1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
#include "FTVectoriser.h"
#include "FTGL.h"
#ifndef CALLBACK
#define CALLBACK
#endif
#ifdef __APPLE_CC__
typedef GLvoid (*GLUTesselatorFunction)(...);
#elif defined( __mips ) || defined( __linux__ ) || defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __sun ) || defined (__CYGWIN__)
typedef GLvoid (*GLUTesselatorFunction)();
#elif defined ( WIN32)
typedef GLvoid (CALLBACK *GLUTesselatorFunction)( );
#else
#error "Error - need to define type GLUTesselatorFunction for this platform/compiler"
#endif
void CALLBACK ftglError( GLenum errCode, FTMesh* mesh)
{
mesh->Error( errCode);
}
void CALLBACK ftglVertex( void* data, FTMesh* mesh)
{
FTGL_DOUBLE* vertex = static_cast<FTGL_DOUBLE*>(data);
mesh->AddPoint( vertex[0], vertex[1], vertex[2]);
}
void CALLBACK ftglCombine( FTGL_DOUBLE coords[3], void* vertex_data[4], GLfloat weight[4], void** outData, FTMesh* mesh)
{
const FTGL_DOUBLE* vertex = static_cast<const FTGL_DOUBLE*>(coords);
*outData = const_cast<FTGL_DOUBLE*>(mesh->Combine( vertex[0], vertex[1], vertex[2]));
}
void CALLBACK ftglBegin( GLenum type, FTMesh* mesh)
{
mesh->Begin( type);
}
void CALLBACK ftglEnd( FTMesh* mesh)
{
mesh->End();
}
FTMesh::FTMesh()
: currentTesselation(0),
err(0)
{
tesselationList.reserve( 16);
}
FTMesh::~FTMesh()
{
for( size_t t = 0; t < tesselationList.size(); ++t)
{
delete tesselationList[t];
}
tesselationList.clear();
}
void FTMesh::AddPoint( const FTGL_DOUBLE x, const FTGL_DOUBLE y, const FTGL_DOUBLE z)
{
currentTesselation->AddPoint( x, y, z);
}
const FTGL_DOUBLE* FTMesh::Combine( const FTGL_DOUBLE x, const FTGL_DOUBLE y, const FTGL_DOUBLE z)
{
tempPointList.push_back( FTPoint( x, y,z));
return static_cast<const FTGL_DOUBLE*>(tempPointList.back());
}
void FTMesh::Begin( GLenum meshType)
{
currentTesselation = new FTTesselation( meshType);
}
void FTMesh::End()
{
tesselationList.push_back( currentTesselation);
}
const FTTesselation* const FTMesh::Tesselation( unsigned int index) const
{
return ( index < tesselationList.size()) ? tesselationList[index] : NULL;
}
FTVectoriser::FTVectoriser( const FT_GlyphSlot glyph)
: contourList(0),
mesh(0),
ftContourCount(0),
contourFlag(0)
{
if( glyph)
{
outline = glyph->outline;
ftContourCount = outline.n_contours;
contourList = 0;
contourFlag = outline.flags;
ProcessContours();
}
}
FTVectoriser::~FTVectoriser()
{
for( size_t c = 0; c < ContourCount(); ++c)
{
delete contourList[c];
}
delete [] contourList;
delete mesh;
}
void FTVectoriser::ProcessContours()
{
short contourLength = 0;
short startIndex = 0;
short endIndex = 0;
contourList = new FTContour*[ftContourCount];
for( short contourIndex = 0; contourIndex < ftContourCount; ++contourIndex)
{
FT_Vector* pointList = &outline.points[startIndex];
char* tagList = &outline.tags[startIndex];
endIndex = outline.contours[contourIndex];
contourLength = ( endIndex - startIndex) + 1;
FTContour* contour = new FTContour( pointList, tagList, contourLength);
contourList[contourIndex] = contour;
startIndex = endIndex + 1;
}
}
size_t FTVectoriser::PointCount()
{
size_t s = 0;
for( size_t c = 0; c < ContourCount(); ++c)
{
s += contourList[c]->PointCount();
}
return s;
}
const FTContour* const FTVectoriser::Contour( unsigned int index) const
{
return ( index < ContourCount()) ? contourList[index] : NULL;
}
void FTVectoriser::MakeMesh( FTGL_DOUBLE zNormal)
{
if( mesh)
{
delete mesh;
}
mesh = new FTMesh;
GLUtesselator* tobj = gluNewTess();
gluTessCallback( tobj, GLU_TESS_BEGIN_DATA, (GLUTesselatorFunction)ftglBegin);
gluTessCallback( tobj, GLU_TESS_VERTEX_DATA, (GLUTesselatorFunction)ftglVertex);
gluTessCallback( tobj, GLU_TESS_COMBINE_DATA, (GLUTesselatorFunction)ftglCombine);
gluTessCallback( tobj, GLU_TESS_END_DATA, (GLUTesselatorFunction)ftglEnd);
gluTessCallback( tobj, GLU_TESS_ERROR_DATA, (GLUTesselatorFunction)ftglError);
if( contourFlag & ft_outline_even_odd_fill) // ft_outline_reverse_fill
{
gluTessProperty( tobj, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_ODD);
}
else
{
gluTessProperty( tobj, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_NONZERO);
}
gluTessProperty( tobj, GLU_TESS_TOLERANCE, 0);
gluTessNormal( tobj, 0.0f, 0.0f, zNormal);
gluTessBeginPolygon( tobj, mesh);
for( size_t c = 0; c < ContourCount(); ++c)
{
const FTContour* contour = contourList[c];
gluTessBeginContour( tobj);
for( size_t p = 0; p < contour->PointCount(); ++p)
{
const FTGL_DOUBLE* d = static_cast<const FTGL_DOUBLE*>(contour->Point(p));
gluTessVertex( tobj, (GLdouble*)d, (GLdouble*)d);
}
gluTessEndContour( tobj);
}
gluTessEndPolygon( tobj);
gluDeleteTess( tobj);
}