Edit

kc3-lang/gnulib/tests/test-truncf2.c

Branch :

  • Show log

    Commit

  • Author : Jim Meyering
    Date : 2011-01-01 20:17:23
    Hash : d60f3b0c
    Message : maint: update almost all copyright ranges to include 2011 Run the new "make update-copyright" rule.

  • tests/test-truncf2.c
  • /* Test of rounding towards zero.
       Copyright (C) 2007-2011 Free Software Foundation, Inc.
    
       This program is free software: you can redistribute it and/or modify
       it under the terms of the GNU General Public License as published by
       the Free Software Foundation; either version 3 of the License, or
       (at your option) any later version.
    
       This program is distributed in the hope that it will be useful,
       but WITHOUT ANY WARRANTY; without even the implied warranty of
       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
       GNU General Public License for more details.
    
       You should have received a copy of the GNU General Public License
       along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
    
    /* Written by Bruno Haible <bruno@clisp.org>, 2007.  */
    
    /* When this test fails on some platform, build it together with the gnulib
       module 'fprintf-posix' for optimal debugging output.  */
    
    #include <config.h>
    
    #include <math.h>
    
    #include <float.h>
    #include <stdbool.h>
    #include <stdint.h>
    #include <stdio.h>
    
    #include "isnanf-nolibm.h"
    #include "minus-zero.h"
    #include "macros.h"
    
    
    /* The reference implementation, taken from lib/trunc.c.  */
    
    #define DOUBLE float
    #define MANT_DIG FLT_MANT_DIG
    #define L_(literal) literal##f
    
    /* -0.0.  See minus-zero.h.  */
    #define MINUS_ZERO minus_zerof
    
    /* 2^(MANT_DIG-1).  */
    static const DOUBLE TWO_MANT_DIG =
      /* Assume MANT_DIG <= 5 * 31.
         Use the identity
           n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5).  */
      (DOUBLE) (1U << ((MANT_DIG - 1) / 5))
      * (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5))
      * (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5))
      * (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5))
      * (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5));
    
    DOUBLE
    truncf_reference (DOUBLE x)
    {
      /* The use of 'volatile' guarantees that excess precision bits are dropped
         at each addition step and before the following comparison at the caller's
         site.  It is necessary on x86 systems where double-floats are not IEEE
         compliant by default, to avoid that the results become platform and compiler
         option dependent.  'volatile' is a portable alternative to gcc's
         -ffloat-store option.  */
      volatile DOUBLE y = x;
      volatile DOUBLE z = y;
    
      if (z > L_(0.0))
        {
          /* For 0 < x < 1, return +0.0 even if the current rounding mode is
             FE_DOWNWARD.  */
          if (z < L_(1.0))
            z = L_(0.0);
          /* Avoid rounding errors for values near 2^k, where k >= MANT_DIG-1.  */
          else if (z < TWO_MANT_DIG)
            {
              /* Round to the next integer (nearest or up or down, doesn't matter).  */
              z += TWO_MANT_DIG;
              z -= TWO_MANT_DIG;
              /* Enforce rounding down.  */
              if (z > y)
                z -= L_(1.0);
            }
        }
      else if (z < L_(0.0))
        {
          /* For -1 < x < 0, return -0.0 regardless of the current rounding
             mode.  */
          if (z > L_(-1.0))
            z = MINUS_ZERO;
          /* Avoid rounding errors for values near -2^k, where k >= MANT_DIG-1.  */
          else if (z > - TWO_MANT_DIG)
            {
              /* Round to the next integer (nearest or up or down, doesn't matter).  */
              z -= TWO_MANT_DIG;
              z += TWO_MANT_DIG;
              /* Enforce rounding up.  */
              if (z < y)
                z += L_(1.0);
            }
        }
      return z;
    }
    
    
    /* Test for equality.  */
    static int
    equal (DOUBLE x, DOUBLE y)
    {
      return (isnanf (x) ? isnanf (y) : x == y);
    }
    
    /* Test whether the result for a given argument is correct.  */
    static bool
    correct_result_p (DOUBLE x, DOUBLE result)
    {
      return
        (x >= 0
         ? (x < 1 ? result == L_(0.0) :
            x - 1 < x ? result <= x && result >= x - 1 && x - result < 1 :
            equal (result, x))
         : (x > -1 ? result == L_(0.0) :
            x + 1 > x ? result >= x && result <= x + 1 && result - x < 1 :
            equal (result, x)));
    }
    
    /* Test the function for a given argument.  */
    static int
    check (float x)
    {
      /* If the reference implementation is incorrect, bail out immediately.  */
      float reference = truncf_reference (x);
      ASSERT (correct_result_p (x, reference));
      /* If the actual implementation is wrong, return an error code.  */
      {
        float result = truncf (x);
        if (correct_result_p (x, result))
          return 0;
        else
          {
    #if GNULIB_TEST_FPRINTF_POSIX
            fprintf (stderr, "truncf %g(%a) = %g(%a) or %g(%a)?\n",
                     x, x, reference, reference, result, result);
    #endif
            return 1;
          }
      }
    }
    
    #define NUM_HIGHBITS 12
    #define NUM_LOWBITS 4
    
    int
    main ()
    {
      unsigned int highbits;
      unsigned int lowbits;
      int error = 0;
      for (highbits = 0; highbits < (1 << NUM_HIGHBITS); highbits++)
        for (lowbits = 0; lowbits < (1 << NUM_LOWBITS); lowbits++)
          {
            /* Combine highbits and lowbits into a floating-point number,
               sign-extending the lowbits to 32-NUM_HIGHBITS bits.  */
            union { float f; uint32_t i; } janus;
            janus.i = ((uint32_t) highbits << (32 - NUM_HIGHBITS))
                      | ((uint32_t) ((int32_t) ((uint32_t) lowbits << (32 - NUM_LOWBITS))
                                     >> (32 - NUM_LOWBITS - NUM_HIGHBITS))
                         >> NUM_HIGHBITS);
            error |= check (janus.f);
          }
      return (error ? 1 : 0);
    }