Hash :
8ad7bc67
Author :
Date :
2023-04-12T14:49:29
Add more reminders to include <config.h>. * m4/gnulib-common.m4 (gl_COMMON): In config.h, define _GL_CONFIG_H_INCLUDED. * lib/acl-internal.h: Test _GL_CONFIG_H_INCLUDED instead of _GL_INLINE_HEADER_BEGIN. * lib/alignalloc.h: Likewise. * lib/argp-fmtstream.h: Likewise. * lib/argp.h: Likewise. * lib/binary-io.h: Likewise. * lib/bitrotate.h: Likewise. * lib/c-ctype.h: Likewise. * lib/count-leading-zeros.h: Likewise. * lib/count-one-bits.h: Likewise. * lib/count-trailing-zeros.h: Likewise. * lib/eealloc.h: Likewise. * lib/execinfo.in.h: Likewise. * lib/gethrxtime.h: Likewise. * lib/gl_list.h: Likewise. * lib/gl_map.h: Likewise. * lib/gl_omap.h: Likewise. * lib/gl_openssl.h: Likewise. * lib/gl_oset.h: Likewise. * lib/gl_set.h: Likewise. * lib/gl_xlist.h: Likewise. * lib/gl_xmap.h: Likewise. * lib/gl_xomap.h: Likewise. * lib/gl_xoset.h: Likewise. * lib/gl_xset.h: Likewise. * lib/gl_xsublist.h: Likewise. * lib/glthread/cond.h: Likewise. * lib/hamt.h: Likewise. * lib/ialloc.h: Likewise. * lib/math.in.h: Likewise. * lib/mbchar.h: Likewise. * lib/mbfile.h: Likewise. * lib/mbiter.h: Likewise. * lib/mbuiter.h: Likewise. * lib/openat.h: Likewise. * lib/pipe-filter-aux.h: Likewise. * lib/priv-set.h: Likewise. * lib/safe-alloc.h: Likewise. * lib/savewd.h: Likewise. * lib/se-context.in.h: Likewise. * lib/se-label.in.h: Likewise. * lib/se-selinux.in.h: Likewise. * lib/sig-handler.h: Likewise. * lib/stat-time.h: Likewise. * lib/string-desc-quotearg.h: Likewise. * lib/string-desc.h: Likewise. * lib/sys_socket.in.h: Likewise. * lib/timespec.h: Likewise. * lib/u64.h: Likewise. * lib/uchar.in.h: Likewise. * lib/unistd.in.h: Likewise. * lib/utimens.h: Likewise. * lib/wctype.in.h: Likewise. * lib/xalloc.h: Likewise. * lib/xbinary-io.h: Likewise. * lib/xsize.h: Likewise. * lib/xstring-desc.h: Likewise. * lib/xtime.h: Likewise. * lib/acl.h: Check that config.h was already included. * lib/alignof.h: Likewise. * lib/argmatch.h: Likewise. * lib/argv-iter.h: Likewise. * lib/arpa_inet.in.h: Likewise. * lib/attribute.h: Likewise. * lib/backupfile.h: Likewise. * lib/base32.h: Likewise. * lib/base64.h: Likewise. * lib/basename-lgpl.h: Likewise. * lib/bitset.h: Likewise. * lib/bitsetv.h: Likewise. * lib/c-snprintf.h: Likewise. * lib/c-stack.h: Likewise. * lib/c-strcase.h: Likewise. * lib/c-vasnprintf.h: Likewise. * lib/c-vasprintf.h: Likewise. * lib/c-vsnprintf.h: Likewise. * lib/c-xvasprintf.h: Likewise. * lib/canon-host.h: Likewise. * lib/canonicalize.h: Likewise. * lib/clean-temp.h: Likewise. * lib/concat-filename.h: Likewise. * lib/ctype.in.h: Likewise. * lib/dfa.h: Likewise. * lib/di-set.h: Likewise. * lib/dirent-safer.h: Likewise. * lib/dirent.in.h: Likewise. * lib/dirname.h: Likewise. * lib/eloop-threshold.h: Likewise. * lib/error.in.h: Likewise. * lib/exclude.h: Likewise. * lib/fatal-signal.h: Likewise. * lib/fcntl.in.h: Likewise. * lib/file-type.h: Likewise. * lib/filenamecat.h: Likewise. * lib/filevercmp.h: Likewise. * lib/flexmember.h: Likewise. * lib/fnmatch.in.h: Likewise. * lib/fpending.h: Likewise. * lib/freadable.h: Likewise. * lib/freadahead.h: Likewise. * lib/freading.h: Likewise. * lib/fts_.h: Likewise. * lib/fwritable.h: Likewise. * lib/fwriting.h: Likewise. * lib/gc.h: Likewise. * lib/get_progname_of.h: Likewise. * lib/glob.in.h: Likewise. * lib/glthread/thread.h: Likewise. * lib/hash-pjw-bare.h: Likewise. * lib/hash-pjw.h: Likewise. * lib/hash-triple.h: Likewise. * lib/hash.h: Likewise. * lib/i-ring.h: Likewise. * lib/iconv.in.h: Likewise. * lib/ino-map.h: Likewise. * lib/inttostr.h: Likewise. * lib/inttypes.in.h: Likewise. * lib/javaversion.h: Likewise. * lib/langinfo.in.h: Likewise. * lib/locale.in.h: Likewise. * lib/localename.h: Likewise. * lib/malloc.in.h: Likewise. * lib/malloca.h: Likewise. * lib/memcasecmp.h: Likewise. * lib/memchr2.h: Likewise. * lib/memcmp2.h: Likewise. * lib/modechange.h: Likewise. * lib/monetary.in.h: Likewise. * lib/mountlist.h: Likewise. * lib/netdb.in.h: Likewise. * lib/obstack.h: Likewise. * lib/opendirat.h: Likewise. * lib/pagealign_alloc.h: Likewise. * lib/pipe-filter.h: Likewise. * lib/poll.in.h: Likewise. * lib/pthread.in.h: Likewise. * lib/pty.in.h: Likewise. * lib/quotearg.h: Likewise. * lib/read-file.h: Likewise. * lib/readline.h: Likewise. * lib/readutmp.h: Likewise. * lib/regex-quote.h: Likewise. * lib/relocatable.h: Likewise. * lib/savedir.h: Likewise. * lib/sched.in.h: Likewise. * lib/search.in.h: Likewise. * lib/sh-quote.h: Likewise. * lib/signal.in.h: Likewise. * lib/sigpipe-die.h: Likewise. * lib/sockets.h: Likewise. * lib/spawn.in.h: Likewise. * lib/ssfmalloc.h: Likewise. * lib/stack.h: Likewise. * lib/stdalign.in.h: Likewise. * lib/stdarg.in.h: Likewise. * lib/stddef.in.h: Likewise. * lib/stdio-safer.h: Likewise. * lib/stdio.in.h: Likewise. * lib/stdlib.in.h: Likewise. * lib/stdnoreturn.in.h: Likewise. * lib/strerror-override.h: Likewise. * lib/striconv.h: Likewise. * lib/striconveh.h: Likewise. * lib/striconveha.h: Likewise. * lib/string-buffer.h: Likewise. * lib/string.in.h: Likewise. * lib/strings.in.h: Likewise. * lib/strnlen1.h: Likewise. * lib/sys_file.in.h: Likewise. * lib/sys_ioctl.in.h: Likewise. * lib/sys_random.in.h: Likewise. * lib/sys_resource.in.h: Likewise. * lib/sys_select.in.h: Likewise. * lib/sys_stat.in.h: Likewise. * lib/sys_time.in.h: Likewise. * lib/sys_times.in.h: Likewise. * lib/sys_utsname.in.h: Likewise. * lib/sys_wait.in.h: Likewise. * lib/system-quote.h: Likewise. * lib/term-style-control.h: Likewise. * lib/termios.in.h: Likewise. * lib/textstyle.in.h: Likewise. * lib/threads.in.h: Likewise. * lib/time.in.h: Likewise. * lib/trim.h: Likewise. * lib/utime.in.h: Likewise. * lib/utmp.in.h: Likewise. * lib/vasnprintf.h: Likewise. * lib/verror.h: Likewise. * lib/version-etc.h: Likewise. * lib/wchar.in.h: Likewise. * lib/windows-spawn.h: Likewise. * lib/windows-thread.h: Likewise. * lib/xgetcwd.h: Likewise. * lib/xgetdomainname.h: Likewise. * lib/xgethostname.h: Likewise. * lib/xmalloca.h: Likewise. * lib/xmemdup0.h: Likewise. * lib/xprintf.h: Likewise. * lib/xreadlink.h: Likewise. * lib/xstriconv.h: Likewise. * lib/xstriconveh.h: Likewise. * lib/xstrndup.h: Likewise. * lib/xstrtol-error.h: Likewise. * lib/xvasprintf.h: Likewise. * Makefile (config_h_MACROS*): New variables. (sc_check_config_h_reminder): New rule.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/* Simple and straight-forward malloc implementation (front end).
Copyright (C) 2020-2023 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2020. */
/* This file implements an allocator of memory blocks of given size (a
"malloc front end"), based on an allocator of memory pages (a "malloc
back end").
The need for such an allocator arises because a memory block is often
50 bytes large or less, whereas an allocator of memory pages provides
entire pages (4096 bytes or more).
This implementation attempts to be
- simple and straight-forward,
- respecting locality of reference,
- usable for small allocations,
- nevertheless of reasonable speed.
Simple and straight-forward - means that it contains only a small amount
of code (compared to e.g. tcmalloc).
Respecting locality of reference - means that searching for a free block
will not follow lists of pointers that touch unrelated cache lines in
the same page or even unrelated memory pages, because that would cause
cache misses or even swapping in of unrelated memory pages.
Usable for small allocations - means that it can be used for data types
with few instances. It does not, unlike some other malloc implementations,
allocate 256 KB of memory up-front. Nor does it allocate memory pages
per thread.
Reasonable speed is nevertheless guaranteed by
- choosing algorithms that lead to little fragmentation,
- small caches where they make sense.
*/
/* The user of this file needs to define the following macros before including
this file:
PAGESIZE A variable-like macro of type intptr_t or uintptr_t
that evaluates to the memory page size (>= 4096).
PAGESIZE_MAX A constant that specifies an upper bound for PAGESIZE.
ALLOC_PAGES A function-like macro with the signature
uintptr_t ALLOC_PAGES (size_t size)
where the argument size is > 0 and a multiple of the
PAGESIZE. It returns a multiple of PAGESIZE, or 0
upon failure.
FREE_PAGES A function-like macro with the signature
void FREE_PAGES (uintptr_t pages, size_t size)
where pages is a non-zero value returned by
ALLOC_PAGES (size).
ALIGNMENT A constant that specifies the desired alignment of all
the returned memory blocks. Possible values are the
powers of 2, from sizeof (void *) to 32.
PAGE_RESERVED_HEADER_SIZE A constant, either 0 or a multiple of
sizeof (void *), that denotes the size of a reserved
header - not to be used by the application - at the
beginning of a page sequence returned by ALLOC_PAGES.
*/
/* This file uses _GL_CMP. */
#if !_GL_CONFIG_H_INCLUDED
#error "Please include config.h first."
#endif
/* =================== Declarations of exported functions =================== */
#include <stdint.h>
/* Allocates a block of memory, aligned to ALIGNMENT bytes.
Returns 0 upon failure. */
static uintptr_t allocate_block (size_t size);
/* Frees a block of memory, returned by allocate_block. */
static void free_block (uintptr_t block);
/* ============================= Implementation ============================= */
/* Outline of the implementation decisions (ID):
* ID: This implementation considers three types of blocks:
- small blocks - these are allocated in "small block" pages.
- medium blocks - these are allocated in "medium block" pages.
- large blocks - these are allocated individually, with a page or
sequence of pages uniquely for this block.
* Rationale:
- Most memory allocations are small (e.g. <= 32 bytes); this is a lesson
learned from xc/programs/Xserver/os/xalloc.c (1997) [Pascal Haible].
- Fragmentation is one of the biggest problems, and keeping large
blocks and small blocks separate from medium blocks is one way to
control it.
* ID: If an allocation succeeds in one page, the next allocation (of the
same type of block) will try to use the same page.
* Rationale: Locality of reference.
* ID: Pages of small or medium blocks have their management data structures
concentrated at the beginning of the page. No chained lists that force
to walk through the page.
* Rationale: Locality of reference.
* ID: Across pages, the management of the free space is done through data
structures outside the pages. No chained lists across pages.
* Rationale: Locality of reference.
*/
#include <stdlib.h>
#include <string.h> /* ffsll */
#include <strings.h> /* ffs */
#include "flexmember.h"
#include "glthread/lock.h"
#include "thread-optim.h"
#include "gl_oset.h"
#include "gl_rbtree_oset.h"
/* Help the branch prediction. */
#if __GNUC__ >= 3
# define likely(cond) __builtin_expect ((cond), 1)
# define unlikely(cond) __builtin_expect ((cond), 0)
#else
# define likely(cond) (cond)
# define unlikely(cond) (cond)
#endif
enum { small_page_type = 1, medium_page_type = 2, large_page_type = 3 };
/* Header of a page of small or medium blocks or of a large block.
Lies at an address that is a multiple of PAGESIZE. */
struct any_page_header
{
#if PAGE_RESERVED_HEADER_SIZE > 0
void * reserved[PAGE_RESERVED_HEADER_SIZE / sizeof (void *)];
#endif
/* small_page_type or medium_page_type or large_page_type */
unsigned char page_type;
};
/* ========================= Small and medium blocks ======================== */
/* An integer type, capable of holding the values 0 .. PAGESIZE. */
#if PAGESIZE_MAX >= 0x10000
typedef unsigned int pg_offset_t;
#else
typedef unsigned short pg_offset_t;
#endif
/* Tree element that corresponds to a page.
These tree elements are allocated via malloc(). */
struct page_tree_element
{
uintptr_t page;
pg_offset_t free_space;
};
/* Header of a page of small or medium blocks.
Lies at an address that is a multiple of PAGESIZE. */
struct dissected_page_header
{
struct any_page_header common;
/* Amount of free space in this page. Always a multiple of ALIGNMENT. */
pg_offset_t free_space;
/* The tree element. */
struct page_tree_element *tree_element;
};
/* Data structure for managing a pool of pages. */
struct page_pool
{
/* Methods. */
void (*init_page_pool) (struct page_pool *pool);
void (*init_page) (uintptr_t page);
uintptr_t (*allocate_block_in_page) (size_t size, uintptr_t page);
void (*free_block_in_page) (uintptr_t block, uintptr_t page);
/* Maximum free space in a page of this pool. */
size_t page_capacity;
/* Page that provided the last successful allocation from this pool,
or 0. */
uintptr_t last_page;
/* Ordered set of managed pages, sorted according to free_space, in ascending
order. */
gl_oset_t /* <struct page_tree_element *> */ managed_pages;
/* A queue of pages which have a modified free_space but which have not been
updated in the managed_pages tree so far. */
#define UPDATE_QUEUE_SIZE 10
unsigned int update_queue_count; /* <= UPDATE_QUEUE_SIZE */
uintptr_t update_queue[UPDATE_QUEUE_SIZE];
/* A page that could be freed.
We don't free it immediately, so that on allocation/deallocation
pattern like
2x allocate, 2x free, 2x allocate, 2x free, 2x allocate, 2x free, ...
will not allocate and free a page so frequently. */
uintptr_t freeable_page;
};
/* Comparison function for managed_pages. */
static int
compare_pages_by_free_space (const void *elt1, const void *elt2)
{
struct page_tree_element *element1 = (struct page_tree_element *) elt1;
struct page_tree_element *element2 = (struct page_tree_element *) elt2;
int cmp = _GL_CMP (element1->free_space, element2->free_space);
if (unlikely (cmp == 0))
cmp = _GL_CMP (element1->page, element2->page);
return cmp;
}
/* Tests whether the free space in a tree element is greater or equal than the
given threshold. */
static bool
page_free_space_is_at_least (const void *elt, const void *threshold)
{
struct page_tree_element *element = (struct page_tree_element *) elt;
return element->free_space >= (uintptr_t) threshold;
}
/* Updates the free space of a 'struct page_tree_element *'.
Only to be called through gl_oset_update! */
static void
set_free_space (const void *elt, void *action_data)
{
struct page_tree_element *element = (struct page_tree_element *) elt;
element->free_space = (pg_offset_t) (uintptr_t) action_data;
}
/* Executes the pending updates in the managed_pages tree. */
static void
flush_all_updates (struct page_pool *pool)
{
size_t count = pool->update_queue_count;
while (likely (count > 0))
{
--count;
uintptr_t page = pool->update_queue[count];
struct dissected_page_header *pageptr =
(struct dissected_page_header *) page;
struct page_tree_element *tree_element = pageptr->tree_element;
if (gl_oset_update (pool->managed_pages, tree_element,
set_free_space,
(void *) (uintptr_t) pageptr->free_space)
< 0)
/* A collision was found. This contradicts the definition of
compare_pages_by_free_space. */
abort ();
}
pool->update_queue_count = 0;
}
/* Adds a page to the update queue.
This function has to be called when the free_space of the page has
changed. */
static inline void
add_update (uintptr_t page, struct page_pool *pool)
{
size_t count = pool->update_queue_count;
size_t i;
for (i = 0; i < count; i++)
if (pool->update_queue[i] == page)
/* It's already in the queue. */
return;
/* Ensure there is room for adding one more page to the update queue. */
if (unlikely (count == UPDATE_QUEUE_SIZE))
flush_all_updates (pool);
/* Add it to the update queue. */
pool->update_queue[pool->update_queue_count++] = page;
}
/* Drops a page from the update queue. */
static inline void
drop_update (uintptr_t page, struct page_pool *pool)
{
size_t count = pool->update_queue_count;
size_t i;
for (i = 0; i < count; i++)
if (pool->update_queue[i] == page)
{
/* It's in the queue. Remove it. */
for (i = i + 1; i < count; i++)
pool->update_queue[i - 1] = pool->update_queue[i];
pool->update_queue_count--;
return;
}
}
/* ============================== Small blocks ============================== */
#include "ssfmalloc-bitmap.h"
/* Maximum size of a small block.
Must be a power of 2. */
#define SMALL_BLOCK_MAX_SIZE (ALIGNMENT < 8 ? 32 * ALIGNMENT : 256)
/* Number of rows of ALIGNMENT bytes available in an empty page. */
static unsigned int small_block_page_num_bits;
/* Offset in the page where the memory blocks start.
A multiple of ALIGNMENT. */
static unsigned int small_block_page_blocks_start;
/* Number of uint32_t words in each of the two bitmaps. */
static unsigned int small_block_page_num_bitmap_words;
/* Header of a page of small blocks.
Lies at an address that is a multiple of PAGESIZE. */
struct small_page_header
{
struct dissected_page_header common;
/* Two bitmaps, each with small_block_page_num_bitmap_words. In each a bit
represents ALIGNMENT bytes.
- available_bitmap: bit set means available, bit clear means allocated.
- blockend_bitmap: bit set means the an allocated block ends here. */
uint32_t bitmap_words[FLEXIBLE_ARRAY_MEMBER];
};
static inline uint32_t *
small_block_page_available_bitmap (struct small_page_header *pageptr)
{
return &pageptr->bitmap_words[0];
}
static inline uint32_t *
small_block_page_blockend_bitmap (struct small_page_header *pageptr)
{
return &pageptr->bitmap_words[small_block_page_num_bitmap_words];
}
static void
init_small_block_page_pool (struct page_pool *pool)
{
/* How many usable rows of ALIGNMENT bytes can we have?
Each takes ALIGNMENT bytes + 1/8 byte in each bitmap, so approximately
(ALIGNMENT + 1/4) bytes. */
unsigned int num_bits = (unsigned int) (4 * PAGESIZE) / (4 * ALIGNMENT + 1);
unsigned int num_bitmap_words;
unsigned int blocks_start;
/* Iterate until it converges. */
for (;;)
{
num_bitmap_words = (num_bits + 32 - 1) / 32;
blocks_start =
(FLEXSIZEOF (struct small_page_header, bitmap_words,
2 * num_bitmap_words * sizeof (uint32_t))
+ ALIGNMENT - 1) & -ALIGNMENT;
unsigned int num_bits_r = (unsigned int) (PAGESIZE - blocks_start) / ALIGNMENT;
if (num_bits_r >= num_bits)
break;
num_bits = num_bits_r;
}
small_block_page_num_bits = num_bits;
small_block_page_num_bitmap_words = num_bitmap_words;
small_block_page_blocks_start = blocks_start;
pool->page_capacity = small_block_page_num_bits * ALIGNMENT;
}
static void
init_small_block_page (uintptr_t page)
{
struct small_page_header *pageptr = (struct small_page_header *) page;
pageptr->common.common.page_type = small_page_type;
/* Initialize available_bitmap. */
uint32_t *available_bitmap = small_block_page_available_bitmap (pageptr);
init_bitmap_all_bits_set (small_block_page_num_bitmap_words,
available_bitmap);
if ((small_block_page_num_bits % 32) != 0)
available_bitmap[small_block_page_num_bitmap_words - 1] =
(1U << (small_block_page_num_bits % 32)) - 1;
/* Initialize blockend_bitmap. */
init_bitmap_all_bits_clear (small_block_page_num_bitmap_words,
small_block_page_blockend_bitmap (pageptr));
pageptr->common.free_space = small_block_page_num_bits * ALIGNMENT;
}
/* Allocates a block of memory of size <= SMALL_BLOCK_MAX_SIZE,
aligned to ALIGNMENT bytes, from the given page.
Returns 0 upon failure. */
static uintptr_t
allocate_small_block_in_page (size_t size, uintptr_t page)
{
struct small_page_header *pageptr = (struct small_page_header *) page;
/* glibc compatible. */
if (size == 0)
size = 1;
/* Number of consecutive bits to look for in the bitmap. */
size_t c = (size + ALIGNMENT - 1) / ALIGNMENT;
/* SMALL_BLOCK_MAX_SIZE has been chosen so that c <= 32. */
if (!(c > 0 && c <= 32))
abort ();
uint32_t *available_bitmap = small_block_page_available_bitmap (pageptr);
size_t k = find_first_packet_set (small_block_page_num_bitmap_words,
available_bitmap,
c);
if (unlikely (k == (size_t)(-1)))
/* Failed to find c consecutive available rows of ALIGNMENT bytes each. */
return 0;
uint32_t *blockend_bitmap = small_block_page_blockend_bitmap (pageptr);
size_t j = k / 32;
size_t i = k % 32;
if (i + c <= 32)
{
available_bitmap[j] &= ~(((2U << (c - 1)) - 1) << i);
blockend_bitmap[j] |= (1U << (i + c - 1));
}
else
{
available_bitmap[j] &= ~(-1U << i);
available_bitmap[j + 1] &= ~((1U << (i + c - 32)) - 1);
blockend_bitmap[j + 1] |= (1U << (i + c - 1 - 32));
}
pageptr->common.free_space -= c * ALIGNMENT;
return page + small_block_page_blocks_start + k * ALIGNMENT;
}
static void
free_small_block_in_page (uintptr_t block, uintptr_t page)
{
struct small_page_header *pageptr = (struct small_page_header *) page;
if (!(block >= page + small_block_page_blocks_start
&& (block % ALIGNMENT) == 0))
/* Invalid argument. */
abort ();
uint32_t *available_bitmap = small_block_page_available_bitmap (pageptr);
uint32_t *blockend_bitmap = small_block_page_blockend_bitmap (pageptr);
/* The bit that corresponds to where the block starts. */
size_t k = (block - page - small_block_page_blocks_start) / ALIGNMENT;
/* The bit that corresponds to where the block ends. */
size_t ke = find_first_bit_set (small_block_page_num_bitmap_words,
blockend_bitmap,
k);
if (/* ke == (size_t)(-1) || */ ke >= k + 32)
/* Invalid argument or invalid state. */
abort ();
/* Number of consecutive bits to manipulate in the bitmap. */
size_t c = ke - k + 1;
size_t j = k / 32;
size_t i = k % 32;
if (i + c <= 32)
{
available_bitmap[j] |= (((2U << (c - 1)) - 1) << i);
blockend_bitmap[j] &= ~(1U << (i + c - 1));
}
else
{
available_bitmap[j] |= (-1U << i);
available_bitmap[j + 1] |= ((1U << (i + c - 32)) - 1);
blockend_bitmap[j + 1] &= ~(1U << (i + c - 1 - 32));
}
pageptr->common.free_space += c * ALIGNMENT;
}
/* Management of pages of small blocks. */
struct page_pool small_block_pages =
{
init_small_block_page_pool,
init_small_block_page,
allocate_small_block_in_page,
free_small_block_in_page
};
/* ============================== Medium blocks ============================= */
/* A range of memory in a page.
It covers the address range [page+start, page+end).
start <= end. */
struct memory_range
{
pg_offset_t start;
pg_offset_t end;
};
/* Header of a page of medium blocks.
Lies at an address that is a multiple of PAGESIZE. */
struct medium_page_header
{
struct dissected_page_header common;
/* If n blocks are allocated, there are n+1 gaps before, between, and
after them. Keep them in an array, sorted in ascending order. */
unsigned int num_gaps; /* > 0 */
struct memory_range gaps[FLEXIBLE_ARRAY_MEMBER /* PAGESIZE / SMALL_BLOCK_MAX_SIZE + 1 */];
};
#define MEDIUM_BLOCKS_PAGE_MAX_GAPS \
(PAGESIZE / SMALL_BLOCK_MAX_SIZE + 1)
#define MEDIUM_BLOCKS_PAGE_FIRST_GAP_START \
((FLEXSIZEOF (struct medium_page_header, gaps, \
MEDIUM_BLOCKS_PAGE_MAX_GAPS * sizeof (struct memory_range)) \
+ ALIGNMENT - 1) & -ALIGNMENT)
#define MEDIUM_BLOCKS_PAGE_LAST_GAP_END \
PAGESIZE
#define MEDIUM_BLOCKS_PAGE_CAPACITY \
(MEDIUM_BLOCKS_PAGE_LAST_GAP_END - MEDIUM_BLOCKS_PAGE_FIRST_GAP_START)
static void
init_medium_block_page_pool (struct page_pool *pool)
{
pool->page_capacity = MEDIUM_BLOCKS_PAGE_CAPACITY;
}
static void
init_medium_block_page (uintptr_t page)
{
struct medium_page_header *pageptr = (struct medium_page_header *) page;
pageptr->common.common.page_type = medium_page_type;
pageptr->num_gaps = 1;
pageptr->gaps[0].start = MEDIUM_BLOCKS_PAGE_FIRST_GAP_START;
pageptr->gaps[0].end = MEDIUM_BLOCKS_PAGE_LAST_GAP_END;
pageptr->common.free_space = MEDIUM_BLOCKS_PAGE_CAPACITY;
}
/* Allocates a block of memory of size > SMALL_BLOCK_MAX_SIZE,
aligned to ALIGNMENT bytes, from the given page.
Returns 0 upon failure. */
static uintptr_t
allocate_medium_block_in_page (size_t size, uintptr_t page)
{
struct medium_page_header *pageptr = (struct medium_page_header *) page;
/* Walk through the gaps and remember the smallest gap of at least
the given size. */
size_t best_i = (size_t)(-1);
size_t best_length = (size_t)(-1);
size_t num_gaps = pageptr->num_gaps;
size_t i;
for (i = 0; i < num_gaps; i++)
{
size_t length = pageptr->gaps[i].end - pageptr->gaps[i].start;
if (length >= size)
{
/* Found a gap of sufficient size. */
if (length < best_length)
{
best_i = i;
best_length = length;
}
}
}
if (unlikely (best_i == (size_t)(-1)))
/* Failed to find a gap of sufficient size. */
return 0;
size_t aligned_size = (size + ALIGNMENT - 1) & -ALIGNMENT;
if (pageptr->common.free_space < aligned_size)
/* Invalid state: Less free space than expected. */
abort ();
/* Split the gap, leaving an empty gap and a remaining gap. */
for (i = num_gaps - 1; ; i--)
{
pageptr->gaps[i + 1] = pageptr->gaps[i];
if (i == best_i)
break;
}
size_t result = pageptr->gaps[best_i].start;
pageptr->gaps[best_i].end = result;
pageptr->gaps[best_i + 1].start = result + aligned_size;
pageptr->num_gaps = num_gaps + 1;
if (pageptr->num_gaps > PAGESIZE / SMALL_BLOCK_MAX_SIZE + 1)
/* Invalid state: More gaps than expected. */
abort ();
pageptr->common.free_space -= aligned_size;
return page + result;
}
static void
free_medium_block_in_page (uintptr_t block, uintptr_t page)
{
struct medium_page_header *pageptr = (struct medium_page_header *) page;
size_t offset = block - page;
/* Search for the gap that ends where this block begins.
We can ignore the last gap here, since it ends where the page ends. */
struct memory_range *gaps = pageptr->gaps;
size_t lo = 0;
size_t hi = pageptr->num_gaps - 1;
size_t index;
while (lo < hi)
{
/* Invariant:
for i < lo, gaps[i].end < offset,
for i >= hi, gaps[i].end > offset. */
size_t mid = (hi + lo) >> 1; /* >= lo, < hi */
if (offset > gaps[mid].end)
lo = mid + 1;
else if (offset < gaps[mid].end)
hi = mid;
else
{
/* Found it: offset == gaps[mid].end. */
index = mid;
goto found;
}
}
/* Invalid argument: block is not the start of a currently allocated
block. */
abort ();
found:
/* Here 0 <= index < pageptr->num_gaps - 1.
Combine the gaps index and index+1. */
pageptr->common.free_space += gaps[index + 1].start - gaps[index].end;
if (pageptr->common.free_space < gaps[index + 1].start - gaps[index].end)
/* Wrap around. */
abort ();
gaps[index].end = gaps[index + 1].end;
size_t num_gaps = pageptr->num_gaps - 1;
size_t i;
for (i = index + 1; i < num_gaps; i++)
gaps[i] = gaps[i + 1];
pageptr->num_gaps = num_gaps;
}
/* Management of pages of medium blocks. */
struct page_pool medium_block_pages =
{
init_medium_block_page_pool,
init_medium_block_page,
allocate_medium_block_in_page,
free_medium_block_in_page
};
/* ==================== Pages of small and medium blocks ==================== */
/* Allocates a block of memory from the given pool, aligned to ALIGNMENT bytes.
Returns 0 upon failure. */
static inline uintptr_t
allocate_block_from_pool (size_t size, struct page_pool *pool)
{
uintptr_t page;
/* Try in the last used page first. */
page = pool->last_page;
if (likely (page != 0))
{
uintptr_t block = pool->allocate_block_in_page (size, page);
if (likely (block != 0))
{
add_update (page, pool);
return block;
}
}
/* Ensure that the pool and its managed_pages is initialized. */
if (unlikely (pool->managed_pages == NULL))
{
pool->managed_pages =
gl_oset_nx_create_empty (GL_RBTREE_OSET, compare_pages_by_free_space, NULL);
if (unlikely (pool->managed_pages == NULL))
/* Could not allocate the managed_pages. */
return 0;
pool->init_page_pool (pool);
}
/* Ensure that managed_pages is up-to-date. */
flush_all_updates (pool);
/* Try in the other managed_pages. */
{
gl_oset_iterator_t iter =
gl_oset_iterator_atleast (pool->managed_pages,
page_free_space_is_at_least,
(void *) (uintptr_t) size);
const void *elt;
while (gl_oset_iterator_next (&iter, &elt))
{
struct page_tree_element *element = (struct page_tree_element *) elt;
page = element->page;
/* No need to try the last used page again. */
if (likely (page != pool->last_page))
{
uintptr_t block = pool->allocate_block_in_page (size, page);
if (likely (block != 0))
{
gl_oset_iterator_free (&iter);
add_update (page, pool);
pool->last_page = page;
return block;
}
}
}
gl_oset_iterator_free (&iter);
}
/* If we have a freeable page ready for reuse, use it. */
if (pool->freeable_page != 0)
{
page = pool->freeable_page;
pool->init_page (page);
struct page_tree_element *element =
(struct page_tree_element *) malloc (sizeof (struct page_tree_element));
if (unlikely (element == NULL))
{
/* Could not allocate the tree element. */
pool->last_page = 0;
return 0;
}
element->page = page;
element->free_space = ((struct dissected_page_header *) page)->free_space;
if (unlikely (gl_oset_nx_add (pool->managed_pages, element) < 0))
{
/* Could not allocate the tree node. */
free (element);
pool->last_page = 0;
return 0;
}
((struct dissected_page_header *) page)->tree_element = element;
pool->freeable_page = 0;
uintptr_t block = pool->allocate_block_in_page (size, page);
if (block == 0)
/* If the size is too large for an empty page, this function should not
have been invoked. */
abort ();
add_update (page, pool);
pool->last_page = page;
return block;
}
/* Allocate a fresh page. */
page = ALLOC_PAGES (PAGESIZE);
if (unlikely (page == 0))
{
/* Failed. */
pool->last_page = 0;
return 0;
}
if ((page & (PAGESIZE - 1)) != 0)
/* ALLOC_PAGES's result is not aligned as expected. */
abort ();
pool->init_page (page);
struct page_tree_element *element =
(struct page_tree_element *) malloc (sizeof (struct page_tree_element));
if (unlikely (element == NULL))
{
/* Could not allocate the tree element. */
FREE_PAGES (page, PAGESIZE);
pool->last_page = 0;
return 0;
}
element->page = page;
element->free_space = ((struct dissected_page_header *) page)->free_space;
if (unlikely (gl_oset_nx_add (pool->managed_pages, element) < 0))
{
/* Could not allocate the tree node. */
free (element);
FREE_PAGES (page, PAGESIZE);
pool->last_page = 0;
return 0;
}
((struct dissected_page_header *) page)->tree_element = element;
uintptr_t block = pool->allocate_block_in_page (size, page);
if (block == 0)
/* If the size is too large for an empty page, this function should not
have been invoked. */
abort ();
add_update (page, pool);
pool->last_page = page;
return block;
}
static void
free_block_from_pool (uintptr_t block, uintptr_t page, struct page_pool *pool)
{
if (pool->page_capacity == 0)
/* Invalid argument: The block is not valid, since the pool has not yet
been initialized. */
abort ();
pool->free_block_in_page (block, page);
struct dissected_page_header *pageptr = (struct dissected_page_header *) page;
if (likely (pageptr->free_space != pool->page_capacity))
{
/* The page is not entirely free. */
add_update (page, pool);
}
else
{
/* The page is now entirely free. */
/* Remove its tree element and free it. */
struct page_tree_element *element = pageptr->tree_element;
if (!gl_oset_remove (pool->managed_pages, element))
/* Invalid state: The element is not in the managed_pages. */
abort ();
free (element);
if (pool->last_page == page)
pool->last_page = 0;
drop_update (page, pool);
/* If we would now have two freeable pages, free the old one. */
if (pool->freeable_page != 0)
FREE_PAGES (pool->freeable_page, PAGESIZE);
/* Don't free the page now, but later. */
pool->freeable_page = page;
}
}
/* Lock that protects the management of small and medium blocks from
simultaneous access from multiple threads. */
gl_lock_define_initialized(static, ssfmalloc_lock)
/* ============================== Large blocks ============================== */
/* Header of a page sequence for a large block.
Lies at an address that is a multiple of PAGESIZE. */
struct large_block_header
{
#if PAGE_RESERVED_HEADER_SIZE > 0
void * reserved[PAGE_RESERVED_HEADER_SIZE / sizeof (void *)];
#endif
unsigned char page_type; /* large_page_type */
};
/* Information about a large block.
Ends at an address that is a multiple of ALIGNMENT. */
struct large_block_caption
{
size_t pages_size; /* A multiple of PAGESIZE. */
};
/* Size of large block page header, gap, and caption. */
#define LARGE_BLOCK_OFFSET \
((sizeof (struct large_block_header) + sizeof (struct large_block_caption) \
+ ALIGNMENT - 1) & -ALIGNMENT)
/* =========================== Exported functions =========================== */
/* Allocates a block of memory, aligned to ALIGNMENT bytes.
Returns 0 upon failure. */
static uintptr_t
allocate_block (size_t size)
{
uintptr_t block;
if (unlikely (size > MEDIUM_BLOCKS_PAGE_CAPACITY))
{
/* Allocate a large block. */
size_t pages_size = (size + LARGE_BLOCK_OFFSET + PAGESIZE - 1) & -PAGESIZE;
uintptr_t pages = ALLOC_PAGES (pages_size);
if (unlikely (pages == 0))
/* Failed. */
return 0;
if ((pages & (PAGESIZE - 1)) != 0)
/* ALLOC_PAGES's result is not aligned as expected. */
abort ();
((struct any_page_header *) pages)->page_type = large_page_type;
block = pages + LARGE_BLOCK_OFFSET;
((struct large_block_caption *) block)[-1].pages_size = pages_size;
}
else
{
bool mt = gl_multithreaded ();
if (mt) gl_lock_lock (ssfmalloc_lock);
struct page_pool *pool =
(size <= SMALL_BLOCK_MAX_SIZE ? &small_block_pages : &medium_block_pages);
block = allocate_block_from_pool (size, pool);
if (mt) gl_lock_unlock (ssfmalloc_lock);
}
return block;
}
/* Frees a block of memory, returned by allocate_block. */
static void
free_block (uintptr_t block)
{
if (block == 0 || (block % ALIGNMENT) != 0)
/* Invalid argument. */
abort ();
uintptr_t pages = block & -PAGESIZE;
unsigned char type = ((struct any_page_header *) pages)->page_type;
if (unlikely (type == large_page_type))
{
if (block != pages + LARGE_BLOCK_OFFSET)
/* Invalid argument. */
abort ();
size_t pages_size = ((struct large_block_caption *) block)[-1].pages_size;
if ((pages_size & (PAGESIZE - 1)) != 0)
/* Invalid memory state: pages_size not as expected. */
abort ();
FREE_PAGES (pages, pages_size);
}
else
{
bool mt = gl_multithreaded ();
if (mt) gl_lock_lock (ssfmalloc_lock);
struct page_pool *pool;
if (type == small_page_type)
pool = &small_block_pages;
else if (type == medium_page_type)
pool = &medium_block_pages;
else
/* Invalid memory state: type not as expected. */
abort ();
free_block_from_pool (block, pages, pool);
if (mt) gl_lock_unlock (ssfmalloc_lock);
}
}