1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#include "FTContour.h"
static const unsigned int SECOND_ORDER_CURVE = 2;
static const unsigned int THIRD_ORDER_CURVE = 3;
FTContour::FTContour( FT_Vector* contour, char* pointTags, unsigned int numberOfPoints)
: kBSTEPSIZE( 0.2f)
{
FTVector<ContourPoint> tempPointList;
for( unsigned int pointIndex = 0; pointIndex < numberOfPoints; ++ pointIndex)
{
if( pointIndex == numberOfPoints - 1)
{
if( pointTags[pointIndex] == FT_Curve_Tag_Conic && pointTags[0] == FT_Curve_Tag_Conic)
{
tempPointList.push_back( ContourPoint( FTPoint( contour[pointIndex]), pointTags[pointIndex]));
FTPoint implicitPoint( static_cast<float>( contour[pointIndex].x + contour[0].x) * 0.5f,
static_cast<float>( contour[pointIndex].y + contour[0].y) * 0.5f,
0);
tempPointList.push_back( ContourPoint( implicitPoint, FT_Curve_Tag_On));
}
else
{
tempPointList.push_back( ContourPoint( FTPoint( contour[pointIndex]), pointTags[pointIndex]));
}
}
else if( pointTags[pointIndex] == FT_Curve_Tag_Conic && pointTags[pointIndex + 1] == FT_Curve_Tag_Conic)
{
tempPointList.push_back( ContourPoint( FTPoint( contour[pointIndex]), pointTags[pointIndex]));
FTPoint implicitPoint( static_cast<float>( contour[pointIndex].x + contour[pointIndex + 1].x) * 0.5f,
static_cast<float>( contour[pointIndex].y + contour[pointIndex + 1].y) * 0.5f,
0);
tempPointList.push_back( ContourPoint( implicitPoint, FT_Curve_Tag_On));
}
else
{
tempPointList.push_back( ContourPoint( FTPoint( contour[pointIndex]), pointTags[pointIndex]));
}
}
for( unsigned int pointIndex = 0; pointIndex < tempPointList.size();)
{
switch( tempPointList[pointIndex].tag)
{
case FT_Curve_Tag_Conic:
EvaluateConicCurve( pointIndex, tempPointList);
++pointIndex;
break;
case FT_Curve_Tag_Cubic:
EvaluateCubicCurve( pointIndex, tempPointList);
pointIndex += 2;
break;
case FT_Curve_Tag_On:
default:
AddPoint( tempPointList[pointIndex].point);
++pointIndex;
break;
}
}
}
void FTContour::AddPoint( FTPoint point)
{
if( pointList.empty() || point != pointList[pointList.size() - 1])
{
pointList.push_back( point);
}
}
void FTContour::EvaluateConicCurve( const int index, const FTVector<ContourPoint>& pointList)
{
unsigned int controlPoint = index;
unsigned int startPoint = index -1;
unsigned int endPoint = index + 1;
if( 0 == controlPoint)
{
startPoint = pointList.size() - 1;
}
else if( pointList.size() - 1 == controlPoint)
{
endPoint = 0;
}
ctrlPtArray[0][0] = pointList[startPoint].point.x; ctrlPtArray[0][1] = pointList[startPoint].point.y;
ctrlPtArray[1][0] = pointList[controlPoint].point.x; ctrlPtArray[1][1] = pointList[controlPoint].point.y;
ctrlPtArray[2][0] = pointList[endPoint].point.x; ctrlPtArray[2][1] = pointList[endPoint].point.y;
evaluateCurve( SECOND_ORDER_CURVE);
}
void FTContour::EvaluateCubicCurve( const int index, const FTVector<ContourPoint>& pointList)
{
unsigned int controlPointOne = index;
unsigned int controlPointTwo = index + 1;
unsigned int startPoint = index -1;
if( controlPointOne == pointList.size() - 1)
{
controlPointTwo = 0;
}
unsigned int endPoint = controlPointTwo + 1;
if( controlPointTwo == pointList.size() - 1)
{
endPoint = 0;
}
if( 0 == controlPointOne)
{
startPoint = pointList.size() - 1;
}
ctrlPtArray[0][0] = pointList[startPoint].point.x; ctrlPtArray[0][1] = pointList[startPoint].point.y;
ctrlPtArray[1][0] = pointList[controlPointOne].point.x; ctrlPtArray[1][1] = pointList[controlPointOne].point.y;
ctrlPtArray[2][0] = pointList[controlPointTwo].point.x; ctrlPtArray[2][1] = pointList[controlPointTwo].point.y;
ctrlPtArray[3][0] = pointList[endPoint].point.x; ctrlPtArray[3][1] = pointList[endPoint].point.y;
evaluateCurve( THIRD_ORDER_CURVE);
}
void FTContour::deCasteljau( const float t, const int n)
{
//Calculating successive b(i)'s using de Casteljau algorithm.
for( int i = 1; i <= n; i++)
{
for( int k = 0; k <= (n - i); k++)
{
bValues[i][k][0] = (1 - t) * bValues[i - 1][k][0] + t * bValues[i - 1][k + 1][0];
bValues[i][k][1] = (1 - t) * bValues[i - 1][k][1] + t * bValues[i - 1][k + 1][1];
}
}
//Specify next vertex to be included on curve
AddPoint( FTPoint( bValues[n][0][0], bValues[n][0][1], 0.0f));
}
void FTContour::evaluateCurve( const int n)
{
// setting the b(0) equal to the control points
for( int i = 0; i <= n; i++)
{
bValues[0][i][0] = ctrlPtArray[i][0];
bValues[0][i][1] = ctrlPtArray[i][1];
}
float t; //parameter for curve point calc. [0.0, 1.0]
for( int m = 0; m <= ( 1 / kBSTEPSIZE); m++)
{
t = m * kBSTEPSIZE;
deCasteljau( t, n); //calls to evaluate point on curve at t.
}
}