Hash :
ecab4471
Author :
Date :
2009-02-26T20:18:42
avoid gcc 3.4.3 bug on long double NaN on Irix 6.5 * tests/nan.h (NaNl): Rewrite as function on Irix, to avoid compilation bug by using runtime conversion. * m4/isfinite.m4 (gl_ISFINITE): Likewise. * m4/isnanl.m4 (gl_FUNC_ISNANL): Likewise. * modules/ceill-tests (Files): Use nan.h. * modules/floorl-tests (Files): Likewise. * modules/frexpl-tests (Files): Likewise. * modules/isnanl-tests (Files): Likewise. * modules/ldexpl-tests (Files): Likewise. * modules/roundl-tests (Files): Likewise. * modules/truncl-tests (Files): Likewise. * tests/test-ceill.c (main): Use a working NaN. * tests/test-floorl.c (main): Likewise. * tests/test-frexpl.c (main): Likewise. * tests/test-isnan.c (test_long_double): Likewise. * tests/test-isnanl.h (main): Likewise. * tests/test-ldexpl.h (main): Likewise. * tests/test-roundl.h (main): Likewise. * tests/test-truncl.h (main): Likewise. See http://lists.gnu.org/archive/html/bug-gnulib/2009-02/msg00190.html. Signed-off-by: Eric Blake <ebb9@byu.net>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/* Test of isnand() substitute.
Copyright (C) 2007-2009 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Ben Pfaff <blp@cs.stanford.edu>, from code by Bruno
Haible <bruno@clisp.org>. */
#include <config.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "nan.h"
#define ASSERT(expr) \
do \
{ \
if (!(expr)) \
{ \
fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
fflush (stderr); \
abort (); \
} \
} \
while (0)
/* HP cc on HP-UX 10.20 has a bug with the constant expression -0.0f.
So we use -zero instead. */
float zerof = 0.0f;
/* HP cc on HP-UX 10.20 has a bug with the constant expression -0.0.
So we use -zero instead. */
double zerod = 0.0;
/* On HP-UX 10.20, negating 0.0L does not yield -0.0L.
So we use minus_zerol instead.
IRIX cc can't put -0.0L into .data, but can compute at runtime.
Note that the expression -LDBL_MIN * LDBL_MIN does not work on other
platforms, such as when cross-compiling to PowerPC on MacOS X 10.5. */
#if defined __hpux || defined __sgi
static long double
compute_minus_zerol (void)
{
return -LDBL_MIN * LDBL_MIN;
}
# define minus_zerol compute_minus_zerol ()
#else
long double minus_zerol = -0.0L;
#endif
static void
test_float (void)
{
/* Finite values. */
ASSERT (!isnan (3.141f));
ASSERT (!isnan (3.141e30f));
ASSERT (!isnan (3.141e-30f));
ASSERT (!isnan (-2.718f));
ASSERT (!isnan (-2.718e30f));
ASSERT (!isnan (-2.718e-30f));
ASSERT (!isnan (0.0f));
ASSERT (!isnan (-zerof));
/* Infinite values. */
ASSERT (!isnan (1.0f / 0.0f));
ASSERT (!isnan (-1.0f / 0.0f));
/* Quiet NaN. */
ASSERT (isnan (NaNf ()));
#if defined FLT_EXPBIT0_WORD && defined FLT_EXPBIT0_BIT
/* Signalling NaN. */
{
#define NWORDSF \
((sizeof (float) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { float value; unsigned int word[NWORDSF]; } memory_float;
memory_float m;
m.value = NaNf ();
# if FLT_EXPBIT0_BIT > 0
m.word[FLT_EXPBIT0_WORD] ^= (unsigned int) 1 << (FLT_EXPBIT0_BIT - 1);
# else
m.word[FLT_EXPBIT0_WORD + (FLT_EXPBIT0_WORD < NWORDSF / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
if (FLT_EXPBIT0_WORD < NWORDSF / 2)
m.word[FLT_EXPBIT0_WORD + 1] |= (unsigned int) 1 << FLT_EXPBIT0_BIT;
else
m.word[0] |= (unsigned int) 1;
ASSERT (isnan (m.value));
}
#endif
}
static void
test_double (void)
{
/* Finite values. */
ASSERT (!isnan (3.141));
ASSERT (!isnan (3.141e30));
ASSERT (!isnan (3.141e-30));
ASSERT (!isnan (-2.718));
ASSERT (!isnan (-2.718e30));
ASSERT (!isnan (-2.718e-30));
ASSERT (!isnan (0.0));
ASSERT (!isnan (-zerod));
/* Infinite values. */
ASSERT (!isnan (1.0 / 0.0));
ASSERT (!isnan (-1.0 / 0.0));
/* Quiet NaN. */
ASSERT (isnan (NaNd ()));
#if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT
/* Signalling NaN. */
{
#define NWORDSD \
((sizeof (double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { double value; unsigned int word[NWORDSD]; } memory_double;
memory_double m;
m.value = NaNd ();
# if DBL_EXPBIT0_BIT > 0
m.word[DBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (DBL_EXPBIT0_BIT - 1);
# else
m.word[DBL_EXPBIT0_WORD + (DBL_EXPBIT0_WORD < NWORDSD / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
m.word[DBL_EXPBIT0_WORD + (DBL_EXPBIT0_WORD < NWORDSD / 2 ? 1 : - 1)]
|= (unsigned int) 1 << DBL_EXPBIT0_BIT;
ASSERT (isnan (m.value));
}
#endif
}
static void
test_long_double (void)
{
#define NWORDSL \
((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { unsigned int word[NWORDSL]; long double value; }
memory_long_double;
/* Finite values. */
ASSERT (!isnan (3.141L));
ASSERT (!isnan (3.141e30L));
ASSERT (!isnan (3.141e-30L));
ASSERT (!isnan (-2.718L));
ASSERT (!isnan (-2.718e30L));
ASSERT (!isnan (-2.718e-30L));
ASSERT (!isnan (0.0L));
ASSERT (!isnan (minus_zerol));
/* Infinite values. */
ASSERT (!isnan (1.0L / 0.0L));
ASSERT (!isnan (-1.0L / 0.0L));
/* Quiet NaN. */
ASSERT (isnan (NaNl ()));
#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
/* A bit pattern that is different from a Quiet NaN. With a bit of luck,
it's a Signalling NaN. */
{
memory_long_double m;
m.value = NaNl ();
# if LDBL_EXPBIT0_BIT > 0
m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1);
# else
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDSL / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDSL / 2 ? 1 : - 1)]
|= (unsigned int) 1 << LDBL_EXPBIT0_BIT;
ASSERT (isnan (m.value));
}
#endif
#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_))
/* Representation of an 80-bit 'long double' as an initializer for a sequence
of 'unsigned int' words. */
# ifdef WORDS_BIGENDIAN
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \
((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16), \
(unsigned int) (mantlo) << 16 \
}
# else
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ mantlo, manthi, exponent }
# endif
{ /* Quiet NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) };
ASSERT (isnan (x.value));
}
{
/* Signalling NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) };
ASSERT (isnan (x.value));
}
/* The isnan function should recognize Pseudo-NaNs, Pseudo-Infinities,
Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in
Intel IA-64 Architecture Software Developer's Manual, Volume 1:
Application Architecture.
Table 5-2 "Floating-Point Register Encodings"
Figure 5-6 "Memory to Floating-Point Register Data Translation"
*/
{ /* Pseudo-NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) };
ASSERT (isnan (x.value));
}
{ /* Pseudo-Infinity. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) };
ASSERT (isnan (x.value));
}
{ /* Pseudo-Zero. */
static memory_long_double x =
{ LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) };
ASSERT (isnan (x.value));
}
{ /* Unnormalized number. */
static memory_long_double x =
{ LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) };
ASSERT (isnan (x.value));
}
{ /* Pseudo-Denormal. */
static memory_long_double x =
{ LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) };
ASSERT (isnan (x.value));
}
#endif
}
int
main ()
{
test_float ();
test_double ();
test_long_double ();
return 0;
}