Hash :
e664efad
Author :
Date :
2004-06-04T17:41:59
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
#include "aftypes.h"
/*
* a python script used to generate the following table
*
import sys, math
units = 256
scale = units/math.pi
comma = ""
print ""
print "table of arctan( 1/2^n ) for PI = " + repr(units/65536.0) + " units"
r = [-1] + range(32)
for n in r:
if n >= 0:
x = 1.0/(2.0**n) # tangent value
else:
x = 2.0**(-n)
angle = math.atan(x) # arctangent
angle2 = angle*scale # arctangent in FT_Angle units
# determine which integer value for angle gives the best tangent
lo = int(angle2)
hi = lo + 1
tlo = math.tan(lo/scale)
thi = math.tan(hi/scale)
errlo = abs( tlo - x )
errhi = abs( thi - x )
angle2 = hi
if errlo < errhi:
angle2 = lo
if angle2 <= 0:
break
sys.stdout.write( comma + repr( int(angle2) ) )
comma = ", "
*
* end of python script
*/
/* this table was generated for AF_ANGLE_PI = 256 */
#define AF_ANGLE_MAX_ITERS 8
#define AF_TRIG_MAX_ITERS 8
static const FT_Fixed
af_angle_arctan_table[9] =
{
90, 64, 38, 20, 10, 5, 3, 1, 1
};
static FT_Int
af_angle_prenorm( FT_Vector* vec )
{
FT_Fixed x, y, z;
FT_Int shift;
x = vec->x;
y = vec->y;
z = ( ( x >= 0 ) ? x : - x ) | ( (y >= 0) ? y : -y );
shift = 0;
if ( z < ( 1L << 27 ) )
{
do
{
shift++;
z <<= 1;
} while ( z < ( 1L << 27 ) );
vec->x = x << shift;
vec->y = y << shift;
}
else if ( z > ( 1L << 28 ) )
{
do
{
shift++;
z >>= 1;
} while ( z > ( 1L << 28 ) );
vec->x = x >> shift;
vec->y = y >> shift;
shift = -shift;
}
return shift;
}
static void
af_angle_pseudo_polarize( FT_Vector* vec )
{
FT_Fixed theta;
FT_Fixed yi, i;
FT_Fixed x, y;
const FT_Fixed *arctanptr;
x = vec->x;
y = vec->y;
/* Get the vector into the right half plane */
theta = 0;
if ( x < 0 )
{
x = -x;
y = -y;
theta = AF_ANGLE_PI;
}
if ( y > 0 )
theta = - theta;
arctanptr = af_angle_arctan_table;
if ( y < 0 )
{
/* Rotate positive */
yi = y + ( x << 1 );
x = x - ( y << 1 );
y = yi;
theta -= *arctanptr++; /* Subtract angle */
}
else
{
/* Rotate negative */
yi = y - ( x << 1 );
x = x + ( y << 1 );
y = yi;
theta += *arctanptr++; /* Add angle */
}
i = 0;
do
{
if ( y < 0 )
{
/* Rotate positive */
yi = y + ( x >> i );
x = x - ( y >> i );
y = yi;
theta -= *arctanptr++;
}
else
{
/* Rotate negative */
yi = y - ( x >> i );
x = x + ( y >> i );
y = yi;
theta += *arctanptr++;
}
} while ( ++i < AF_TRIG_MAX_ITERS );
#if 0
/* round theta */
if ( theta >= 0 )
theta = FT_PAD_ROUND( theta, 2 );
else
theta = - FT_PAD_ROUND( -theta, 2 );
#endif
vec->x = x;
vec->y = theta;
}
/* documentation is in fttrigon.h */
FT_LOCAL_DEF( AF_Angle )
af_angle_atan( FT_Fixed dx,
FT_Fixed dy )
{
FT_Vector v;
if ( dx == 0 && dy == 0 )
return 0;
v.x = dx;
v.y = dy;
af_angle_prenorm( &v );
af_angle_pseudo_polarize( &v );
return v.y;
}
FT_LOCAL_DEF( AF_Angle )
af_angle_diff( AF_Angle angle1,
AF_Angle angle2 )
{
AF_Angle delta = angle2 - angle1;
delta %= AF_ANGLE_2PI;
if ( delta < 0 )
delta += AF_ANGLE_2PI;
if ( delta > AF_ANGLE_PI )
delta -= AF_ANGLE_2PI;
return delta;
}
/* well, this needs to be somewhere, right :-)
*/
FT_LOCAL_DEF( void )
af_sort_pos( FT_UInt count,
FT_Pos* table )
{
FT_UInt i, j;
FT_Pos swap;
for ( i = 1; i < count; i++ )
{
for ( j = i; j > 0; j-- )
{
if ( table[j] > table[j - 1] )
break;
swap = table[j];
table[j] = table[j - 1];
table[j - 1] = swap;
}
}
}
FT_LOCAL_DEF( void )
af_sort_widths( FT_UInt count,
AF_Width table )
{
FT_UInt i, j;
AF_WidthRec swap;
for ( i = 1; i < count; i++ )
{
for ( j = i; j > 0; j-- )
{
if ( table[j].org > table[j - 1].org )
break;
swap = table[j];
table[j] = table[j - 1];
table[j - 1] = swap;
}
}
}
#ifdef TEST
#include <stdio.h>
#include <math.h>
int main( void )
{
int angle;
int dist;
for ( dist = 100; dist < 1000; dist++ )
{
for ( angle = AF_ANGLE_PI; angle < AF_ANGLE_2PI*4; angle++ )
{
double a = (angle*3.1415926535)/(1.0*AF_ANGLE_PI);
int dx, dy, angle1, angle2, delta;
dx = dist * cos(a);
dy = dist * sin(a);
angle1 = ((atan2(dy,dx)*AF_ANGLE_PI)/3.1415926535);
angle2 = af_angle_atan( dx, dy );
delta = (angle2 - angle1) % AF_ANGLE_2PI;
if ( delta < 0 )
delta = -delta;
if ( delta >= 2 )
{
printf( "dist:%4d angle:%4d => (%4d,%4d) angle1:%4d angle2:%4d\n",
dist, angle, dx, dy, angle1, angle2 );
}
}
}
return 0;
}
#endif