance because flattened curves produce a */
/* very large number of slanted lines. */
/* */
/* The division results here are always within ONE_PIXEL. Therefore */
/* the shift magnitude should be at least PIXEL_BITS wider than the */
/* divisors to provide sufficient accuracy of the multiply-shift. */
/* It should not exceed (64 - PIXEL_BITS) to prevent overflowing and */
/* leave enough room for 64-bit unsigned multiplication however. */
#define FT_UDIVPREP( c, b ) \
FT_Int64 b ## _r = c ? (FT_Int64)0xFFFFFFFF / ( b ) : 0
#define FT_UDIV( a, b ) \
(TCoord)( ( (FT_UInt64)( a ) * (FT_UInt64)( b ## _r ) ) >> 32 )
/* Scale area and apply fill rule to calculate the coverage byte. */
/* The top fill bit is used for the non-zero rule. The eighth */
/* fill bit is used for the even-odd rule. The higher coverage */
/* bytes are either clamped for the non-zero-rule or discarded */
/* later for the even-odd rule. */
#define FT_FILL_RULE( coverage, area, fill ) \
FT_BEGIN_STMNT \
coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); \
if ( coverage & fill ) \
coverage = ~coverage; \
if ( coverage > 255 && fill & INT_MIN ) \
coverage = 255; \
FT_END_STMNT
/* It is faster to write small spans byte-by-byte than calling */
/* `memset'. This is mainly due to the cost of the function call. */
#define FT_GRAY_SET( d, s, count ) \
FT_BEGIN_STMNT \
unsigned char* q = d; \
switch ( count ) \
{ \
case 7: *q++ = (unsigned char)s; /* fall through */ \
case 6: *q++ = (unsigned char)s; /* fall through */ \
case 5: *q++ = (unsigned char)s; /* fall through */ \
case 4: *q++ = (unsigned char)s; /* fall through */ \
case 3: *q++ = (unsigned char)s; /* fall through */ \
case 2: *q++ = (unsigned char)s; /* fall through */ \
case 1: *q = (unsigned char)s; /* fall through */ \
case 0: break; \
default: FT_MEM_SET( d, s, count ); \
} \
FT_END_STMNT
/**************************************************************************
*
* TYPE DEFINITIONS
*/
/* don't change the following types to FT_Int or FT_Pos, since we might */
/* need to define them to "float" or "double" when experimenting with */
/* new algorithms */
typedef long TPos; /* subpixel coordinate */
typedef int TCoord; /* integer scanline/pixel coordinate */
typedef int TArea; /* cell areas, coordinate products */
typedef struct TCell_* PCell;
typedef struct TCell_
{
TCoord x; /* same with gray_TWorker.ex */
TCoord cover; /* same with gray_TWorker.cover */
TArea area;
PCell next;
} TCell;
typedef struct TPixmap_
{
unsigned char* origin; /* pixmap origin at the bottom-left */
int pitch; /* pitch to go down one row */
} TPixmap;
/* maximum number of gray cells in the buffer */
#if FT_RENDER_POOL_SIZE > 2048
#define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
#else
#define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) )
#endif
/* FT_Span buffer size for direct rendering only */
#define FT_MAX_GRAY_SPANS 16
#if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */
/* We disable the warning `structure was padded due to */
/* __declspec(align())' in order to compile cleanly with */
/* the maximum level of warnings. */
#pragma warning( push )
#pragma warning( disable : 4324 )
#endif /* _MSC_VER */
typedef struct gray_TWorker_
{
ft_jmp_buf jump_buffer;
TCoord min_ex, max_ex; /* min and max integer pixel coordinates */
TCoord min_ey, max_ey;
TCoord count_ey; /* same as (max_ey - min_ey) */
PCell cell; /* current cell */
PCell cell_free; /* call allocation next free slot */
PCell cell_null; /* last cell, used as dumpster and limit */
PCell* ycells; /* array of cell linked-lists; one per */
/* vertical coordinate in the current band */
TPos x, y; /* last point position */
FT_Outline outline; /* input outline */
TPixmap target; /* target pixmap */
FT_Raster_Span_Func render_span;
void* render_span_data;
} gray_TWorker, *gray_PWorker;
#if defined( _MSC_VER )
#pragma warning( pop )
#endif
#ifndef FT_STATIC_RASTER
#define ras (*worker)
#else
static gray_TWorker ras;
#endif
/* The |x| value of the null cell. Must be the largest possible */
/* integer value stored in a `TCell.x` field. */
#define CELL_MAX_X_VALUE INT_MAX
#define FT_INTEGRATE( ras, a, b ) \
ras.cell->cover = ADD_INT( ras.cell->cover, a ), \
ras.cell->area = ADD_INT( ras.cell->area, (a) * (TArea)(b) )
typedef struct gray_TRaster_
{
void* memory;
} gray_TRaster, *gray_PRaster;
#ifdef FT_DEBUG_LEVEL_TRACE
/* to be called while in the debugger -- */
/* this function causes a compiler warning since it is unused otherwise */
static void
gray_dump_cells( RAS_ARG )
{
int y;
for ( y = ras.min_ey; y < ras.max_ey; y++ )
{
PCell cell = ras.ycells[y - ras.min_ey];
printf( "%3d:", y );
for ( ; cell != ras.cell_null; cell = cell->next )
printf( " (%3d, c:%4d, a:%6d)",
cell->x, cell->cover, cell->area );
printf( "\n" );
}
}
#endif /* FT_DEBUG_LEVEL_TRACE */
/**************************************************************************
*
* Set the current cell to a new position.
*/
static void
gray_set_cell( RAS_ARG_ TCoord ex,
TCoord ey )
{
/* Move the cell pointer to a new position in the linked list. We use */
/* a dumpster null cell for everything outside of the clipping region */
/* during the render phase. This means that: */
/* */
/* . the new vertical position must be within min_ey..max_ey-1. */
/* . the new horizontal position must be strictly less than max_ex */
/* */
/* Note that if a cell is to the left of the clipping region, it is */
/* actually set to the (min_ex-1) horizontal position. */
TCoord ey_index = ey - ras.min_ey;
if ( ey_index < 0 || ey_index >= ras.count_ey || ex >= ras.max_ex )
ras.cell = ras.cell_null;
else
{
PCell* pcell = ras.ycells + ey_index;
PCell cell;
ex = FT_MAX( ex, ras.min_ex - 1 );
while ( 1 )
{
cell = *pcell;
if ( cell->x > ex )
break;
if ( cell->x == ex )
goto Found;
pcell = &cell->next;
}
/* insert new cell */
cell = ras.cell_free++;
if ( cell >= ras.cell_null )
ft_longjmp( ras.jump_buffer, 1 );
cell->x = ex;
cell->area = 0;
cell->cover = 0;
cell->next = *pcell;
*pcell = cell;
Found:
ras.cell = cell;
}
}
#ifndef FT_INT64
/**************************************************************************
*
* Render a scanline as one or more cells.
*/
static void
gray_render_scanline( RAS_ARG_ TCoord ey,
TPos x1,
TCoord y1,
TPos x2,
TCoord y2 )
{
TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod;
TPos p, dx;
int incr;
ex1 = TRUNC( x1 );
ex2 = TRUNC( x2 );
/* trivial case. Happens often */
if ( y1 == y2 )
{
gray_set_cell( RAS_VAR_ ex2, ey );
return;
}
fx1 = FRACT( x1 );
fx2 = FRACT( x2 );
/* everything is located in a single cell. That is easy! */
/* */
if ( ex1 == ex2 )
goto End;
/* ok, we'll have to render a run of adjacent cells on the same */
/* scanline... */
/* */
dx = x2 - x1;
dy = y2 - y1;
if ( dx > 0 )
{
p = ( ONE_PIXEL - fx1 ) * dy;
first = ONE_PIXEL;
incr = 1;
}
else
{
p = fx1 * dy;
first = 0;
incr = -1;
dx = -dx;
}
/* the fractional part of y-delta is mod/dx. It is essential to */
/* keep track of its accumulation for accurate rendering. */
/* XXX: y-delta and x-delta below should be related. */
FT_DIV_MOD( TCoord, p, dx, delta, mod );
FT_INTEGRATE( ras, delta, fx1 + first );
y1 += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
if ( ex1 != ex2 )
{
TCoord lift, rem;
p = ONE_PIXEL * dy;
FT_DIV_MOD( TCoord, p, dx, lift, rem );
do
{
delta = lift;
mod += rem;
if ( mod >= (TCoord)dx )
{
mod -= (TCoord)dx;
delta++;
}
FT_INTEGRATE( ras, delta, ONE_PIXEL );
y1 += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
} while ( ex1 != ex2 );
}
fx1 = ONE_PIXEL - first;
End:
FT_INTEGRATE( ras, y2 - y1, fx1 + fx2 );
}
/**************************************************************************
*
* Render a given line as a series of scanlines.
*/
static void
gray_render_line( RAS_ARG_ TPos to_x,
TPos to_y )
{
TCoord ey1, ey2, fy1, fy2, first, delta, mod;
TPos p, dx, dy, x, x2;
int incr;
ey1 = TRUNC( ras.y );
ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
/* perform vertical clipping */
if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
goto End;
fy1 = FRACT( ras.y );
fy2 = FRACT( to_y );
/* everything is on a single scanline */
if ( ey1 == ey2 )
{
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
goto End;
}
dx = to_x - ras.x;
dy = to_y - ras.y;
/* vertical line - avoid calling gray_render_scanline */
if ( dx == 0 )
{
TCoord ex = TRUNC( ras.x );
TCoord two_fx = FRACT( ras.x ) << 1;
if ( dy > 0)
{
first = ONE_PIXEL;
incr = 1;
}
else
{
first = 0;
incr = -1;
}
delta = first - fy1;
FT_INTEGRATE( ras, delta, two_fx);
ey1 += incr;
gray_set_cell( RAS_VAR_ ex, ey1 );
delta = first + first - ONE_PIXEL;
while ( ey1 != ey2 )
{
FT_INTEGRATE( ras, delta, two_fx);
ey1 += incr;
gray_set_cell( RAS_VAR_ ex, ey1 );
}
delta = fy2 - ONE_PIXEL + first;
FT_INTEGRATE( ras, delta, two_fx);
goto End;
}
/* ok, we have to render several scanlines */
if ( dy > 0)
{
p = ( ONE_PIXEL - fy1 ) * dx;
first = ONE_PIXEL;
incr = 1;
}
else
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
/* the fractional part of x-delta is mod/dy. It is essential to */
/* keep track of its accumulation for accurate rendering. */
FT_DIV_MOD( TCoord, p, dy, delta, mod );
x = ras.x + delta;
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
if ( ey1 != ey2 )
{
TCoord lift, rem;
p = ONE_PIXEL * dx;
FT_DIV_MOD( TCoord, p, dy, lift, rem );
do
{
delta = lift;
mod += rem;
if ( mod >= (TCoord)dy )
{
mod -= (TCoord)dy;
delta++;
}
x2 = x + delta;
gray_render_scanline( RAS_VAR_ ey1,
x, ONE_PIXEL - first,
x2, first );
x = x2;
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
} while ( ey1 != ey2 );
}
gray_render_scanline( RAS_VAR_ ey1,
x, ONE_PIXEL - first,
to_x, fy2 );
End:
ras.x = to_x;
ras.y = to_y;
}
#else
/**************************************************************************
*
* Render a straight line across multiple cells in any direction.
*/
static void
gray_render_line( RAS_ARG_ TPos to_x,
TPos to_y )
{
TPos dx, dy;
TCoord fx1, fy1, fx2, fy2;
TCoord ex1, ey1, ex2, ey2;
ey1 = TRUNC( ras.y );
ey2 = TRUNC( to_y );
/* perform vertical clipping */
if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
goto End;
ex1 = TRUNC( ras.x );
ex2 = TRUNC( to_x );
fx1 = FRACT( ras.x );
fy1 = FRACT( ras.y );
dx = to_x - ras.x;
dy = to_y - ras.y;
if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */
;
else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */
{
gray_set_cell( RAS_VAR_ ex2, ey2 );
goto End;
}
else if ( dx == 0 )
{
if ( dy > 0 ) /* vertical line up */
do
{
fy2 = ONE_PIXEL;
FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 );
fy1 = 0;
ey1++;
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ey1 != ey2 );
else /* vertical line down */
do
{
fy2 = 0;
FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 );
fy1 = ONE_PIXEL;
ey1--;
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ey1 != ey2 );
}
else /* any other line */
{
FT_Int64 prod = dx * (FT_Int64)fy1 - dy * (FT_Int64)fx1;
FT_UDIVPREP( ex1 != ex2, dx );
FT_UDIVPREP( ey1 != ey2, dy );
/* The fundamental value `prod' determines which side and the */
/* exact coordinate where the line exits current cell. It is */
/* also easily updated when moving from one cell to the next. */
do
{
if ( prod - dx * ONE_PIXEL > 0 &&
prod <= 0 ) /* left */
{
fx2 = 0;
fy2 = FT_UDIV( -prod, -dx );
prod -= dy * ONE_PIXEL;
FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
fx1 = ONE_PIXEL;
fy1 = fy2;
ex1--;
}
else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 &&
prod - dx * ONE_PIXEL <= 0 ) /* up */
{
prod -= dx * ONE_PIXEL;
fx2 = FT_UDIV( -prod, dy );
fy2 = ONE_PIXEL;
FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
fx1 = fx2;
fy1 = 0;
ey1++;
}
else if ( prod + dy * ONE_PIXEL >= 0 &&
prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 ) /* right */
{
prod += dy * ONE_PIXEL;
fx2 = ONE_PIXEL;
fy2 = FT_UDIV( prod, dx );
FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
fx1 = 0;
fy1 = fy2;
ex1++;
}
else /* ( prod > 0 &&
prod + dy * ONE_PIXEL < 0 ) down */
{
fx2 = FT_UDIV( prod, -dy );
fy2 = 0;
prod += dx * ONE_PIXEL;
FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
fx1 = fx2;
fy1 = ONE_PIXEL;
ey1--;
}
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ex1 != ex2 || ey1 != ey2 );
}
fx2 = FRACT( to_x );
fy2 = FRACT( to_y );
FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
End:
ras.x = to_x;
ras.y = to_y;
}
#endif
/*
* Benchmarking shows that using DDA to flatten the quadratic Bézier arcs
* is slightly faster in the following cases:
*
* - When the host CPU is 64-bit.
* - When SSE2 SIMD registers and instructions are available (even on
* x86).
*
* For other cases, using binary splits is actually slightly faster.
*/
#if defined( __SSE2__ ) || \
defined( __x86_64__ ) || \
defined( _M_AMD64 ) || \
( defined( _M_IX86_FP ) && _M_IX86_FP >= 2 )
# define FT_SSE2 1
#else
# define FT_SSE2 0
#endif
#if FT_SSE2 || \
defined( __aarch64__ ) || \
defined( _M_ARM64 )
# define BEZIER_USE_DDA 1
#else
# define BEZIER_USE_DDA 0
#endif
/*
* For now, the code that depends on `BEZIER_USE_DDA` requires `FT_Int64`
* to be defined. If `FT_INT64` is not defined, meaning there is no
* 64-bit type available, disable it to avoid compilation errors. See for
* example https://gitlab.freedesktop.org/freetype/freetype/-/issues/1071.
*/
#if !defined( FT_INT64 )
# undef BEZIER_USE_DDA
# define BEZIER_USE_DDA 0
#endif
#if BEZIER_USE_DDA
#if FT_SSE2
# include <emmintrin.h>
#endif
#define LEFT_SHIFT( a, b ) (FT_Int64)( (FT_UInt64)(a) << (b) )
static void
gray_render_conic( RAS_ARG_ const FT_Vector* control,
const FT_Vector* to )
{
FT_Vector p0, p1, p2;
TPos ax, ay, bx, by, dx, dy;
int shift;
FT_Int64 rx, ry;
FT_Int64 qx, qy;
FT_Int64 px, py;
FT_UInt count;
p0.x = ras.x;
p0.y = ras.y;
p1.x = UPSCALE( control->x );
p1.y = UPSCALE( control->y );
p2.x = UPSCALE( to->x );
p2.y = UPSCALE( to->y );
/* short-cut the arc that crosses the current band */
if ( ( TRUNC( p0.y ) >= ras.max_ey &&
TRUNC( p1.y ) >= ras.max_ey &&
TRUNC( p2.y ) >= ras.max_ey ) ||
( TRUNC( p0.y ) < ras.min_ey &&
TRUNC( p1.y ) < ras.min_ey &&
TRUNC( p2.y ) < ras.min_ey ) )
{
ras.x = p2.x;
ras.y = p2.y;
return;
}
bx = p1.x - p0.x;
by = p1.y - p0.y;
ax = p2.x - p1.x - bx; /* p0.x + p2.x - 2 * p1.x */
ay = p2.y - p1.y - by; /* p0.y + p2.y - 2 * p1.y */
dx = FT_ABS( ax );
dy = FT_ABS( ay );
if ( dx < dy )
dx = dy;
if ( dx <= ONE_PIXEL / 4 )
{
gray_render_line( RAS_VAR_ p2.x, p2.y );
return;
}
/* We can calculate the number of necessary bisections because */
/* each bisection predictably reduces deviation exactly 4-fold. */
/* Even 32-bit deviation would vanish after 16 bisections. */
shift = 0;
do
{
dx >>= 2;
shift += 1;
} while ( dx > ONE_PIXEL / 4 );
/*
* The (P0,P1,P2) arc equation, for t in [0,1] range:
*
* P(t) = P0*(1-t)^2 + P1*2*t*(1-t) + P2*t^2
*
* P(t) = P0 + 2*(P1-P0)*t + (P0+P2-2*P1)*t^2
* = P0 + 2*B*t + A*t^2
*
* for A = P0 + P2 - 2*P1
* and B = P1 - P0
*
* Let's consider the difference when advancing by a small
* parameter h:
*
* Q(h,t) = P(t+h) - P(t) = 2*B*h + A*h^2 + 2*A*h*t
*
* And then its own difference:
*
* R(h,t) = Q(h,t+h) - Q(h,t) = 2*A*h*h = R (constant)
*
* Since R is always a constant, it is possible to compute
* successive positions with:
*
* P = P0
* Q = Q(h,0) = 2*B*h + A*h*h
* R = 2*A*h*h
*
* loop:
* P += Q
* Q += R
* EMIT(P)
*
* To ensure accurate results, perform computations on 64-bit
* values, after scaling them by 2^32.
*
* h = 1 / 2^N
*
* R << 32 = 2 * A << (32 - N - N)
* = A << (33 - 2*N)
*
* Q << 32 = (2 * B << (32 - N)) + (A << (32 - N - N))
* = (B << (33 - N)) + (A << (32 - 2*N))
*/
#if FT_SSE2
/* Experience shows that for small shift values, */
/* SSE2 is actually slower. */
if ( shift > 2 )
{
union
{
struct { FT_Int64 ax, ay, bx, by; } i;
struct { __m128i a, b; } vec;
} u;
union
{
struct { FT_Int32 px_lo, px_hi, py_lo, py_hi; } i;
__m128i vec;
} v;
__m128i a, b;
__m128i r, q, q2;
__m128i p;
u.i.ax = ax;
u.i.ay = ay;
u.i.bx = bx;
u.i.by = by;
a = _mm_load_si128( &u.vec.a );
b = _mm_load_si128( &u.vec.b );
r = _mm_slli_epi64( a, 33 - 2 * shift );
q = _mm_slli_epi64( b, 33 - shift );
q2 = _mm_slli_epi64( a, 32 - 2 * shift );
q = _mm_add_epi64( q2, q );
v.i.px_lo = 0;
v.i.px_hi = p0.x;
v.i.py_lo = 0;
v.i.py_hi = p0.y;
p = _mm_load_si128( &v.vec );
for ( count = 1U << shift; count > 0; count-- )
{
p = _mm_add_epi64( p, q );
q = _mm_add_epi64( q, r );
_mm_store_si128( &v.vec, p );
gray_render_line( RAS_VAR_ v.i.px_hi, v.i.py_hi );
}
return;
}
#endif /* FT_SSE2 */
rx = LEFT_SHIFT( ax, 33 - 2 * shift );
ry = LEFT_SHIFT( ay, 33 - 2 * shift );
qx = LEFT_SHIFT( bx, 33 - shift ) + LEFT_SHIFT( ax, 32 - 2 * shift );
qy = LEFT_SHIFT( by, 33 - shift ) + LEFT_SHIFT( ay, 32 - 2 * shift );
px = LEFT_SHIFT( p0.x, 32 );
py = LEFT_SHIFT( p0.y, 32 );
for ( count = 1U << shift; count > 0; count-- )
{
px += qx;
py += qy;
qx += rx;
qy += ry;
gray_render_line( RAS_VAR_ (FT_Pos)( px >> 32 ),
(FT_Pos)( py >> 32 ) );
}
}
#else /* !BEZIER_USE_DDA */
/*
* Note that multiple attempts to speed up the function below
* with SSE2 intrinsics, using various data layouts, have turned
* out to be slower than the non-SIMD code below.
*/
static void
gray_split_conic( FT_Vector* base )
{
TPos a, b;
base[4].x = base[2].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
base[3].x = b >> 1;
base[2].x = ( a + b ) >> 2;
base[1].x = a >> 1;
base[4].y = base[2].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
base[3].y = b >> 1;
base[2].y = ( a + b ) >> 2;
base[1].y = a >> 1;
}
static void
gray_render_conic( RAS_ARG_ const FT_Vector* control,
const FT_Vector* to )
{
FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */
FT_Vector* arc = bez_stack;
TPos dx, dy;
int draw;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control->x );
arc[1].y = UPSCALE( control->y );
arc[2].x = ras.x;
arc[2].y = ras.y;
/* short-cut the arc that crosses the current band */
if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
TRUNC( arc[1].y ) >= ras.max_ey &&
TRUNC( arc[2].y ) >= ras.max_ey ) ||
( TRUNC( arc[0].y ) < ras.min_ey &&
TRUNC( arc[1].y ) < ras.min_ey &&
TRUNC( arc[2].y ) < ras.min_ey ) )
{
ras.x = arc[0].x;
ras.y = arc[0].y;
return;
}
dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
if ( dx < dy )
dx = dy;
/* We can calculate the number of necessary bisections because */
/* each bisection predictably reduces deviation exactly 4-fold. */
/* Even 32-bit deviation would vanish after 16 bisections. */
draw = 1;
while ( dx > ONE_PIXEL / 4 )
{
dx >>= 2;
draw <<= 1;
}
/* We use decrement counter to count the total number of segments */
/* to draw starting from 2^level. Before each draw we split as */
/* many times as there are trailing zeros in the counter. */
do
{
int split = draw & ( -draw ); /* isolate the rightmost 1-bit */
while ( ( split >>= 1 ) )
{
gray_split_conic( arc );
arc += 2;
}
gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
arc -= 2;
} while ( --draw );
}
#endif /* !BEZIER_USE_DDA */
/*
* For cubic Bézier, binary splits are still faster than DDA
* because the splits are adaptive to how quickly each sub-arc
* approaches their chord trisection points.
*
* It might be useful to experiment with SSE2 to speed up
* `gray_split_cubic`, though.
*/
static void
gray_split_cubic( FT_Vector* base )
{
TPos a, b, c;
base[6].x = base[3].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
c = base[2].x + base[3].x;
base[5].x = c >> 1;
c += b;
base[4].x = c >> 2;
base[1].x = a >> 1;
a += b;
base[2].x = a >> 2;
base[3].x = ( a + c ) >> 3;
base[6].y = base[3].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
c = base[2].y + base[3].y;
base[5].y = c >> 1;
c += b;
base[4].y = c >> 2;
base[1].y = a >> 1;
a += b;
base[2].y = a >> 2;
base[3].y = ( a + c ) >> 3;
}
static void
gray_render_cubic( RAS_ARG_ const FT_Vector* control1,
const FT_Vector* control2,
const FT_Vector* to )
{
FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */
FT_Vector* arc = bez_stack;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control2->x );
arc[1].y = UPSCALE( control2->y );
arc[2].x = UPSCALE( control1->x );
arc[2].y = UPSCALE( control1->y );
arc[3].x = ras.x;
arc[3].y = ras.y;
/* short-cut the arc that crosses the current band */
if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
TRUNC( arc[1].y ) >= ras.max_ey &&
TRUNC( arc[2].y ) >= ras.max_ey &&
TRUNC( arc[3].y ) >= ras.max_ey ) ||
( TRUNC( arc[0].y ) < ras.min_ey &&
TRUNC( arc[1].y ) < ras.min_ey &&
TRUNC( arc[2].y ) < ras.min_ey &&
TRUNC( arc[3].y ) < ras.min_ey ) )
{
ras.x = arc[0].x;
ras.y = arc[0].y;
return;
}
for (;;)
{
/* with each split, control points quickly converge towards */
/* chord trisection points and the vanishing distances below */
/* indicate when the segment is flat enough to draw */
if ( FT_ABS( 2 * arc[0].x - 3 * arc[1].x + arc[3].x ) > ONE_PIXEL / 2 ||
FT_ABS( 2 * arc[0].y - 3 * arc[1].y + arc[3].y ) > ONE_PIXEL / 2 ||
FT_ABS( arc[0].x - 3 * arc[2].x + 2 * arc[3].x ) > ONE_PIXEL / 2 ||
FT_ABS( arc[0].y - 3 * arc[2].y + 2 * arc[3].y ) > ONE_PIXEL / 2 )
goto Split;
gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
if ( arc == bez_stack )
return;
arc -= 3;
continue;
Split:
gray_split_cubic( arc );
arc += 3;
}
}
static int
gray_move_to( const FT_Vector* to,
gray_PWorker worker )
{
TPos x, y;
/* start to a new position */
x = UPSCALE( to->x );
y = UPSCALE( to->y );
gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
ras.x = x;
ras.y = y;
return 0;
}
static int
gray_line_to( const FT_Vector* to,
gray_PWorker worker )
{
gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
return 0;
}
static int
gray_conic_to( const FT_Vector* control,
const FT_Vector* to,
gray_PWorker worker )
{
gray_render_conic( RAS_VAR_ control, to );
return 0;
}
static int
gray_cubic_to( const FT_Vector* control1,
const FT_Vector* control2,
const FT_Vector* to,
gray_PWorker worker )
{
gray_render_cubic( RAS_VAR_ control1, control2, to );
return 0;
}
static void
gray_sweep( RAS_ARG )
{
int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100
: INT_MIN;
int coverage;
int y;
for ( y = ras.min_ey; y < ras.max_ey; y++ )
{
PCell cell = ras.ycells[y - ras.min_ey];
TCoord x = ras.min_ex;
TArea cover = 0;
unsigned char* line = ras.target.origin - ras.target.pitch * y;
for ( ; cell != ras.cell_null; cell = cell->next )
{
TArea area;
if ( cover != 0 && cell->x > x )
{
FT_FILL_RULE( coverage, cover, fill );
FT_GRAY_SET( line + x, coverage, cell->x - x );
}
cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
area = cover - cell->area;
if ( area != 0 && cell->x >= ras.min_ex )
{
FT_FILL_RULE( coverage, area, fill );
line[cell->x] = (unsigned char)coverage;
}
x = cell->x + 1;
}
if ( cover != 0 ) /* only if cropped */
{
FT_FILL_RULE( coverage, cover, fill );
FT_GRAY_SET( line + x, coverage, ras.max_ex - x );
}
}
}
static void
gray_sweep_direct( RAS_ARG )
{
int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100
: INT_MIN;
int coverage;
int y;
FT_Span span[FT_MAX_GRAY_SPANS];
int n = 0;
for ( y = ras.min_ey; y < ras.max_ey; y++ )
{
PCell cell = ras.ycells[y - ras.min_ey];
TCoord x = ras.min_ex;
TArea cover = 0;
for ( ; cell != ras.cell_null; cell = cell->next )
{
TArea area;
if ( cover != 0 && cell->x > x )
{
FT_FILL_RULE( coverage, cover, fill );
span[n].coverage = (unsigned char)coverage;
span[n].x = (short)x;
span[n].len = (unsigned short)( cell->x - x );
if ( ++n == FT_MAX_GRAY_SPANS )
{
/* flush the span buffer and reset the count */
ras.render_span( y, n, span, ras.render_span_data );
n = 0;
}
}
cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
area = cover - cell->area;
if ( area != 0 && cell->x >= ras.min_ex )
{
FT_FILL_RULE( coverage, area, fill );
span[n].coverage = (unsigned char)coverage;
span[n].x = (short)cell->x;
span[n].len = 1;
if ( ++n == FT_MAX_GRAY_SPANS )
{
/* flush the span buffer and reset the count */
ras.render_span( y, n, span, ras.render_span_data );
n = 0;
}
}
x = cell->x + 1;
}
if ( cover != 0 ) /* only if cropped */
{
FT_FILL_RULE( coverage, cover, fill );
span[n].coverage = (unsigned char)coverage;
span[n].x = (short)x;
span[n].len = (unsigned short)( ras.max_ex - x );
++n;
}
if ( n )
{
/* flush the span buffer and reset the count */
ras.render_span( y, n, span, ras.render_span_data );
n = 0;
}
}
}
#ifdef STANDALONE_
/**************************************************************************
*
* The following functions should only compile in stand-alone mode,
* i.e., when building this component without the rest of FreeType.
*
*/
/**************************************************************************
*
* @Function:
* FT_Outline_Decompose
*
* @Description:
* Walk over an outline's structure to decompose it into individual
* segments and Bézier arcs. This function is also able to emit
* `move to' and `close to' operations to indicate the start and end
* of new contours in the outline.
*
* @Input:
* outline ::
* A pointer to the source target.
*
* func_interface ::
* A table of `emitters', i.e., function pointers
* called during decomposition to indicate path
* operations.
*
* @InOut:
* user ::
* A typeless pointer which is passed to each
* emitter during the decomposition. It can be
* used to store the state during the
* decomposition.
*
* @Return:
* Error code. 0 means success.
*/
static int
FT_Outline_Decompose( const FT_Outline* outline,
const FT_Outline_Funcs* func_interface,
void* user )
{
#undef SCALED
#define SCALED( x ) ( (x) * ( 1L << shift ) - delta )
FT_Vector v_last;
FT_Vector v_control;
FT_Vector v_start;
FT_Vector* point;
FT_Vector* limit;
char* tags;
int error;
int n; /* index of contour in outline */
int first; /* index of first point in contour */
char tag; /* current point's state */
int shift;
TPos delta;
if ( !outline )
return FT_THROW( Invalid_Outline );
if ( !func_interface )
return FT_THROW( Invalid_Argument );
shift = func_interface->shift;
delta = func_interface->delta;
first = 0;
for ( n = 0; n < outline->n_contours; n++ )
{
int last; /* index of last point in contour */
FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
last = outline->contours[n];
if ( last < 0 )
goto Invalid_Outline;
limit = outline->points + last;
v_start = outline->points[first];
v_start.x = SCALED( v_start.x );
v_start.y = SCALED( v_start.y );
v_last = outline->points[last];
v_last.x = SCALED( v_last.x );
v_last.y = SCALED( v_last.y );
v_control = v_start;
point = outline->points + first;
tags = outline->tags + first;
tag = FT_CURVE_TAG( tags[0] );
/* A contour cannot start with a cubic control point! */
if ( tag == FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
/* check first point to determine origin */
if ( tag == FT_CURVE_TAG_CONIC )
{
/* first point is conic control. Yes, this happens. */
if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
{
/* start at last point if it is on the curve */
v_start = v_last;
limit--;
}
else
{
/* if both first and last points are conic, */
/* start at their middle and record its position */
/* for closure */
v_start.x = ( v_start.x + v_last.x ) / 2;
v_start.y = ( v_start.y + v_last.y ) / 2;
v_last = v_start;
}
point--;
tags--;
}
FT_TRACE5(( " move to (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0 ));
error = func_interface->move_to( &v_start, user );
if ( error )
goto Exit;
while ( point < limit )
{
point++;
tags++;
tag = FT_CURVE_TAG( tags[0] );
switch ( tag )
{
case FT_CURVE_TAG_ON: /* emit a single line_to */
{
FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
FT_TRACE5(( " line to (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0 ));
error = func_interface->line_to( &vec, user );
if ( error )
goto Exit;
continue;
}
case FT_CURVE_TAG_CONIC: /* consume conic arcs */
v_control.x = SCALED( point->x );
v_control.y = SCALED( point->y );
Do_Conic:
if ( point < limit )
{
FT_Vector vec;
FT_Vector v_middle;
point++;
tags++;
tag = FT_CURVE_TAG( tags[0] );
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
if ( tag == FT_CURVE_TAG_ON )
{
FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
error = func_interface->conic_to( &v_control, &vec, user );
if ( error )
goto Exit;
continue;
}
if ( tag != FT_CURVE_TAG_CONIC )
goto Invalid_Outline;
v_middle.x = ( v_control.x + vec.x ) / 2;
v_middle.y = ( v_control.y + vec.y ) / 2;
FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
v_middle.x / 64.0, v_middle.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
error = func_interface->conic_to( &v_control, &v_middle, user );
if ( error )
goto Exit;
v_control = vec;
goto Do_Conic;
}
FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
error = func_interface->conic_to( &v_control, &v_start, user );
goto Close;
default: /* FT_CURVE_TAG_CUBIC */
{
FT_Vector vec1, vec2;
if ( point + 1 > limit ||
FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
point += 2;
tags += 2;
vec1.x = SCALED( point[-2].x );
vec1.y = SCALED( point[-2].y );
vec2.x = SCALED( point[-1].x );
vec2.y = SCALED( point[-1].y );
if ( point <= limit )
{
FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
FT_TRACE5(( " cubic to (%.2f, %.2f)"
" with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0,
vec1.x / 64.0, vec1.y / 64.0,
vec2.x / 64.0, vec2.y / 64.0 ));
error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
if ( error )
goto Exit;
continue;
}
FT_TRACE5(( " cubic to (%.2f, %.2f)"
" with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0,
vec1.x / 64.0, vec1.y / 64.0,
vec2.x / 64.0, vec2.y / 64.0 ));
error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
goto Close;
}
}
}
/* close the contour with a line segment */
FT_TRACE5(( " line to (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0 ));
error = func_interface->line_to( &v_start, user );
Close:
if ( error )
goto Exit;
first = last + 1;
}
FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
return Smooth_Err_Ok;
Exit:
FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
return error;
Invalid_Outline:
return FT_THROW( Invalid_Outline );
}
#endif /* STANDALONE_ */
FT_DEFINE_OUTLINE_FUNCS(
func_interface,
(FT_Outline_MoveTo_Func) gray_move_to, /* move_to */
(FT_Outline_LineTo_Func) gray_line_to, /* line_to */
(FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */
(FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */
0, /* shift */
0 /* delta */
)
static int
gray_convert_glyph_inner( RAS_ARG,
int continued )
{
int error;
if ( ft_setjmp( ras.jump_buffer ) == 0 )
{
if ( continued )
FT_Trace_Disable();
error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
if ( continued )
FT_Trace_Enable();
FT_TRACE7(( "band [%d..%d]: %ld cell%s remaining/\n",
ras.min_ey,
ras.max_ey,
ras.cell_null - ras.cell_free,
ras.cell_null - ras.cell_free == 1 ? "" : "s" ));
}
else
{
error = FT_THROW( Raster_Overflow );
FT_TRACE7(( "band [%d..%d]: to be bisected\n",
ras.min_ey, ras.max_ey ));
}
return error;
}
static int
gray_convert_glyph( RAS_ARG )
{
const TCoord yMin = ras.min_ey;
const TCoord yMax = ras.max_ey;
TCell buffer[FT_MAX_GRAY_POOL];
size_t height = (size_t)( yMax - yMin );
size_t n = FT_MAX_GRAY_POOL / 8;
TCoord y;
TCoord bands[32]; /* enough to accommodate bisections */
TCoord* band;
int continued = 0;
/* Initialize the null cell at the end of the poll. */
ras.cell_null = buffer + FT_MAX_GRAY_POOL - 1;
ras.cell_null->x = CELL_MAX_X_VALUE;
ras.cell_null->area = 0;
ras.cell_null->cover = 0;
ras.cell_null->next = NULL;
/* set up vertical bands */
ras.ycells = (PCell*)buffer;
if ( height > n )
{
/* two divisions rounded up */
n = ( height + n - 1 ) / n;
height = ( height + n - 1 ) / n;
}
for ( y = yMin; y < yMax; )
{
ras.min_ey = y;
y += height;
ras.max_ey = FT_MIN( y, yMax );
band = bands;
band[1] = ras.min_ey;
band[0] = ras.max_ey;
do
{
TCoord width = band[0] - band[1];
TCoord w;
int error;
for ( w = 0; w < width; ++w )
ras.ycells[w] = ras.cell_null;
/* memory management: skip ycells */
n = ( (size_t)width * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) /
sizeof ( TCell );
ras.cell_free = buffer + n;
ras.cell = ras.cell_null;
ras.min_ey = band[1];
ras.max_ey = band[0];
ras.count_ey = width;
error = gray_convert_glyph_inner( RAS_VAR, continued );
continued = 1;
if ( !error )
{
if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */
gray_sweep_direct( RAS_VAR );
else
gray_sweep( RAS_VAR );
band--;
continue;
}
else if ( error != Smooth_Err_Raster_Overflow )
return error;
/* render pool overflow; we will reduce the render band by half */
width >>= 1;
/* this should never happen even with tiny rendering pool */
if ( width == 0 )
{
FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
return FT_THROW( Raster_Overflow );
}
band++;
band[1] = band[0];
band[0] += width;
} while ( band >= bands );
}
return Smooth_Err_Ok;
}
static int
gray_raster_render( FT_Raster raster,
const FT_Raster_Params* params )
{
const FT_Outline* outline = (const FT_Outline*)params->source;
const FT_Bitmap* target_map = params->target;
#ifndef FT_STATIC_RASTER
gray_TWorker worker[1];
#endif
if ( !raster )
return FT_THROW( Invalid_Argument );
/* this version does not support monochrome rendering */
if ( !( params->flags & FT_RASTER_FLAG_AA ) )
return FT_THROW( Cannot_Render_Glyph );
if ( !outline )
return FT_THROW( Invalid_Outline );
/* return immediately if the outline is empty */
if ( outline->n_points == 0 || outline->n_contours <= 0 )
return Smooth_Err_Ok;
if ( !outline->contours || !outline->points )
return FT_THROW( Invalid_Outline );
if ( outline->n_points !=
outline->contours[outline->n_contours - 1] + 1 )
return FT_THROW( Invalid_Outline );
ras.outline = *outline;
if ( params->flags & FT_RASTER_FLAG_DIRECT )
{
if ( !params->gray_spans )
return Smooth_Err_Ok;
ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
ras.render_span_data = params->user;
ras.min_ex = params->clip_box.xMin;
ras.min_ey = params->clip_box.yMin;
ras.max_ex = params->clip_box.xMax;
ras.max_ey = params->clip_box.yMax;
}
else
{
/* if direct mode is not set, we must have a target bitmap */
if ( !target_map )
return FT_THROW( Invalid_Argument );
/* nothing to do */
if ( !target_map->width || !target_map->rows )
return Smooth_Err_Ok;
if ( !target_map->buffer )
return FT_THROW( Invalid_Argument );
if ( target_map->pitch < 0 )
ras.target.origin = target_map->buffer;
else
ras.target.origin = target_map->buffer
+ ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
ras.target.pitch = target_map->pitch;
ras.render_span = (FT_Raster_Span_Func)NULL;
ras.render_span_data = NULL;
ras.min_ex = 0;
ras.min_ey = 0;
ras.max_ex = (FT_Pos)target_map->width;
ras.max_ey = (FT_Pos)target_map->rows;
}
/* exit if nothing to do */
if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
return Smooth_Err_Ok;
return gray_convert_glyph( RAS_VAR );
}
/**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
/**** a static object. *****/
#ifdef STANDALONE_
static int
gray_raster_new( void* memory,
FT_Raster* araster )
{
static gray_TRaster the_raster;
FT_UNUSED( memory );
*araster = (FT_Raster)&the_raster;
FT_ZERO( &the_raster );
return 0;
}
static void
gray_raster_done( FT_Raster raster )
{
/* nothing */
FT_UNUSED( raster );
}
#else /* !STANDALONE_ */
static int
gray_raster_new( FT_Memory memory,
gray_PRaster* araster )
{
FT_Error error;
gray_PRaster raster = NULL;
if ( !FT_NEW( raster ) )
raster->memory = memory;
*araster = raster;
return error;
}
static void
gray_raster_done( FT_Raster raster )
{
FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory;
FT_FREE( raster );
}
#endif /* !STANDALONE_ */
static void
gray_raster_reset( FT_Raster raster,
unsigned char* pool_base,
unsigned long pool_size )
{
FT_UNUSED( raster );
FT_UNUSED( pool_base );
FT_UNUSED( pool_size );
}
static int
gray_raster_set_mode( FT_Raster raster,
unsigned long mode,
void* args )
{
FT_UNUSED( raster );
FT_UNUSED( mode );
FT_UNUSED( args );
return 0; /* nothing to do */
}
FT_DEFINE_RASTER_FUNCS(
ft_grays_raster,
FT_GLYPH_FORMAT_OUTLINE,
(FT_Raster_New_Func) gray_raster_new, /* raster_new */
(FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */
(FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */
(FT_Raster_Render_Func) gray_raster_render, /* raster_render */
(FT_Raster_Done_Func) gray_raster_done /* raster_done */
)
/* END */
/* Local Variables: */
/* coding: utf-8 */
/* End: */