Hash :
4a42ba2e
Author :
Date :
2003-10-11T03:41:25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#ifndef __FTCharToGlyphIndexMap__
#define __FTCharToGlyphIndexMap__
#include <stdlib.h>
#include "FTGL.h"
/**
* Provides a non-STL alternative to the STL map<unsigned long, unsigned long>
* which maps character codes to glyph indices inside FTCharmap.
*
* Implementation:
* - NumberOfBuckets buckets are considered.
* - Each bucket has BucketSize entries.
* - When the glyph index for the character code C has to be stored, the
* bucket this character belongs to is found using 'C div BucketSize'.
* If this bucket has not been allocated yet, do it now.
* The entry in the bucked is found using 'C mod BucketSize'.
* If it is set to IndexNotFound, then the glyph entry has not been set.
* - Try to mimic the calls made to the STL map API.
*
* Caveats:
* - The glyph index is now a signed long instead of unsigned long, so
* the special value IndexNotFound (= -1) can be used to specify that the
* glyph index has not been stored yet.
*/
class FTGL_EXPORT FTCharToGlyphIndexMap
{
public:
typedef unsigned long CharacterCode;
typedef signed long GlyphIndex;
enum
{
NumberOfBuckets = 256,
BucketSize = 256,
IndexNotFound = -1
};
FTCharToGlyphIndexMap()
{
this->Indices = 0;
}
virtual ~FTCharToGlyphIndexMap()
{
if( this->Indices)
{
// Free all buckets
this->clear();
// Free main structure
delete [] this->Indices;
this->Indices = 0;
}
}
void clear()
{
if(this->Indices)
{
for( int i = 0; i < FTCharToGlyphIndexMap::NumberOfBuckets; i++)
{
if( this->Indices[i])
{
delete [] this->Indices[i];
this->Indices[i] = 0;
}
}
}
}
const GlyphIndex find( CharacterCode c)
{
if( !this->Indices)
{
return 0;
}
// Find position of char code in buckets
div_t pos = div( c, FTCharToGlyphIndexMap::BucketSize);
if( !this->Indices[pos.quot])
{
return 0;
}
const FTCharToGlyphIndexMap::GlyphIndex *ptr = &this->Indices[pos.quot][pos.rem];
if( *ptr == FTCharToGlyphIndexMap::IndexNotFound)
{
return 0;
}
return *ptr;
}
void insert( CharacterCode c, GlyphIndex g)
{
if( !this->Indices)
{
this->Indices = new GlyphIndex* [FTCharToGlyphIndexMap::NumberOfBuckets];
for( int i = 0; i < FTCharToGlyphIndexMap::NumberOfBuckets; i++)
{
this->Indices[i] = 0;
}
}
// Find position of char code in buckets
div_t pos = div(c, FTCharToGlyphIndexMap::BucketSize);
// Allocate bucket if does not exist yet
if( !this->Indices[pos.quot])
{
this->Indices[pos.quot] = new GlyphIndex [FTCharToGlyphIndexMap::BucketSize];
for( int i = 0; i < FTCharToGlyphIndexMap::BucketSize; i++)
{
this->Indices[pos.quot][i] = FTCharToGlyphIndexMap::IndexNotFound;
}
}
this->Indices[pos.quot][pos.rem] = g;
}
private:
GlyphIndex** Indices;
};
#endif // __FTCharToGlyphIndexMap__