Hash :
7abdb8cc
Author :
Date :
2014-10-02T23:13:33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/***************************************************************************/
/* */
/* ftcalc.c */
/* */
/* Arithmetic computations (body). */
/* */
/* Copyright 1996-2006, 2008, 2012-2014 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/***************************************************************************/
/*************************************************************************/
/* */
/* Support for 1-complement arithmetic has been totally dropped in this */
/* release. You can still write your own code if you need it. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* Implementing basic computation routines. */
/* */
/* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), */
/* and FT_FloorFix() are declared in freetype.h. */
/* */
/*************************************************************************/
#include <ft2build.h>
#include FT_GLYPH_H
#include FT_TRIGONOMETRY_H
#include FT_INTERNAL_CALC_H
#include FT_INTERNAL_DEBUG_H
#include FT_INTERNAL_OBJECTS_H
#ifdef FT_MULFIX_ASSEMBLER
#undef FT_MulFix
#endif
/* we need to emulate a 64-bit data type if a real one isn't available */
#ifndef FT_LONG64
typedef struct FT_Int64_
{
FT_UInt32 lo;
FT_UInt32 hi;
} FT_Int64;
#endif /* !FT_LONG64 */
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef FT_COMPONENT
#define FT_COMPONENT trace_calc
/* transfer sign leaving a positive number */
#define FT_MOVE_SIGN( x, s ) \
FT_BEGIN_STMNT \
if ( x < 0 ) \
{ \
x = -x; \
s = -s; \
} \
FT_END_STMNT
/* The following three functions are available regardless of whether */
/* FT_LONG64 is defined. */
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Fixed )
FT_RoundFix( FT_Fixed a )
{
return ( a >= 0 ) ? ( a + 0x8000L ) & ~0xFFFFL
: -((-a + 0x8000L ) & ~0xFFFFL );
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Fixed )
FT_CeilFix( FT_Fixed a )
{
return ( a >= 0 ) ? ( a + 0xFFFFL ) & ~0xFFFFL
: -((-a + 0xFFFFL ) & ~0xFFFFL );
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Fixed )
FT_FloorFix( FT_Fixed a )
{
return ( a >= 0 ) ? a & ~0xFFFFL
: -((-a) & ~0xFFFFL );
}
#ifndef FT_MSB
FT_BASE_DEF ( FT_Int )
FT_MSB( FT_UInt32 z )
{
FT_Int shift = 0;
/* determine msb bit index in `shift' */
if ( z & 0xFFFF0000U )
{
z >>= 16;
shift += 16;
}
if ( z & 0x0000FF00U )
{
z >>= 8;
shift += 8;
}
if ( z & 0x000000F0U )
{
z >>= 4;
shift += 4;
}
if ( z & 0x0000000CU )
{
z >>= 2;
shift += 2;
}
if ( z & 0x00000002U )
{
/* z >>= 1; */
shift += 1;
}
return shift;
}
#endif /* !FT_MSB */
/* documentation is in ftcalc.h */
FT_BASE_DEF( FT_Fixed )
FT_Hypot( FT_Fixed x,
FT_Fixed y )
{
FT_Vector v;
v.x = x;
v.y = y;
return FT_Vector_Length( &v );
}
#ifdef FT_LONG64
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_MulDiv( FT_Long a,
FT_Long b,
FT_Long c )
{
FT_Int s = 1;
FT_Long d;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
FT_MOVE_SIGN( c, s );
d = (FT_Long)( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
: 0x7FFFFFFFL );
return ( s > 0 ) ? d : -d;
}
/* documentation is in ftcalc.h */
FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round( FT_Long a,
FT_Long b,
FT_Long c )
{
FT_Int s = 1;
FT_Long d;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
FT_MOVE_SIGN( c, s );
d = (FT_Long)( c > 0 ? (FT_Int64)a * b / c
: 0x7FFFFFFFL );
return ( s > 0 ) ? d : -d;
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_MulFix( FT_Long a,
FT_Long b )
{
#ifdef FT_MULFIX_ASSEMBLER
return FT_MULFIX_ASSEMBLER( a, b );
#else
FT_Int s = 1;
FT_Long c;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
c = (FT_Long)( ( (FT_Int64)a * b + 0x8000L ) >> 16 );
return ( s > 0 ) ? c : -c;
#endif /* FT_MULFIX_ASSEMBLER */
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_DivFix( FT_Long a,
FT_Long b )
{
FT_Int s = 1;
FT_Long q;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
q = (FT_Long)( b > 0 ? ( ( (FT_UInt64)a << 16 ) + ( b >> 1 ) ) / b
: 0x7FFFFFFFL );
return ( s < 0 ? -q : q );
}
#else /* !FT_LONG64 */
static void
ft_multo64( FT_UInt32 x,
FT_UInt32 y,
FT_Int64 *z )
{
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
lo1 = x & 0x0000FFFFU; hi1 = x >> 16;
lo2 = y & 0x0000FFFFU; hi2 = y >> 16;
lo = lo1 * lo2;
i1 = lo1 * hi2;
i2 = lo2 * hi1;
hi = hi1 * hi2;
/* Check carry overflow of i1 + i2 */
i1 += i2;
hi += (FT_UInt32)( i1 < i2 ) << 16;
hi += i1 >> 16;
i1 = i1 << 16;
/* Check carry overflow of i1 + lo */
lo += i1;
hi += ( lo < i1 );
z->lo = lo;
z->hi = hi;
}
static FT_UInt32
ft_div64by32( FT_UInt32 hi,
FT_UInt32 lo,
FT_UInt32 y )
{
FT_UInt32 r, q;
FT_Int i;
if ( hi >= y )
return (FT_UInt32)0x7FFFFFFFL;
/* We shift as many bits as we can into the high register, perform */
/* 32-bit division with modulo there, then work through the remaining */
/* bits with long division. This optimization is especially noticeable */
/* for smaller dividends that barely use the high register. */
i = 31 - FT_MSB( hi );
r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
q = r / y;
r -= q * y; /* remainder */
i = 32 - i; /* bits remaining in low register */
do
{
q <<= 1;
r = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
if ( r >= y )
{
r -= y;
q |= 1;
}
} while ( --i );
return q;
}
static void
FT_Add64( FT_Int64* x,
FT_Int64* y,
FT_Int64 *z )
{
FT_UInt32 lo, hi;
lo = x->lo + y->lo;
hi = x->hi + y->hi + ( lo < x->lo );
z->lo = lo;
z->hi = hi;
}
/* The FT_MulDiv function has been optimized thanks to ideas from */
/* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */
/* a rather common case when everything fits within 32-bits. */
/* */
/* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
/* */
/* The product of two positive numbers never exceeds the square of */
/* its mean values. Therefore, we always avoid the overflow by */
/* imposing */
/* */
/* (a + b) / 2 <= sqrt(X - c/2) , */
/* */
/* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */
/* unsigned arithmetic. Now we replace `sqrt' with a linear function */
/* that is smaller or equal for all values of c in the interval */
/* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */
/* endpoints. Substituting the linear solution and explicit numbers */
/* we get */
/* */
/* a + b <= 131071.99 - c / 122291.84 . */
/* */
/* In practice, we should use a faster and even stronger inequality */
/* */
/* a + b <= 131071 - (c >> 16) */
/* */
/* or, alternatively, */
/* */
/* a + b <= 129894 - (c >> 17) . */
/* */
/* FT_MulFix, on the other hand, is optimized for a small value of */
/* the first argument, when the second argument can be much larger. */
/* This can be achieved by scaling the second argument and the limit */
/* in the above inequalities. For example, */
/* */
/* a + (b >> 8) <= (131071 >> 4) */
/* */
/* covers the practical range of use. The actual test below is a bit */
/* tighter to avoid the border case overflows. */
/* */
/* In the case of FT_DivFix, the exact overflow check */
/* */
/* a << 16 <= X - c/2 */
/* */
/* is scaled down by 2^16 and we use */
/* */
/* a <= 65535 - (c >> 17) . */
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_MulDiv( FT_Long a,
FT_Long b,
FT_Long c )
{
FT_Int s = 1;
/* XXX: this function does not allow 64-bit arguments */
if ( a == 0 || b == c )
return a;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
FT_MOVE_SIGN( c, s );
if ( c == 0 )
a = 0x7FFFFFFFL;
else if ( (FT_ULong)a + b <= 129894UL - ( c >> 17 ) )
a = ( (FT_ULong)a * b + ( c >> 1 ) ) / c;
else
{
FT_Int64 temp, temp2;
ft_multo64( a, b, &temp );
temp2.hi = 0;
temp2.lo = c >> 1;
FT_Add64( &temp, &temp2, &temp );
/* last attempt to ditch long division */
a = temp.hi == 0 ? temp.lo / c
: ft_div64by32( temp.hi, temp.lo, c );
}
return ( s < 0 ? -a : a );
}
FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round( FT_Long a,
FT_Long b,
FT_Long c )
{
FT_Int s = 1;
if ( a == 0 || b == c )
return a;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
FT_MOVE_SIGN( c, s );
if ( c == 0 )
a = 0x7FFFFFFFL;
else if ( (FT_ULong)a + b <= 131071UL )
a = (FT_ULong)a * b / c;
else
{
FT_Int64 temp;
ft_multo64( a, b, &temp );
/* last attempt to ditch long division */
a = temp.hi == 0 ? temp.lo / c
: ft_div64by32( temp.hi, temp.lo, c );
}
return ( s < 0 ? -a : a );
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_MulFix( FT_Long a,
FT_Long b )
{
#ifdef FT_MULFIX_ASSEMBLER
return FT_MULFIX_ASSEMBLER( a, b );
#elif 0
/*
* This code is nonportable. See comment below.
*
* However, on a platform where right-shift of a signed quantity fills
* the leftmost bits by copying the sign bit, it might be faster.
*/
FT_Long sa, sb;
FT_ULong ua, ub;
if ( a == 0 || b == 0x10000L )
return a;
/*
* This is a clever way of converting a signed number `a' into its
* absolute value (stored back into `a') and its sign. The sign is
* stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
* was negative. (Similarly for `b' and `sb').
*
* Unfortunately, it doesn't work (at least not portably).
*
* It makes the assumption that right-shift on a negative signed value
* fills the leftmost bits by copying the sign bit. This is wrong.
* According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
* the result of right-shift of a negative signed value is
* implementation-defined. At least one implementation fills the
* leftmost bits with 0s (i.e., it is exactly the same as an unsigned
* right shift). This means that when `a' is negative, `sa' ends up
* with the value 1 rather than -1. After that, everything else goes
* wrong.
*/
sa = ( a >> ( sizeof ( a ) * 8 - 1 ) );
a = ( a ^ sa ) - sa;
sb = ( b >> ( sizeof ( b ) * 8 - 1 ) );
b = ( b ^ sb ) - sb;
ua = (FT_ULong)a;
ub = (FT_ULong)b;
if ( ua + ( ub >> 8 ) <= 8190UL )
ua = ( ua * ub + 0x8000U ) >> 16;
else
{
FT_ULong al = ua & 0xFFFFU;
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
( ( al * ( ub & 0xFFFFU ) + 0x8000U ) >> 16 );
}
sa ^= sb,
ua = (FT_ULong)(( ua ^ sa ) - sa);
return (FT_Long)ua;
#else /* 0 */
FT_Int s = 1;
FT_ULong ua, ub;
if ( a == 0 || b == 0x10000L )
return a;
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
ua = (FT_ULong)a;
ub = (FT_ULong)b;
if ( ua + ( ub >> 8 ) <= 8190UL )
ua = ( ua * ub + 0x8000UL ) >> 16;
else
{
FT_ULong al = ua & 0xFFFFUL;
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
( ( al * ( ub & 0xFFFFUL ) + 0x8000UL ) >> 16 );
}
return ( s < 0 ? -(FT_Long)ua : (FT_Long)ua );
#endif /* 0 */
}
/* documentation is in freetype.h */
FT_EXPORT_DEF( FT_Long )
FT_DivFix( FT_Long a,
FT_Long b )
{
FT_Int s = 1;
FT_Long q;
/* XXX: this function does not allow 64-bit arguments */
FT_MOVE_SIGN( a, s );
FT_MOVE_SIGN( b, s );
if ( b == 0 )
{
/* check for division by 0 */
q = 0x7FFFFFFFL;
}
else if ( a <= 65535L - ( b >> 17 ) )
{
/* compute result directly */
q = (FT_Long)( ( ( (FT_ULong)a << 16 ) + ( b >> 1 ) ) / b );
}
else
{
/* we need more bits; we have to do it by hand */
FT_Int64 temp, temp2;
temp.hi = a >> 16;
temp.lo = a << 16;
temp2.hi = 0;
temp2.lo = b >> 1;
FT_Add64( &temp, &temp2, &temp );
q = (FT_Long)ft_div64by32( temp.hi, temp.lo, b );
}
return ( s < 0 ? -q : q );
}
#endif /* FT_LONG64 */
/* documentation is in ftglyph.h */
FT_EXPORT_DEF( void )
FT_Matrix_Multiply( const FT_Matrix* a,
FT_Matrix *b )
{
FT_Fixed xx, xy, yx, yy;
if ( !a || !b )
return;
xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
b->xx = xx; b->xy = xy;
b->yx = yx; b->yy = yy;
}
/* documentation is in ftglyph.h */
FT_EXPORT_DEF( FT_Error )
FT_Matrix_Invert( FT_Matrix* matrix )
{
FT_Pos delta, xx, yy;
if ( !matrix )
return FT_THROW( Invalid_Argument );
/* compute discriminant */
delta = FT_MulFix( matrix->xx, matrix->yy ) -
FT_MulFix( matrix->xy, matrix->yx );
if ( !delta )
return FT_THROW( Invalid_Argument ); /* matrix can't be inverted */
matrix->xy = - FT_DivFix( matrix->xy, delta );
matrix->yx = - FT_DivFix( matrix->yx, delta );
xx = matrix->xx;
yy = matrix->yy;
matrix->xx = FT_DivFix( yy, delta );
matrix->yy = FT_DivFix( xx, delta );
return FT_Err_Ok;
}
/* documentation is in ftcalc.h */
FT_BASE_DEF( void )
FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
FT_Matrix *b,
FT_Long scaling )
{
FT_Fixed xx, xy, yx, yy;
FT_Long val = 0x10000L * scaling;
if ( !a || !b )
return;
xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
b->xx = xx; b->xy = xy;
b->yx = yx; b->yy = yy;
}
/* documentation is in ftcalc.h */
FT_BASE_DEF( void )
FT_Vector_Transform_Scaled( FT_Vector* vector,
const FT_Matrix* matrix,
FT_Long scaling )
{
FT_Pos xz, yz;
FT_Long val = 0x10000L * scaling;
if ( !vector || !matrix )
return;
xz = FT_MulDiv( vector->x, matrix->xx, val ) +
FT_MulDiv( vector->y, matrix->xy, val );
yz = FT_MulDiv( vector->x, matrix->yx, val ) +
FT_MulDiv( vector->y, matrix->yy, val );
vector->x = xz;
vector->y = yz;
}
#if 0
/* documentation is in ftcalc.h */
FT_BASE_DEF( FT_Int32 )
FT_SqrtFixed( FT_Int32 x )
{
FT_UInt32 root, rem_hi, rem_lo, test_div;
FT_Int count;
root = 0;
if ( x > 0 )
{
rem_hi = 0;
rem_lo = x;
count = 24;
do
{
rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 );
rem_lo <<= 2;
root <<= 1;
test_div = ( root << 1 ) + 1;
if ( rem_hi >= test_div )
{
rem_hi -= test_div;
root += 1;
}
} while ( --count );
}
return (FT_Int32)root;
}
#endif /* 0 */
/* documentation is in ftcalc.h */
FT_BASE_DEF( FT_Int )
ft_corner_orientation( FT_Pos in_x,
FT_Pos in_y,
FT_Pos out_x,
FT_Pos out_y )
{
FT_Long result; /* avoid overflow on 16-bit system */
/* deal with the trivial cases quickly */
if ( in_y == 0 )
{
if ( in_x >= 0 )
result = out_y;
else
result = -out_y;
}
else if ( in_x == 0 )
{
if ( in_y >= 0 )
result = -out_x;
else
result = out_x;
}
else if ( out_y == 0 )
{
if ( out_x >= 0 )
result = in_y;
else
result = -in_y;
}
else if ( out_x == 0 )
{
if ( out_y >= 0 )
result = -in_x;
else
result = in_x;
}
else /* general case */
{
#ifdef FT_LONG64
FT_Int64 delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
if ( delta == 0 )
result = 0;
else
result = 1 - 2 * ( delta < 0 );
#else
FT_Int64 z1, z2;
/* XXX: this function does not allow 64-bit arguments */
ft_multo64( (FT_Int32)in_x, (FT_Int32)out_y, &z1 );
ft_multo64( (FT_Int32)in_y, (FT_Int32)out_x, &z2 );
if ( z1.hi > z2.hi )
result = +1;
else if ( z1.hi < z2.hi )
result = -1;
else if ( z1.lo > z2.lo )
result = +1;
else if ( z1.lo < z2.lo )
result = -1;
else
result = 0;
#endif
}
/* XXX: only the sign of return value, +1/0/-1 must be used */
return (FT_Int)result;
}
/* documentation is in ftcalc.h */
FT_BASE_DEF( FT_Int )
ft_corner_is_flat( FT_Pos in_x,
FT_Pos in_y,
FT_Pos out_x,
FT_Pos out_y )
{
FT_Pos ax = in_x;
FT_Pos ay = in_y;
FT_Pos d_in, d_out, d_corner;
/* We approximate the Euclidean metric (sqrt(x^2 + y^2)) with */
/* the Taxicab metric (|x| + |y|), which can be computed much */
/* faster. If one of the two vectors is much longer than the */
/* other one, the direction of the shorter vector doesn't */
/* influence the result any more. */
/* */
/* corner */
/* x---------------------------x */
/* \ / */
/* \ / */
/* in \ / out */
/* \ / */
/* o */
/* Point */
/* */
if ( ax < 0 )
ax = -ax;
if ( ay < 0 )
ay = -ay;
d_in = ax + ay; /* d_in = || in || */
ax = out_x;
if ( ax < 0 )
ax = -ax;
ay = out_y;
if ( ay < 0 )
ay = -ay;
d_out = ax + ay; /* d_out = || out || */
ax = out_x + in_x;
if ( ax < 0 )
ax = -ax;
ay = out_y + in_y;
if ( ay < 0 )
ay = -ay;
d_corner = ax + ay; /* d_corner = || in + out || */
/* now do a simple length comparison: */
/* */
/* d_in + d_out < 17/16 d_corner */
return ( d_in + d_out - d_corner ) < ( d_corner >> 4 );
}
/* END */