Tag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
#if !defined(RXH) || defined(RX_WANT_SE_DEFS)
#define RXH
/* Copyright (C) 1992, 1993 Free Software Foundation, Inc.
This file is part of the librx library.
Librx is free software; you can redistribute it and/or modify it under
the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Librx is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU Library General Public
License along with this software; see the file COPYING.LIB. If not,
write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA
02139, USA. */
/* t. lord Wed Sep 23 18:20:57 1992 */
#ifndef RX_WANT_SE_DEFS
/* This page: Bitsets */
#ifndef RX_subset
typedef unsigned int RX_subset;
#define RX_subset_bits (32)
#define RX_subset_mask (RX_subset_bits - 1)
#endif
typedef RX_subset * rx_Bitset;
#ifdef __STDC__
typedef void (*rx_bitset_iterator) (void *, int member_index);
#else
typedef void (*rx_bitset_iterator) ();
#endif
#define rx_bitset_subset(N) ((N) / RX_subset_bits)
#define rx_bitset_subset_val(B,N) ((B)[rx_bitset_subset(N)])
#define RX_bitset_access(B,N,OP) \
((B)[rx_bitset_subset(N)] OP rx_subset_singletons[(N) & RX_subset_mask])
#define RX_bitset_member(B,N) RX_bitset_access(B, N, &)
#define RX_bitset_enjoin(B,N) RX_bitset_access(B, N, |=)
#define RX_bitset_remove(B,N) RX_bitset_access(B, N, &= ~)
#define RX_bitset_toggle(B,N) RX_bitset_access(B, N, ^= )
#define rx_bitset_numb_subsets(N) (((N) + RX_subset_bits - 1) / RX_subset_bits)
#define rx_sizeof_bitset(N) (rx_bitset_numb_subsets(N) * sizeof(RX_subset))
/* This page: Splay trees. */
#ifdef __STDC__
typedef int (*rx_sp_comparer) (void * a, void * b);
#else
typedef int (*rx_sp_comparer) ();
#endif
struct rx_sp_node
{
void * key;
void * data;
struct rx_sp_node * kids[2];
};
#ifdef __STDC__
typedef void (*rx_sp_key_data_freer) (struct rx_sp_node *);
#else
typedef void (*rx_sp_key_data_freer) ();
#endif
/* giant inflatable hash trees */
struct rx_hash_item
{
struct rx_hash_item * next_same_hash;
struct rx_hash * table;
unsigned long hash;
void * data;
void * binding;
};
struct rx_hash
{
struct rx_hash * parent;
int refs;
struct rx_hash * children[13];
struct rx_hash_item * buckets [13];
int bucket_size [13];
};
struct rx_hash_rules;
#ifdef __STDC__
/* should return like == */
typedef int (*rx_hash_eq)(void *, void *);
typedef struct rx_hash * (*rx_alloc_hash)(struct rx_hash_rules *);
typedef void (*rx_free_hash)(struct rx_hash *,
struct rx_hash_rules *);
typedef struct rx_hash_item * (*rx_alloc_hash_item)(struct rx_hash_rules *,
void *);
typedef void (*rx_free_hash_item)(struct rx_hash_item *,
struct rx_hash_rules *);
#else
typedef int (*rx_hash_eq)();
typedef struct rx_hash * (*rx_alloc_hash)();
typedef void (*rx_free_hash)();
typedef struct rx_hash_item * (*rx_alloc_hash_item)();
typedef void (*rx_free_hash_item)();
#endif
struct rx_hash_rules
{
rx_hash_eq eq;
rx_alloc_hash hash_alloc;
rx_free_hash free_hash;
rx_alloc_hash_item hash_item_alloc;
rx_free_hash_item free_hash_item;
};
/* Forward declarations */
struct rx_cache;
struct rx_superset;
struct rx;
struct rx_se_list;
/*
* GLOSSARY
*
* regexp
* regular expression
* expression
* pattern - a `regular' expression. The expression
* need not be formally regular -- it can contain
* constructs that don't correspond to purely regular
* expressions.
*
* buffer
* string - the string (or strings) being searched or matched.
*
* pattern buffer - a structure of type `struct re_pattern_buffer'
* This in turn contains a `struct rx', which holds the
* NFA compiled from a pattern, as well as some of the state
* of a matcher using the pattern.
*
* NFA - nondeterministic finite automata. Some people
* use this term to a member of the class of
* regular automata (those corresponding to a regular
* language). However, in this code, the meaning is
* more general. The automata used by Rx are comperable
* in power to what are usually called `push down automata'.
*
* Two NFA are built by rx for every pattern. One is built
* by the compiler. The other is built from the first, on
* the fly, by the matcher. The latter is called the `superstate
* NFA' because its states correspond to sets of states from
* the first NFA. (Joe Keane gets credit for the name
* `superstate NFA').
*
* NFA edges
* epsilon edges
* side-effect edges - The NFA compiled from a pattern can have three
* kinds of edges. Epsilon edges can be taken freely anytime
* their source state is reached. Character set edges can be
* taken when their source state is reached and when the next
* character in the buffer is a member of the set. Side effect
* edges imply a transition that can only be taken after the
* indicated side effect has been successfully accomplished.
* Some examples of side effects are:
*
* Storing the current match position to record the
* location of a parentesized subexpression.
*
* Advancing the matcher over N characters if they
* match the N characters previously matched by a
* parentesized subexpression.
*
* Both of those kinds of edges occur in the NFA generated
* by the pattern: \(.\)\1
*
* Epsilon and side effect edges are similar. Unfortunately,
* some of the code uses the name `epsilon edge' to mean
* both epsilon and side effect edges. For example, the
* function has_non_idempotent_epsilon_path computes the existance
* of a non-trivial path containing only a mix of epsilon and
* side effect edges. In that case `nonidempotent epsilon' is being
* used to mean `side effect'.
*/
/* LOW LEVEL PATTERN BUFFERS */
/* Suppose that from some NFA state, more than one path through
* side-effect edges is possible. In what order should the paths
* be tried? A function of type rx_se_list_order answers that
* question. It compares two lists of side effects, and says
* which list comes first.
*/
#ifdef __STDC__
typedef int (*rx_se_list_order) (struct rx *,
struct rx_se_list *,
struct rx_se_list *);
#else
typedef int (*rx_se_list_order) ();
#endif
/* Struct RX holds a compiled regular expression - that is, an nfa
* ready to be converted on demand to a more efficient superstate nfa.
* This is for the low level interface. The high-level interfaces enclose
* this in a `struct re_pattern_buffer'.
*/
struct rx
{
/* The compiler assigns a unique id to every pattern.
* Like sequence numbers in X, there is a subtle bug here
* if you use Rx in a system that runs for a long time.
* But, because of the way the caches work out, it is almost
* impossible to trigger the Rx version of this bug.
*
* The id is used to validate superstates found in a cache
* of superstates. It isn't sufficient to let a superstate
* point back to the rx for which it was compiled -- the caller
* may be re-using a `struct rx' in which case the superstate
* is not really valid. So instead, superstates are validated
* by checking the sequence number of the pattern for which
* they were built.
*/
int rx_id;
/* This is memory mgt. state for superstates. This may be
* shared by more than one struct rx.
*/
struct rx_cache * cache;
/* Every regex defines the size of its own character set.
* A superstate has an array of this size, with each element
* a `struct rx_inx'. So, don't make this number too large.
* In particular, don't make it 2^16.
*/
int local_cset_size;
/* After the NFA is built, it is copied into a contiguous region
* of memory (mostly for compatability with GNU regex).
* Here is that region, and it's size:
*/
void * buffer;
unsigned long allocated;
/* Clients of RX can ask for some extra storage in the space pointed
* to by BUFFER. The field RESERVED is an input parameter to the
* compiler. After compilation, this much space will be available
* at (buffer + allocated - reserved)
*/
unsigned long reserved;
/* --------- The remaining fields are for internal use only. --------- */
/* --------- But! they must be initialized to 0. --------- */
/* NODEC is the number of nodes in the NFA with non-epsilon
* transitions.
*/
int nodec;
/* EPSNODEC is the number of nodes with only epsilon transitions. */
int epsnodec;
/* The sum (NODEC + EPSNODEC) is the total number of states in the
* compiled NFA.
*/
/* Lists of side effects as stored in the NFA are `hash consed'..meaning
* that lists with the same elements are ==. During compilation,
* this table facilitates hash-consing.
*/
struct rx_hash se_list_memo;
/* Lists of NFA states are also hashed.
*/
struct rx_hash set_list_memo;
/* The compiler and matcher must build a number of instruction frames.
* The format of these frames is fixed (c.f. struct rx_inx). The values
* of the instructions is not fixed.
*
* An enumerated type (enum rx_opcode) defines the set of instructions
* that the compiler or matcher might generate. When filling an instruction
* frame, the INX field is found by indexing this instruction table
* with an opcode:
*/
void ** instruction_table;
/* The list of all states in an NFA.
* During compilation, the NEXT field of NFA states links this list.
* After compilation, all the states are compacted into an array,
* ordered by state id numbers. At that time, this points to the base
* of that array.
*/
struct rx_nfa_state *nfa_states;
/* Every nfa begins with one distinguished starting state:
*/
struct rx_nfa_state *start;
/* This orders the search through super-nfa paths.
* See the comment near the typedef of rx_se_list_order.
*/
rx_se_list_order se_list_cmp;
struct rx_superset * start_set;
};
/* SYNTAX TREES */
/* Compilation is in stages.
*
* In the first stage, a pattern specified by a string is
* translated into a syntax tree. Later stages will convert
* the syntax tree into an NFA optimized for conversion to a
* superstate-NFA.
*
* This page is about syntax trees.
*/
enum rexp_node_type
{
r_cset, /* Match from a character set. `a' or `[a-z]'*/
r_concat, /* Concat two subexpressions. `ab' */
r_alternate, /* Choose one of two subexpressions. `a\|b' */
r_opt, /* Optional subexpression. `a?' */
r_star, /* Repeated subexpression. `a*' */
/* A 2phase-star is a variation on a repeated subexpression.
* In this case, there are two subexpressions. The first, if matched,
* begins a repitition (otherwise, the whole expression is matches the
* empth string).
*
* After matching the first subexpression, a 2phase star either finishes,
* or matches the second subexpression. If the second subexpression is
* matched, then the whole construct repeats.
*
* 2phase stars are used in two circumstances. First, they
* are used as part of the implementation of POSIX intervals (counted
* repititions). Second, they are used to implement proper star
* semantics when the repeated subexpression contains paths of
* only side effects. See rx_compile for more information.
*/
r_2phase_star,
/* c.f. "typedef void * rx_side_effect" */
r_side_effect,
/* This is an extension type: It is for transient use in source->source
* transformations (implemented over syntax trees).
*/
r_data
};
/* A side effect is a matcher-specific action associated with
* transitions in the NFA. The details of side effects are up
* to the matcher. To the compiler and superstate constructors
* side effects are opaque:
*/
typedef void * rx_side_effect;
/* Nodes in a syntax tree are of this type:
*/
struct rexp_node
{
enum rexp_node_type type;
union
{
rx_Bitset cset;
rx_side_effect side_effect;
struct
{
struct rexp_node *left;
struct rexp_node *right;
} pair;
void * data;
} params;
};
/* NFA
*
* A syntax tree is compiled into an NFA. This page defines the structure
* of that NFA.
*/
struct rx_nfa_state
{
/* These are kept in a list as the NFA is being built. */
struct rx_nfa_state *next;
/* After the NFA is built, states are given integer id's.
* States whose outgoing transitions are all either epsilon or
* side effect edges are given ids less than 0. Other states
* are given successive non-negative ids starting from 0.
*/
int id;
/* The list of NFA edges that go from this state to some other. */
struct rx_nfa_edge *edges;
/* If you land in this state, then you implicitly land
* in all other states reachable by only epsilon translations.
* Call the set of maximal paths to such states the epsilon closure
* of this state.
*
* There may be other states that are reachable by a mixture of
* epsilon and side effect edges. Consider the set of maximal paths
* of that sort from this state. Call it the epsilon-side-effect
* closure of the state.
*
* The epsilon closure of the state is a subset of the epsilon-side-
* effect closure. It consists of all the paths that contain
* no side effects -- only epsilon edges.
*
* The paths in the epsilon-side-effect closure can be partitioned
* into equivalance sets. Two paths are equivalant if they have the
* same set of side effects, in the same order. The epsilon-closure
* is one of these equivalance sets. Let's call these equivalance
* sets: observably equivalant path sets. That name is chosen
* because equivalance of two paths means they cause the same side
* effects -- so they lead to the same subsequent observations other
* than that they may wind up in different target states.
*
* The superstate nfa, which is derived from this nfa, is based on
* the observation that all of the paths in an observably equivalant
* path set can be explored at the same time, provided that the
* matcher keeps track not of a single nfa state, but of a set of
* states. In particular, after following all the paths in an
* observably equivalant set, you wind up at a set of target states.
* That set of target states corresponds to one state in the
* superstate NFA.
*
* Staticly, before matching begins, it is convenient to analyze the
* nfa. Each state is labeled with a list of the observably
* equivalant path sets who's union covers all the
* epsilon-side-effect paths beginning in this state. This list is
* called the possible futures of the state.
*
* A trivial example is this NFA:
* s1
* A ---> B
*
* s2
* ---> C
*
* epsilon s1
* ---------> D ------> E
*
*
* In this example, A has two possible futures.
* One invokes the side effect `s1' and contains two paths,
* one ending in state B, the other in state E.
* The other invokes the side effect `s2' and contains only
* one path, landing in state C.
*/
struct rx_possible_future *futures;
/* There are exactly two distinguished states in every NFA: */
unsigned int is_final:1;
unsigned int is_start:1;
/* These are used during NFA construction... */
unsigned int eclosure_needed:1;
unsigned int mark:1;
};
/* An edge in an NFA is typed: */
enum rx_nfa_etype
{
/* A cset edge is labled with a set of characters one of which
* must be matched for the edge to be taken.
*/
ne_cset,
/* An epsilon edge is taken whenever its starting state is
* reached.
*/
ne_epsilon,
/* A side effect edge is taken whenever its starting state is
* reached. Side effects may cause the match to fail or the
* position of the matcher to advance.
*/
ne_side_effect /* A special kind of epsilon. */
};
struct rx_nfa_edge
{
struct rx_nfa_edge *next;
enum rx_nfa_etype type;
struct rx_nfa_state *dest;
union
{
rx_Bitset cset;
rx_side_effect side_effect;
} params;
};
/* A possible future consists of a list of side effects
* and a set of destination states. Below are their
* representations. These structures are hash-consed which
* means that lists with the same elements share a representation
* (their addresses are ==).
*/
struct rx_nfa_state_set
{
struct rx_nfa_state * car;
struct rx_nfa_state_set * cdr;
};
struct rx_se_list
{
rx_side_effect car;
struct rx_se_list * cdr;
};
struct rx_possible_future
{
struct rx_possible_future *next;
struct rx_se_list * effects;
struct rx_nfa_state_set * destset;
};
/* This begins the description of the superstate NFA.
*
* The superstate NFA corresponds to the NFA in these ways:
*
* Every superstate NFA states SUPER correspond to sets of NFA states,
* nfa_states(SUPER).
*
* Superstate edges correspond to NFA paths.
*
* The superstate has no epsilon transitions;
* every edge has a character label, and a (possibly empty) side
* effect label. The side effect label corresponds to a list of
* side effects that occur in the NFA. These parts are referred
* to as: superedge_character(EDGE) and superedge_sides(EDGE).
*
* For a superstate edge EDGE starting in some superstate SUPER,
* the following is true (in pseudo-notation :-):
*
* exists DEST in nfa_states s.t.
* exists nfaEDGE in nfa_edges s.t.
* origin (nfaEDGE) == DEST
* && origin (nfaEDGE) is a member of nfa_states(SUPER)
* && exists PF in possible_futures(dest(nfaEDGE)) s.t.
* sides_of_possible_future (PF) == superedge_sides (EDGE)
*
* also:
*
* let SUPER2 := superedge_destination(EDGE)
* nfa_states(SUPER2)
* == union of all nfa state sets S s.t.
* exists PF in possible_futures(dest(nfaEDGE)) s.t.
* sides_of_possible_future (PF) == superedge_sides (EDGE)
* && S == dests_of_possible_future (PF) }
*
* Or in english, every superstate is a set of nfa states. A given
* character and a superstate implies many transitions in the NFA --
* those that begin with an edge labeled with that character from a
* state in the set corresponding to the superstate.
*
* The destinations of those transitions each have a set of possible
* futures. A possible future is a list of side effects and a set of
* destination NFA states. Two sets of possible futures can be
* `merged' by combining all pairs of possible futures that have the
* same side effects. A pair is combined by creating a new future
* with the same side effect but the union of the two destination sets.
* In this way, all the possible futures suggested by a superstate
* and a character can be merged into a set of possible futures where
* no two elements of the set have the same set of side effects.
*
* The destination of a possible future, being a set of NFA states,
* corresponds to a supernfa state. So, the merged set of possible
* futures we just created can serve as a set of edges in the
* supernfa.
*
* The representation of the superstate nfa and the nfa is critical.
* The nfa has to be compact, but has to facilitate the rapid
* computation of missing superstates. The superstate nfa has to
* be fast to interpret, lazilly constructed, and bounded in space.
*
* To facilitate interpretation, the superstate data structures are
* peppered with `instruction frames'. There is an instruction set
* defined below which matchers using the supernfa must be able to
* interpret.
*
* We'd like to make it possible but not mandatory to use code
* addresses to represent instructions (c.f. gcc's computed goto).
* Therefore, we define an enumerated type of opcodes, and when
* writing one of these instructions into a data structure, use
* the opcode as an index into a table of instruction values.
*
* Here are the opcodes that occur in the superstate nfa:
*/
/* Every superstate contains a table of instruction frames indexed
* by characters. A normal `move' in a matcher is to fetch the next
* character and use it as an index into a superstates transition
* table.
*
* In the fasted case, only one edge follows from that character.
* In other cases there is more work to do.
*
* The descriptions of the opcodes refer to data structures that are
* described further below.
*/
enum rx_opcode
{
/*
* BACKTRACK_POINT is invoked when a character transition in
* a superstate leads to more than one edge. In that case,
* the edges have to be explored independently using a backtracking
* strategy.
*
* A BACKTRACK_POINT instruction is stored in a superstate's
* transition table for some character when it is known that that
* character crosses more than one edge. On encountering this
* instruction, the matcher saves enough state to backtrack to this
* point in the match later.
*/
rx_backtrack_point = 0, /* data is (struct transition_class *) */
/*
* RX_DO_SIDE_EFFECTS evaluates the side effects of an epsilon path.
* There is one occurence of this instruction per rx_distinct_future.
* This instruction is skipped if a rx_distinct_future has no side effects.
*/
rx_do_side_effects = rx_backtrack_point + 1,
/* data is (struct rx_distinct_future *) */
/*
* RX_CACHE_MISS instructions are stored in rx_distinct_futures whose
* destination superstate has been reclaimed (or was never built).
* It recomputes the destination superstate.
* RX_CACHE_MISS is also stored in a superstate transition table before
* any of its edges have been built.
*/
rx_cache_miss = rx_do_side_effects + 1,
/* data is (struct rx_distinct_future *) */
/*
* RX_NEXT_CHAR is called to consume the next character and take the
* corresponding transition. This is the only instruction that uses
* the DATA field of the instruction frame instead of DATA_2.
* (see EXPLORE_FUTURE in regex.c).
*/
rx_next_char = rx_cache_miss + 1, /* data is (struct superstate *) */
/* RX_BACKTRACK indicates that a transition fails.
*/
rx_backtrack = rx_next_char + 1, /* no data */
/*
* RX_ERROR_INX is stored only in places that should never be executed.
*/
rx_error_inx = rx_backtrack + 1, /* Not supposed to occur. */
rx_num_instructions = rx_error_inx + 1
};
/* An id_instruction_table holds the values stored in instruction
* frames. The table is indexed by the enums declared above.
*/
extern void * rx_id_instruction_table[rx_num_instructions];
/* The heart of the matcher is a `word-code-interpreter'
* (like a byte-code interpreter, except that instructions
* are a full word wide).
*
* Instructions are not stored in a vector of code, instead,
* they are scattered throughout the data structures built
* by the regexp compiler and the matcher. One word-code instruction,
* together with the arguments to that instruction, constitute
* an instruction frame (struct rx_inx).
*
* This structure type is padded by hand to a power of 2 because
* in one of the dominant cases, we dispatch by indexing a table
* of instruction frames. If that indexing can be accomplished
* by just a shift of the index, we're happy.
*
* Instructions take at most one argument, but there are two
* slots in an instruction frame that might hold that argument.
* These are called data and data_2. The data slot is only
* used for one instruction (RX_NEXT_CHAR). For all other
* instructions, data should be set to 0.
*
* RX_NEXT_CHAR is the most important instruction by far.
* By reserving the data field for its exclusive use,
* instruction dispatch is sped up in that case. There is
* no need to fetch both the instruction and the data,
* only the data is needed. In other words, a `cycle' begins
* by fetching the field data. If that is non-0, then it must
* be the destination state of a next_char transition, so
* make that value the current state, advance the match position
* by one character, and start a new cycle. On the other hand,
* if data is 0, fetch the instruction and do a more complicated
* dispatch on that.
*/
struct rx_inx
{
void * data;
void * data_2;
void * inx;
void * fnord;
};
#ifndef RX_TAIL_ARRAY
#define RX_TAIL_ARRAY 1
#endif
/* A superstate corresponds to a set of nfa states. Those sets are
* represented by STRUCT RX_SUPERSET. The constructors
* guarantee that only one (shared) structure is created for a given set.
*/
struct rx_superset
{
int refs; /* This is a reference counted structure. */
/* We keep these sets in a cache because (in an unpredictable way),
* the same set is often created again and again. But that is also
* problematic -- compatibility with POSIX and GNU regex requires
* that we not be able to tell when a program discards a particular
* NFA (thus invalidating the supersets created from it).
*
* But when a cache hit appears to occur, we will have in hand the
* nfa for which it may have happened. That is why every nfa is given
* its own sequence number. On a cache hit, the cache is validated
* by comparing the nfa sequence number to this field:
*/
int id;
struct rx_nfa_state * car; /* May or may not be a valid addr. */
struct rx_superset * cdr;
/* If the corresponding superstate exists: */
struct rx_superstate * superstate;
/* There is another bookkeeping problem. It is expensive to
* compute the starting nfa state set for an nfa. So, once computed,
* it is cached in the `struct rx'.
*
* But, the state set can be flushed from the superstate cache.
* When that happens, we can't know if the corresponding `struct rx'
* is still alive or if it has been freed or re-used by the program.
* So, the cached pointer to this set in a struct rx might be invalid
* and we need a way to validate it.
*
* Fortunately, even if this set is flushed from the cache, it is
* not freed. It just goes on the free-list of supersets.
* So we can still examine it.
*
* So to validate a starting set memo, check to see if the
* starts_for field still points back to the struct rx in question,
* and if the ID matches the rx sequence number.
*/
struct rx * starts_for;
/* This is used to link into a hash bucket so these objects can
* be `hash-consed'.
*/
struct rx_hash_item hash_item;
};
#define rx_protect_superset(RX,CON) (++(CON)->refs)
/* The terminology may be confusing (rename this structure?).
* Every character occurs in at most one rx_super_edge per super-state.
* But, that structure might have more than one option, indicating a point
* of non-determinism.
*
* In other words, this structure holds a list of superstate edges
* sharing a common starting state and character label. The edges
* are in the field OPTIONS. All superstate edges sharing the same
* starting state and character are in this list.
*/
struct rx_super_edge
{
struct rx_super_edge *next;
struct rx_inx rx_backtrack_frame;
int cset_size;
rx_Bitset cset;
struct rx_distinct_future *options;
};
/* A superstate is a set of nfa states (RX_SUPERSET) along
* with a transition table. Superstates are built on demand and reclaimed
* without warning. To protect a superstate from this ghastly fate,
* use LOCK_SUPERSTATE.
*/
struct rx_superstate
{
int rx_id; /* c.f. the id field of rx_superset */
int locks; /* protection from reclamation */
/* Within a superstate cache, all the superstates are kept in a big
* queue. The tail of the queue is the state most likely to be
* reclaimed. The *recyclable fields hold the queue position of
* this state.
*/
struct rx_superstate * next_recyclable;
struct rx_superstate * prev_recyclable;
/* The supernfa edges that exist in the cache and that have
* this state as their destination are kept in this list:
*/
struct rx_distinct_future * transition_refs;
/* The list of nfa states corresponding to this superstate: */
struct rx_superset * contents;
/* The list of edges in the cache beginning from this state. */
struct rx_super_edge * edges;
/* A tail of the recyclable queue is marked as semifree. A semifree
* state has no incoming next_char transitions -- any transition
* into a semifree state causes a complex dispatch with the side
* effect of rescuing the state from its semifree state.
*
* An alternative to this might be to make next_char more expensive,
* and to move a state to the head of the recyclable queue whenever
* it is entered. That way, popular states would never be recycled.
*
* But unilaterally making next_char more expensive actually loses.
* So, incoming transitions are only made expensive for states near
* the tail of the recyclable queue. The more cache contention
* there is, the more frequently a state will have to prove itself
* and be moved back to the front of the queue. If there is less
* contention, then popular states just aggregate in the front of
* the queue and stay there.
*/
int is_semifree;
/* This keeps track of the size of the transition table for this
* state. There is a half-hearted attempt to support variable sized
* superstates.
*/
int trans_size;
/* Indexed by characters... */
struct rx_inx transitions[RX_TAIL_ARRAY];
};
/* A list of distinct futures define the edges that leave from a
* given superstate on a given character. c.f. rx_super_edge.
*/
struct rx_distinct_future
{
struct rx_distinct_future * next_same_super_edge[2];
struct rx_distinct_future * next_same_dest;
struct rx_distinct_future * prev_same_dest;
struct rx_superstate * present; /* source state */
struct rx_superstate * future; /* destination state */
struct rx_super_edge * edge;
/* The future_frame holds the instruction that should be executed
* after all the side effects are done, when it is time to complete
* the transition to the next state.
*
* Normally this is a next_char instruction, but it may be a
* cache_miss instruction as well, depending on whether or not
* the superstate is in the cache and semifree.
*
* If this is the only future for a given superstate/char, and
* if there are no side effects to be performed, this frame is
* not used (directly) at all. Instead, its contents are copied
* into the transition table of the starting state of this dist. future.
*/
struct rx_inx future_frame;
struct rx_inx side_effects_frame;
struct rx_se_list * effects;
};
#define rx_lock_superstate(R,S) ((S)->locks++)
#define rx_unlock_superstate(R,S) (--(S)->locks)
/* This page destined for rx.h */
struct rx_blocklist
{
struct rx_blocklist * next;
int bytes;
};
struct rx_freelist
{
struct rx_freelist * next;
};
struct rx_cache;
#ifdef __STDC__
typedef void (*rx_morecore_fn)(struct rx_cache *);
#else
typedef void (*rx_morecore_fn)();
#endif
/* You use this to control the allocation of superstate data
* during matching. Most of it should be initialized to 0.
*
* A MORECORE function is necessary. It should allocate
* a new block of memory or return 0.
* A default that uses malloc is called `rx_morecore'.
*
* The number of SUPERSTATES_ALLOWED indirectly limits how much memory
* the system will try to allocate. The default is 128. Batch style
* applications that are very regexp intensive should use as high a number
* as possible without thrashing.
*
* The LOCAL_CSET_SIZE is the number of characters in a character set.
* It is therefore the number of entries in a superstate transition table.
* Generally, it should be 256. If your character set has 16 bits,
* it is better to translate your regexps into equivalent 8 bit patterns.
*/
struct rx_cache
{
struct rx_hash_rules superset_hash_rules;
/* Objects are allocated by incrementing a pointer that
* scans across rx_blocklists.
*/
struct rx_blocklist * memory;
struct rx_blocklist * memory_pos;
int bytes_left;
char * memory_addr;
rx_morecore_fn morecore;
/* Freelists. */
struct rx_freelist * free_superstates;
struct rx_freelist * free_transition_classes;
struct rx_freelist * free_discernable_futures;
struct rx_freelist * free_supersets;
struct rx_freelist * free_hash;
/* Two sets of superstates -- those that are semifreed, and those
* that are being used.
*/
struct rx_superstate * lru_superstate;
struct rx_superstate * semifree_superstate;
struct rx_superset * empty_superset;
int superstates;
int semifree_superstates;
int hits;
int misses;
int superstates_allowed;
int local_cset_size;
void ** instruction_table;
struct rx_hash superset_table;
};
/* The lowest-level search function supports arbitrarily fragmented
* strings and (optionally) suspendable/resumable searches.
*
* Callers have to provide a few hooks.
*/
#ifndef __GNUC__
#ifdef __STDC__
#define __const__ const
#else
#define __const__
#endif
#endif
/* This holds a matcher position */
struct rx_string_position
{
__const__ unsigned char * pos; /* The current pos. */
__const__ unsigned char * string; /* The current string burst. */
__const__ unsigned char * end; /* First invalid position >= POS. */
int offset; /* Integer address of the current burst. */
int size; /* Current string's size. */
int search_direction; /* 1 or -1 */
int search_end; /* First position to not try. */
};
enum rx_get_burst_return
{
rx_get_burst_continuation,
rx_get_burst_error,
rx_get_burst_ok,
rx_get_burst_no_more
};
/* A call to get burst should make POS valid. It might be invalid
* if the STRING field doesn't point to a burst that actually
* contains POS.
*
* GET_BURST should take a clue from SEARCH_DIRECTION (1 or -1) as to
* whether or not to pad to the left. Padding to the right is always
* appropriate, but need not go past the point indicated by STOP.
*
* If a continuation is returned, then the reentering call to
* a search function will retry the get_burst.
*/
#ifdef __STDC__
typedef enum rx_get_burst_return
(*rx_get_burst_fn) (struct rx_string_position * pos,
void * app_closure,
int stop);
#else
typedef enum rx_get_burst_return (*rx_get_burst_fn) ();
#endif
enum rx_back_check_return
{
rx_back_check_continuation,
rx_back_check_error,
rx_back_check_pass,
rx_back_check_fail
};
/* Back_check should advance the position it is passed
* over rparen - lparen characters and return pass iff
* the characters starting at POS match those indexed
* by [LPAREN..RPAREN].
*
* If a continuation is returned, then the reentering call to
* a search function will retry the back_check.
*/
#ifdef __STDC__
typedef enum rx_back_check_return
(*rx_back_check_fn) (struct rx_string_position * pos,
int lparen,
int rparen,
unsigned char * translate,
void * app_closure,
int stop);
#else
typedef enum rx_back_check_return (*rx_back_check_fn) ();
#endif
/* A call to fetch_char should return the character at POS or POS + 1.
* Returning continuations here isn't supported. OFFSET is either 0 or 1
* and indicates which characters is desired.
*/
#ifdef __STDC__
typedef int (*rx_fetch_char_fn) (struct rx_string_position * pos,
int offset,
void * app_closure,
int stop);
#else
typedef int (*rx_fetch_char_fn) ();
#endif
enum rx_search_return
{
rx_search_continuation = -4,
rx_search_error = -3,
rx_search_soft_fail = -2, /* failed by running out of string */
rx_search_fail = -1 /* failed only by reaching failure states */
/* return values >= 0 indicate the position of a successful match */
};
/* regex.h
*
* The remaining declarations replace regex.h.
*/
/* This is an array of error messages corresponding to the error codes.
*/
extern __const__ char *re_error_msg[];
/* If any error codes are removed, changed, or added, update the
`re_error_msg' table in regex.c. */
typedef enum
{
REG_NOERROR = 0, /* Success. */
REG_NOMATCH, /* Didn't find a match (for regexec). */
/* POSIX regcomp return error codes. (In the order listed in the
standard.) */
REG_BADPAT, /* Invalid pattern. */
REG_ECOLLATE, /* Not implemented. */
REG_ECTYPE, /* Invalid character class name. */
REG_EESCAPE, /* Trailing backslash. */
REG_ESUBREG, /* Invalid back reference. */
REG_EBRACK, /* Unmatched left bracket. */
REG_EPAREN, /* Parenthesis imbalance. */
REG_EBRACE, /* Unmatched \{. */
REG_BADBR, /* Invalid contents of \{\}. */
REG_ERANGE, /* Invalid range end. */
REG_ESPACE, /* Ran out of memory. */
REG_BADRPT, /* No preceding re for repetition op. */
/* Error codes we've added. */
REG_EEND, /* Premature end. */
REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */
} reg_errcode_t;
/* The regex.c support, as a client of rx, defines a set of possible
* side effects that can be added to the edge lables of nfa edges.
* Here is the list of sidef effects in use.
*/
enum re_side_effects
{
#define RX_WANT_SE_DEFS 1
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#define RX_DEF_SE(IDEM, NAME, VALUE) NAME VALUE,
#define RX_DEF_CPLX_SE(IDEM, NAME, VALUE) NAME VALUE,
#include "rx.h"
#undef RX_DEF_SE
#undef RX_DEF_CPLX_SE
#undef RX_WANT_SE_DEFS
re_floogle_flap = 65533
};
/* These hold paramaters for the kinds of side effects that are possible
* in the supported pattern languages. These include things like the
* numeric bounds of {} operators and the index of paren registers for
* subexpression measurement or backreferencing.
*/
struct re_se_params
{
enum re_side_effects se;
int op1;
int op2;
};
typedef unsigned reg_syntax_t;
struct re_pattern_buffer
{
struct rx rx;
reg_syntax_t syntax; /* See below for syntax bit definitions. */
unsigned int no_sub:1; /* If set, don't return register offsets. */
unsigned int not_bol:1; /* If set, the anchors ('^' and '$') don't */
unsigned int not_eol:1; /* match at the ends of the string. */
unsigned int newline_anchor:1;/* If true, an anchor at a newline matches.*/
unsigned int least_subs:1; /* If set, and returning registers, return
* as few values as possible. Only
* backreferenced groups and group 0 (the whole
* match) will be returned.
*/
/* If true, this says that the matcher should keep registers on its
* backtracking stack. For many patterns, we can easily determine that
* this isn't necessary.
*/
unsigned int match_regs_on_stack:1;
unsigned int search_regs_on_stack:1;
/* is_anchored and begbuf_only are filled in by rx_compile. */
unsigned int is_anchored:1; /* Anchorded by ^? */
unsigned int begbuf_only:1; /* Anchored to char position 0? */
/* If REGS_UNALLOCATED, allocate space in the `regs' structure
* for `max (RE_NREGS, re_nsub + 1)' groups.
* If REGS_REALLOCATE, reallocate space if necessary.
* If REGS_FIXED, use what's there.
*/
#define REGS_UNALLOCATED 0
#define REGS_REALLOCATE 1
#define REGS_FIXED 2
unsigned int regs_allocated:2;
/* Either a translate table to apply to all characters before
* comparing them, or zero for no translation. The translation
* is applied to a pattern when it is compiled and to a string
* when it is matched.
*/
unsigned char * translate;
/* If this is a valid pointer, it tells rx not to store the extents of
* certain subexpressions (those corresponding to non-zero entries).
* Passing 0x1 is the same as passing an array of all ones. Passing 0x0
* is the same as passing an array of all zeros.
* The array should contain as many entries as their are subexps in the
* regexp.
*
* For POSIX compatability, when using regcomp and regexec this field
* is zeroed and ignored.
*/
char * syntax_parens;
/* Number of subexpressions found by the compiler. */
size_t re_nsub;
void * buffer; /* Malloced memory for the nfa. */
unsigned long allocated; /* Size of that memory. */
/* Pointer to a fastmap, if any, otherwise zero. re_search uses
* the fastmap, if there is one, to skip over impossible
* starting points for matches. */
char *fastmap;
unsigned int fastmap_accurate:1; /* These three are internal. */
unsigned int can_match_empty:1;
struct rx_nfa_state * start; /* The nfa starting state. */
/* This is the list of iterator bounds for {lo,hi} constructs.
* The memory pointed to is part of the rx->buffer.
*/
struct re_se_params *se_params;
/* This is a bitset representation of the fastmap.
* This is a true fastmap that already takes the translate
* table into account.
*/
rx_Bitset fastset;
};
/* Type for byte offsets within the string. POSIX mandates this. */
typedef int regoff_t;
/* This is the structure we store register match data in. See
regex.texinfo for a full description of what registers match. */
struct re_registers
{
unsigned num_regs;
regoff_t *start;
regoff_t *end;
};
typedef struct re_pattern_buffer regex_t;
/* POSIX specification for registers. Aside from the different names than
`re_registers', POSIX uses an array of structures, instead of a
structure of arrays. */
typedef struct
{
regoff_t rm_so; /* Byte offset from string's start to substring's start. */
regoff_t rm_eo; /* Byte offset from string's start to substring's end. */
} regmatch_t;
/* The following bits are used to determine the regexp syntax we
recognize. The set/not-set meanings are chosen so that Emacs syntax
remains the value 0. The bits are given in alphabetical order, and
the definitions shifted by one from the previous bit; thus, when we
add or remove a bit, only one other definition need change. */
/* If this bit is not set, then \ inside a bracket expression is literal.
If set, then such a \ quotes the following character. */
#define RE_BACKSLASH_ESCAPE_IN_LISTS (1)
/* If this bit is not set, then + and ? are operators, and \+ and \? are
literals.
If set, then \+ and \? are operators and + and ? are literals. */
#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
/* If this bit is set, then character classes are supported. They are:
[:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:],
[:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
If not set, then character classes are not supported. */
#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
/* If this bit is set, then ^ and $ are always anchors (outside bracket
expressions, of course).
If this bit is not set, then it depends:
^ is an anchor if it is at the beginning of a regular
expression or after an open-group or an alternation operator;
$ is an anchor if it is at the end of a regular expression, or
before a close-group or an alternation operator.
This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because
POSIX draft 11.2 says that * etc. in leading positions is undefined.
We already implemented a previous draft which made those constructs
invalid, though, so we haven't changed the code back. */
#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
/* If this bit is set, then special characters are always special
regardless of where they are in the pattern.
If this bit is not set, then special characters are special only in
some contexts; otherwise they are ordinary. Specifically,
* + ? and intervals are only special when not after the beginning,
open-group, or alternation operator. */
#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
/* If this bit is set, then *, +, ?, and { cannot be first in an re or
immediately after an alternation or begin-group operator. */
#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
/* If this bit is set, then . matches newline.
If not set, then it doesn't. */
#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
/* If this bit is set, then . doesn't match NUL.
If not set, then it does. */
#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
/* If this bit is set, nonmatching lists [^...] do not match newline.
If not set, they do. */
#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
/* If this bit is set, either \{...\} or {...} defines an
interval, depending on RE_NO_BK_BRACES.
If not set, \{, \}, {, and } are literals. */
#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
/* If this bit is set, +, ? and | aren't recognized as operators.
If not set, they are. */
#define RE_LIMITED_OPS (RE_INTERVALS << 1)
/* If this bit is set, newline is an alternation operator.
If not set, newline is literal. */
#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
/* If this bit is set, then `{...}' defines an interval, and \{ and \}
are literals.
If not set, then `\{...\}' defines an interval. */
#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
/* If this bit is set, (...) defines a group, and \( and \) are literals.
If not set, \(...\) defines a group, and ( and ) are literals. */
#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
/* If this bit is set, then \<digit> matches <digit>.
If not set, then \<digit> is a back-reference. */
#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
/* If this bit is set, then | is an alternation operator, and \| is literal.
If not set, then \| is an alternation operator, and | is literal. */
#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
/* If this bit is set, then an ending range point collating higher
than the starting range point, as in [z-a], is invalid.
If not set, then when ending range point collates higher than the
starting range point, the range is ignored. */
#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
/* If this bit is set, then an unmatched ) is ordinary.
If not set, then an unmatched ) is invalid. */
#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
/* This global variable defines the particular regexp syntax to use (for
some interfaces). When a regexp is compiled, the syntax used is
stored in the pattern buffer, so changing this does not affect
already-compiled regexps. */
extern reg_syntax_t re_syntax_options;
/* Define combinations of the above bits for the standard possibilities.
(The [[[ comments delimit what gets put into the Texinfo file, so
don't delete them!) */
/* [[[begin syntaxes]]] */
#define RE_SYNTAX_EMACS 0
#define RE_SYNTAX_AWK \
(RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \
| RE_NO_BK_PARENS | RE_NO_BK_REFS \
| RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \
| RE_UNMATCHED_RIGHT_PAREN_ORD)
#define RE_SYNTAX_POSIX_AWK \
(RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS)
#define RE_SYNTAX_GREP \
(RE_BK_PLUS_QM | RE_CHAR_CLASSES \
| RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \
| RE_NEWLINE_ALT)
#define RE_SYNTAX_EGREP \
(RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \
| RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \
| RE_NEWLINE_ALT | RE_NO_BK_PARENS \
| RE_NO_BK_VBAR)
#define RE_SYNTAX_POSIX_EGREP \
(RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES)
#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC
/* Syntax bits common to both basic and extended POSIX regex syntax. */
#define _RE_SYNTAX_POSIX_COMMON \
(RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \
| RE_INTERVALS | RE_NO_EMPTY_RANGES)
#define RE_SYNTAX_POSIX_BASIC \
(_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM)
/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this
isn't minimal, since other operators, such as \`, aren't disabled. */
#define RE_SYNTAX_POSIX_MINIMAL_BASIC \
(_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
#define RE_SYNTAX_POSIX_EXTENDED \
(_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
| RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \
| RE_NO_BK_PARENS | RE_NO_BK_VBAR \
| RE_UNMATCHED_RIGHT_PAREN_ORD)
/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS
replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */
#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \
(_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
| RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \
| RE_NO_BK_PARENS | RE_NO_BK_REFS \
| RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD)
/* [[[end syntaxes]]] */
/* Maximum number of duplicates an interval can allow. Some systems
(erroneously) define this in other header files, but we want our
value, so remove any previous define. */
#ifdef RE_DUP_MAX
#undef RE_DUP_MAX
#endif
#define RE_DUP_MAX ((1 << 15) - 1)
/* POSIX `cflags' bits (i.e., information for `regcomp'). */
/* If this bit is set, then use extended regular expression syntax.
If not set, then use basic regular expression syntax. */
#define REG_EXTENDED 1
/* If this bit is set, then ignore case when matching.
If not set, then case is significant. */
#define REG_ICASE (REG_EXTENDED << 1)
/* If this bit is set, then anchors do not match at newline
characters in the string.
If not set, then anchors do match at newlines. */
#define REG_NEWLINE (REG_ICASE << 1)
/* If this bit is set, then report only success or fail in regexec.
If not set, then returns differ between not matching and errors. */
#define REG_NOSUB (REG_NEWLINE << 1)
/* POSIX `eflags' bits (i.e., information for regexec). */
/* If this bit is set, then the beginning-of-line operator doesn't match
the beginning of the string (presumably because it's not the
beginning of a line).
If not set, then the beginning-of-line operator does match the
beginning of the string. */
#define REG_NOTBOL 1
/* Like REG_NOTBOL, except for the end-of-line. */
#define REG_NOTEOL (1 << 1)
/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
* `re_match_2' returns information about at least this many registers
* the first time a `regs' structure is passed.
*
* Also, this is the greatest number of backreferenced subexpressions
* allowed in a pattern being matched without caller-supplied registers.
*/
#ifndef RE_NREGS
#define RE_NREGS 30
#endif
extern int rx_cache_bound;
extern const char *rx_version_string;
#ifdef RX_WANT_RX_DEFS
/* This is decls to the interesting subsystems and lower layers
* of rx. Everything which doesn't have a public counterpart in
* regex.c is declared here.
*/
#ifdef __STDC__
typedef void (*rx_hash_freefn) (struct rx_hash_item * it);
#else /* ndef __STDC__ */
typedef void (*rx_hash_freefn) ();
#endif /* ndef __STDC__ */
#ifdef __STDC__
RX_DECL int rx_bitset_is_equal (int size, rx_Bitset a, rx_Bitset b);
RX_DECL int rx_bitset_is_subset (int size, rx_Bitset a, rx_Bitset b);
RX_DECL int rx_bitset_empty (int size, rx_Bitset set);
RX_DECL void rx_bitset_null (int size, rx_Bitset b);
RX_DECL void rx_bitset_universe (int size, rx_Bitset b);
RX_DECL void rx_bitset_complement (int size, rx_Bitset b);
RX_DECL void rx_bitset_assign (int size, rx_Bitset a, rx_Bitset b);
RX_DECL void rx_bitset_union (int size, rx_Bitset a, rx_Bitset b);
RX_DECL void rx_bitset_intersection (int size,
rx_Bitset a, rx_Bitset b);
RX_DECL void rx_bitset_difference (int size, rx_Bitset a, rx_Bitset b);
RX_DECL void rx_bitset_revdifference (int size,
rx_Bitset a, rx_Bitset b);
RX_DECL void rx_bitset_xor (int size, rx_Bitset a, rx_Bitset b);
RX_DECL unsigned long rx_bitset_hash (int size, rx_Bitset b);
RX_DECL struct rx_hash_item * rx_hash_find (struct rx_hash * table,
unsigned long hash,
void * value,
struct rx_hash_rules * rules);
RX_DECL struct rx_hash_item * rx_hash_store (struct rx_hash * table,
unsigned long hash,
void * value,
struct rx_hash_rules * rules);
RX_DECL void rx_hash_free (struct rx_hash_item * it, struct rx_hash_rules * rules);
RX_DECL void rx_free_hash_table (struct rx_hash * tab, rx_hash_freefn freefn,
struct rx_hash_rules * rules);
RX_DECL rx_Bitset rx_cset (struct rx *rx);
RX_DECL rx_Bitset rx_copy_cset (struct rx *rx, rx_Bitset a);
RX_DECL void rx_free_cset (struct rx * rx, rx_Bitset c);
RX_DECL struct rexp_node * rexp_node (struct rx *rx,
enum rexp_node_type type);
RX_DECL struct rexp_node * rx_mk_r_cset (struct rx * rx,
rx_Bitset b);
RX_DECL struct rexp_node * rx_mk_r_concat (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b);
RX_DECL struct rexp_node * rx_mk_r_alternate (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b);
RX_DECL struct rexp_node * rx_mk_r_opt (struct rx * rx,
struct rexp_node * a);
RX_DECL struct rexp_node * rx_mk_r_star (struct rx * rx,
struct rexp_node * a);
RX_DECL struct rexp_node * rx_mk_r_2phase_star (struct rx * rx,
struct rexp_node * a,
struct rexp_node * b);
RX_DECL struct rexp_node * rx_mk_r_side_effect (struct rx * rx,
rx_side_effect a);
RX_DECL struct rexp_node * rx_mk_r_data (struct rx * rx,
void * a);
RX_DECL void rx_free_rexp (struct rx * rx, struct rexp_node * node);
RX_DECL struct rexp_node * rx_copy_rexp (struct rx *rx,
struct rexp_node *node);
RX_DECL struct rx_nfa_state * rx_nfa_state (struct rx *rx);
RX_DECL void rx_free_nfa_state (struct rx_nfa_state * n);
RX_DECL struct rx_nfa_state * rx_id_to_nfa_state (struct rx * rx,
int id);
RX_DECL struct rx_nfa_edge * rx_nfa_edge (struct rx *rx,
enum rx_nfa_etype type,
struct rx_nfa_state *start,
struct rx_nfa_state *dest);
RX_DECL void rx_free_nfa_edge (struct rx_nfa_edge * e);
RX_DECL void rx_free_nfa (struct rx *rx);
RX_DECL int rx_build_nfa (struct rx *rx,
struct rexp_node *rexp,
struct rx_nfa_state **start,
struct rx_nfa_state **end);
RX_DECL void rx_name_nfa_states (struct rx *rx);
RX_DECL int rx_eclose_nfa (struct rx *rx);
RX_DECL void rx_delete_epsilon_transitions (struct rx *rx);
RX_DECL int rx_compactify_nfa (struct rx *rx,
void **mem, unsigned long *size);
RX_DECL void rx_release_superset (struct rx *rx,
struct rx_superset *set);
RX_DECL struct rx_superset * rx_superset_cons (struct rx * rx,
struct rx_nfa_state *car, struct rx_superset *cdr);
RX_DECL struct rx_superset * rx_superstate_eclosure_union
(struct rx * rx, struct rx_superset *set, struct rx_nfa_state_set *ecl);
RX_DECL struct rx_superstate * rx_superstate (struct rx *rx,
struct rx_superset *set);
RX_DECL struct rx_inx * rx_handle_cache_miss
(struct rx *rx, struct rx_superstate *super, unsigned char chr, void *data);
RX_DECL reg_errcode_t rx_compile (__const__ char *pattern, int size,
reg_syntax_t syntax,
struct re_pattern_buffer * rxb);
RX_DECL void rx_blow_up_fastmap (struct re_pattern_buffer * rxb);
#else /* STDC */
RX_DECL int rx_bitset_is_equal ();
RX_DECL int rx_bitset_is_subset ();
RX_DECL int rx_bitset_empty ();
RX_DECL void rx_bitset_null ();
RX_DECL void rx_bitset_universe ();
RX_DECL void rx_bitset_complement ();
RX_DECL void rx_bitset_assign ();
RX_DECL void rx_bitset_union ();
RX_DECL void rx_bitset_intersection ();
RX_DECL void rx_bitset_difference ();
RX_DECL void rx_bitset_revdifference ();
RX_DECL void rx_bitset_xor ();
RX_DECL unsigned long rx_bitset_hash ();
RX_DECL struct rx_hash_item * rx_hash_find ();
RX_DECL struct rx_hash_item * rx_hash_store ();
RX_DECL void rx_hash_free ();
RX_DECL void rx_free_hash_table ();
RX_DECL rx_Bitset rx_cset ();
RX_DECL rx_Bitset rx_copy_cset ();
RX_DECL void rx_free_cset ();
RX_DECL struct rexp_node * rexp_node ();
RX_DECL struct rexp_node * rx_mk_r_cset ();
RX_DECL struct rexp_node * rx_mk_r_concat ();
RX_DECL struct rexp_node * rx_mk_r_alternate ();
RX_DECL struct rexp_node * rx_mk_r_opt ();
RX_DECL struct rexp_node * rx_mk_r_star ();
RX_DECL struct rexp_node * rx_mk_r_2phase_star ();
RX_DECL struct rexp_node * rx_mk_r_side_effect ();
RX_DECL struct rexp_node * rx_mk_r_data ();
RX_DECL void rx_free_rexp ();
RX_DECL struct rexp_node * rx_copy_rexp ();
RX_DECL struct rx_nfa_state * rx_nfa_state ();
RX_DECL void rx_free_nfa_state ();
RX_DECL struct rx_nfa_state * rx_id_to_nfa_state ();
RX_DECL struct rx_nfa_edge * rx_nfa_edge ();
RX_DECL void rx_free_nfa_edge ();
RX_DECL void rx_free_nfa ();
RX_DECL int rx_build_nfa ();
RX_DECL void rx_name_nfa_states ();
RX_DECL int rx_eclose_nfa ();
RX_DECL void rx_delete_epsilon_transitions ();
RX_DECL int rx_compactify_nfa ();
RX_DECL void rx_release_superset ();
RX_DECL struct rx_superset * rx_superset_cons ();
RX_DECL struct rx_superset * rx_superstate_eclosure_union ();
RX_DECL struct rx_superstate * rx_superstate ();
RX_DECL struct rx_inx * rx_handle_cache_miss ();
RX_DECL reg_errcode_t rx_compile ();
RX_DECL void rx_blow_up_fastmap ();
#endif /* STDC */
#endif /* RX_WANT_RX_DEFS */
#ifdef __STDC__
extern int re_search_2 (struct re_pattern_buffer *rxb,
__const__ char * string1, int size1,
__const__ char * string2, int size2,
int startpos, int range,
struct re_registers *regs,
int stop);
extern int re_search (struct re_pattern_buffer * rxb, __const__ char *string,
int size, int startpos, int range,
struct re_registers *regs);
extern int re_match_2 (struct re_pattern_buffer * rxb,
__const__ char * string1, int size1,
__const__ char * string2, int size2,
int pos, struct re_registers *regs, int stop);
extern int re_match (struct re_pattern_buffer * rxb,
__const__ char * string,
int size, int pos,
struct re_registers *regs);
extern reg_syntax_t re_set_syntax (reg_syntax_t syntax);
extern void re_set_registers (struct re_pattern_buffer *bufp,
struct re_registers *regs,
unsigned num_regs,
regoff_t * starts, regoff_t * ends);
extern __const__ char * re_compile_pattern (__const__ char *pattern,
int length,
struct re_pattern_buffer * rxb);
extern int re_compile_fastmap (struct re_pattern_buffer * rxb);
extern char * re_comp (__const__ char *s);
extern int re_exec (__const__ char *s);
extern int regcomp (regex_t * preg, __const__ char * pattern, int cflags);
extern int regexec (__const__ regex_t *preg, __const__ char *string,
size_t nmatch, regmatch_t pmatch[],
int eflags);
extern size_t regerror (int errcode, __const__ regex_t *preg,
char *errbuf, size_t errbuf_size);
extern void regfree (regex_t *preg);
#else /* STDC */
extern int re_search_2 ();
extern int re_search ();
extern int re_match_2 ();
extern int re_match ();
extern reg_syntax_t re_set_syntax ();
extern void re_set_registers ();
extern __const__ char * re_compile_pattern ();
extern int re_compile_fastmap ();
extern char * re_comp ();
extern int re_exec ();
extern int regcomp ();
extern int regexec ();
extern size_t regerror ();
extern void regfree ();
#endif /* STDC */
#ifdef RX_WANT_RX_DEFS
struct rx_counter_frame
{
int tag;
int val;
struct rx_counter_frame * inherited_from; /* If this is a copy. */
struct rx_counter_frame * cdr;
};
struct rx_backtrack_frame
{
char * counter_stack_sp;
/* A frame is used to save the matchers state when it crosses a
* backtracking point. The `stk_' fields correspond to variables
* in re_search_2 (just strip off thes `stk_'). They are documented
* tere.
*/
struct rx_superstate * stk_super;
unsigned int stk_c;
struct rx_string_position stk_test_pos;
int stk_last_l;
int stk_last_r;
int stk_test_ret;
/* This is the list of options left to explore at the backtrack
* point for which this frame was created.
*/
struct rx_distinct_future * df;
struct rx_distinct_future * first_df;
#ifdef RX_DEBUG
int stk_line_no;
#endif
};
struct rx_stack_chunk
{
struct rx_stack_chunk * next_chunk;
int bytes_left;
char * sp;
};
enum rx_outer_entry
{
rx_outer_start,
rx_outer_fastmap,
rx_outer_test,
rx_outer_restore_pos
};
enum rx_fastmap_return
{
rx_fastmap_continuation,
rx_fastmap_error,
rx_fastmap_ok,
rx_fastmap_fail
};
enum rx_fastmap_entry
{
rx_fastmap_start,
rx_fastmap_string_break
};
enum rx_test_return
{
rx_test_continuation,
rx_test_error,
rx_test_fail,
rx_test_ok
};
enum rx_test_internal_return
{
rx_test_internal_error,
rx_test_found_first,
rx_test_line_finished
};
enum rx_test_match_entry
{
rx_test_start,
rx_test_cache_hit_loop,
rx_test_backreference_check,
rx_test_backtrack_return
};
struct rx_search_state
{
/* Two groups of registers are kept. The group with the register state
* of the current test match, and the group that holds the state at the end
* of the best known match, if any.
*
* For some patterns, there may also be registers saved on the stack.
*/
unsigned num_regs; /* Includes an element for register zero. */
regoff_t * lparen; /* scratch space for register returns */
regoff_t * rparen;
regoff_t * best_lpspace; /* in case the user doesn't want these */
regoff_t * best_rpspace; /* values, we still need space to store
* them. Normally, this memoryis unused
* and the space pointed to by REGS is
* used instead.
*/
int last_l; /* Highest index of a valid lparen. */
int last_r; /* It's dual. */
int * best_lparen; /* This contains the best known register */
int * best_rparen; /* assignments.
* This may point to the same mem as
* best_lpspace, or it might point to memory
* passed by the caller.
*/
int best_last_l; /* best_last_l:best_lparen::last_l:lparen */
int best_last_r;
unsigned char * translate;
struct rx_string_position outer_pos;
struct rx_superstate * start_super;
int nfa_choice;
int first_found; /* If true, return after finding any match. */
int ret_val;
/* For continuations... */
enum rx_outer_entry outer_search_resume_pt;
struct re_pattern_buffer * saved_rxb;
int saved_startpos;
int saved_range;
int saved_stop;
int saved_total_size;
rx_get_burst_fn saved_get_burst;
rx_back_check_fn saved_back_check;
struct re_registers * saved_regs;
/**
** state for fastmap
**/
char * fastmap;
int fastmap_chr;
int fastmap_val;
/* for continuations in the fastmap procedure: */
enum rx_fastmap_entry fastmap_resume_pt;
/**
** state for test_match
**/
/* The current superNFA position of the matcher. */
struct rx_superstate * super;
/* The matcher interprets a series of instruction frames.
* This is the `instruction counter' for the interpretation.
*/
struct rx_inx * ifr;
/* We insert a ghost character in the string to prime
* the nfa. test_pos.pos, test_pos.str_half, and test_pos.end_half
* keep track of the test-match position and string-half.
*/
unsigned char c;
/* Position within the string. */
struct rx_string_position test_pos;
struct rx_stack_chunk * counter_stack;
struct rx_stack_chunk * backtrack_stack;
int backtrack_frame_bytes;
int chunk_bytes;
struct rx_stack_chunk * free_chunks;
/* To return from this function, set test_ret and
* `goto test_do_return'.
*
* Possible return values are:
* 1 --- end of string while the superNFA is still going
* 0 --- internal error (out of memory)
* -1 --- search completed by reaching the superNFA fail state
* -2 --- a match was found, maybe not the longest.
*
* When the search is complete (-1), best_last_r indicates whether
* a match was found.
*
* -2 is return only if search_state.first_found is non-zero.
*
* if search_state.first_found is non-zero, a return of -1 indicates no match,
* otherwise, best_last_r has to be checked.
*/
int test_ret;
int could_have_continued;
#ifdef RX_DEBUG
int backtrack_depth;
/* There is a search tree with every node as set of deterministic
* transitions in the super nfa. For every branch of a
* backtrack point is an edge in the tree.
* This counts up a pre-order of nodes in that tree.
* It's saved on the search stack and printed when debugging.
*/
int line_no;
int lines_found;
#endif
/* For continuations within the match tester */
enum rx_test_match_entry test_match_resume_pt;
struct rx_inx * saved_next_tr_table;
struct rx_inx * saved_this_tr_table;
int saved_reg;
struct rx_backtrack_frame * saved_bf;
};
extern char rx_slowmap[];
extern unsigned char rx_id_translation[];
static __inline__ void
init_fastmap (rxb, search_state)
struct re_pattern_buffer * rxb;
struct rx_search_state * search_state;
{
search_state->fastmap = (rxb->fastmap
? (char *)rxb->fastmap
: (char *)rx_slowmap);
/* Update the fastmap now if not correct already.
* When the regexp was compiled, the fastmap was computed
* and stored in a bitset. This expands the bitset into a
* character array containing 1s and 0s.
*/
if ((search_state->fastmap == rxb->fastmap) && !rxb->fastmap_accurate)
rx_blow_up_fastmap (rxb);
search_state->fastmap_chr = -1;
search_state->fastmap_val = 0;
search_state->fastmap_resume_pt = rx_fastmap_start;
}
static __inline__ void
uninit_fastmap (rxb, search_state)
struct re_pattern_buffer * rxb;
struct rx_search_state * search_state;
{
/* Unset the fastmap sentinel */
if (search_state->fastmap_chr >= 0)
search_state->fastmap[search_state->fastmap_chr]
= search_state->fastmap_val;
}
static __inline__ int
fastmap_search (rxb, stop, get_burst, app_closure, search_state)
struct re_pattern_buffer * rxb;
int stop;
rx_get_burst_fn get_burst;
void * app_closure;
struct rx_search_state * search_state;
{
enum rx_fastmap_entry pc;
if (0)
{
return_continuation:
search_state->fastmap_resume_pt = pc;
return rx_fastmap_continuation;
}
pc = search_state->fastmap_resume_pt;
switch (pc)
{
default:
return rx_fastmap_error;
case rx_fastmap_start:
init_fastmap_sentinal:
/* For the sake of fast fastmapping, set a sentinal in the fastmap.
* This sentinal will trap the fastmap loop when it reaches the last
* valid character in a string half.
*
* This must be reset when the fastmap/search loop crosses a string
* boundry, and before returning to the caller. So sometimes,
* the fastmap loop is restarted with `continue', othertimes by
* `goto init_fastmap_sentinal'.
*/
if (search_state->outer_pos.size)
{
search_state->fastmap_chr = ((search_state->outer_pos.search_direction == 1)
? *(search_state->outer_pos.end - 1)
: *search_state->outer_pos.string);
search_state->fastmap_val
= search_state->fastmap[search_state->fastmap_chr];
search_state->fastmap[search_state->fastmap_chr] = 1;
}
else
{
search_state->fastmap_chr = -1;
search_state->fastmap_val = 0;
}
if (search_state->outer_pos.pos >= search_state->outer_pos.end)
goto fastmap_hit_bound;
else
{
if (search_state->outer_pos.search_direction == 1)
{
if (search_state->fastmap_val)
{
for (;;)
{
while (!search_state->fastmap[*search_state->outer_pos.pos])
++search_state->outer_pos.pos;
return rx_fastmap_ok;
}
}
else
{
for (;;)
{
while (!search_state->fastmap[*search_state->outer_pos.pos])
++search_state->outer_pos.pos;
if (*search_state->outer_pos.pos != search_state->fastmap_chr)
return rx_fastmap_ok;
else
{
++search_state->outer_pos.pos;
if (search_state->outer_pos.pos == search_state->outer_pos.end)
goto fastmap_hit_bound;
}
}
}
}
else
{
__const__ unsigned char * bound;
bound = search_state->outer_pos.string - 1;
if (search_state->fastmap_val)
{
for (;;)
{
while (!search_state->fastmap[*search_state->outer_pos.pos])
--search_state->outer_pos.pos;
return rx_fastmap_ok;
}
}
else
{
for (;;)
{
while (!search_state->fastmap[*search_state->outer_pos.pos])
--search_state->outer_pos.pos;
if ((*search_state->outer_pos.pos != search_state->fastmap_chr) || search_state->fastmap_val)
return rx_fastmap_ok;
else
{
--search_state->outer_pos.pos;
if (search_state->outer_pos.pos == bound)
goto fastmap_hit_bound;
}
}
}
}
}
case rx_fastmap_string_break:
fastmap_hit_bound:
{
/* If we hit a bound, it may be time to fetch another burst
* of string, or it may be time to return a continuation to
* the caller, or it might be time to fail.
*/
int burst_state;
burst_state = get_burst (&search_state->outer_pos, app_closure, stop);
switch (burst_state)
{
default:
case rx_get_burst_error:
return rx_fastmap_error;
case rx_get_burst_continuation:
{
pc = rx_fastmap_string_break;
goto return_continuation;
}
case rx_get_burst_ok:
goto init_fastmap_sentinal;
case rx_get_burst_no_more:
/* ...not a string split, simply no more string.
*
* When searching backward, running out of string
* is reason to quit.
*
* When searching forward, we allow the possibility
* of an (empty) match after the last character in the
* virtual string. So, fall through to the matcher
*/
return ( (search_state->outer_pos.search_direction == 1)
? rx_fastmap_ok
: rx_fastmap_fail);
}
}
}
}
#ifdef emacs
/* The `emacs' switch turns on certain matching commands
* that make sense only in Emacs.
*/
#include "config.h"
#include "lisp.h"
#include "buffer.h"
#include "syntax.h"
#endif /* emacs */
/* Setting RX_MEMDBUG is useful if you have dbmalloc. Maybe with similar
* packages too.
*/
#ifdef RX_MEMDBUG
#include <malloc.h>
#endif /* RX_RX_MEMDBUG */
/* We used to test for `BSTRING' here, but only GCC and Emacs define
* `BSTRING', as far as I know, and neither of them use this code.
*/
#if HAVE_STRING_H || STDC_HEADERS
#include <string.h>
#ifndef bcmp
#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
#endif
#ifndef bcopy
#define bcopy(s, d, n) memcpy ((d), (s), (n))
#endif
#ifndef bzero
#define bzero(s, n) memset ((s), 0, (n))
#endif
#else /* HAVE_STRING_H || STDC_HEADERS */
#include <strings.h>
#endif /* not (HAVE_STRING_H || STDC_HEADERS) */
#ifdef STDC_HEADERS
#include <stdlib.h>
#else /* not STDC_HEADERS */
char *malloc ();
char *realloc ();
#endif /* not STDC_HEADERS */
/* How many characters in the character set. */
#define CHAR_SET_SIZE (1 << CHARBITS)
#ifndef emacs
/* Define the syntax basics for \<, \>, etc.
* This must be nonzero for the wordchar and notwordchar pattern
* commands in re_match_2.
*/
#ifndef Sword
#define Sword 1
#endif
#define SYNTAX(c) re_syntax_table[c]
RX_DECL char re_syntax_table[CHAR_SET_SIZE];
#endif /* not emacs */
/* Test if at very beginning or at very end of the virtual concatenation
* of `string1' and `string2'. If only one string, it's `string2'.
*/
#define AT_STRINGS_BEG() \
( -1 \
== ((search_state.test_pos.pos - search_state.test_pos.string) \
+ search_state.test_pos.offset))
#define AT_STRINGS_END() \
( (total_size - 1) \
== ((search_state.test_pos.pos - search_state.test_pos.string) \
+ search_state.test_pos.offset))
/* Test if POS + 1 points to a character which is word-constituent. We have
* two special cases to check for: if past the end of string1, look at
* the first character in string2; and if before the beginning of
* string2, look at the last character in string1.
*
* Assumes `string1' exists, so use in conjunction with AT_STRINGS_BEG ().
*/
#define LETTER_P(POS,OFF) \
( SYNTAX (fetch_char(POS, OFF, app_closure, stop)) \
== Sword)
/* Test if the character at D and the one after D differ with respect
* to being word-constituent.
*/
#define AT_WORD_BOUNDARY(d) \
(AT_STRINGS_BEG () || AT_STRINGS_END () || LETTER_P (d,0) != LETTER_P (d, 1))
#ifdef RX_SUPPORT_CONTINUATIONS
#define RX_STACK_ALLOC(BYTES) malloc(BYTES)
#define RX_STACK_FREE(MEM) free(MEM)
#else
#define RX_STACK_ALLOC(BYTES) alloca(BYTES)
#define RX_STACK_FREE(MEM) \
((struct rx_stack_chunk *)MEM)->next_chunk = search_state.free_chunks; \
search_state.free_chunks = ((struct rx_stack_chunk *)MEM);
#endif
#define PUSH(CHUNK_VAR,BYTES) \
if (!CHUNK_VAR || (CHUNK_VAR->bytes_left < (BYTES))) \
{ \
struct rx_stack_chunk * new_chunk; \
if (search_state.free_chunks) \
{ \
new_chunk = search_state.free_chunks; \
search_state.free_chunks = search_state.free_chunks->next_chunk; \
} \
else \
{ \
new_chunk = (struct rx_stack_chunk *)RX_STACK_ALLOC(search_state.chunk_bytes); \
if (!new_chunk) \
{ \
search_state.ret_val = 0; \
goto test_do_return; \
} \
} \
new_chunk->sp = (char *)new_chunk + sizeof (struct rx_stack_chunk); \
new_chunk->bytes_left = (search_state.chunk_bytes \
- (BYTES) \
- sizeof (struct rx_stack_chunk)); \
new_chunk->next_chunk = CHUNK_VAR; \
CHUNK_VAR = new_chunk; \
} \
else \
(CHUNK_VAR->sp += (BYTES)), (CHUNK_VAR->bytes_left -= (BYTES))
#define POP(CHUNK_VAR,BYTES) \
if (CHUNK_VAR->sp == ((char *)CHUNK_VAR + sizeof(*CHUNK_VAR))) \
{ \
struct rx_stack_chunk * new_chunk = CHUNK_VAR->next_chunk; \
RX_STACK_FREE(CHUNK_VAR); \
CHUNK_VAR = new_chunk; \
} \
else \
(CHUNK_VAR->sp -= BYTES), (CHUNK_VAR->bytes_left += BYTES)
#define SRCH_TRANSLATE(C) search_state.translate[(unsigned char) (C)]
#ifdef __STDC__
RX_DECL __inline__ int
rx_search (struct re_pattern_buffer * rxb,
int startpos,
int range,
int stop,
int total_size,
rx_get_burst_fn get_burst,
rx_back_check_fn back_check,
rx_fetch_char_fn fetch_char,
void * app_closure,
struct re_registers * regs,
struct rx_search_state * resume_state,
struct rx_search_state * save_state)
#else
RX_DECL __inline__ int
rx_search (rxb, startpos, range, stop, total_size,
get_burst, back_check, fetch_char,
app_closure, regs, resume_state, save_state)
struct re_pattern_buffer * rxb;
int startpos;
int range;
int stop;
int total_size;
rx_get_burst_fn get_burst;
rx_back_check_fn back_check;
rx_fetch_char_fn fetch_char;
void * app_closure;
struct re_registers * regs;
struct rx_search_state * resume_state;
struct rx_search_state * save_state;
#endif
{
int pc;
int test_state;
struct rx_search_state search_state;
search_state.free_chunks = 0;
if (!resume_state)
pc = rx_outer_start;
else
{
search_state = *resume_state;
regs = search_state.saved_regs;
rxb = search_state.saved_rxb;
startpos = search_state.saved_startpos;
range = search_state.saved_range;
stop = search_state.saved_stop;
total_size = search_state.saved_total_size;
get_burst = search_state.saved_get_burst;
back_check = search_state.saved_back_check;
pc = search_state.outer_search_resume_pt;
if (0)
{
return_continuation:
if (save_state)
{
*save_state = search_state;
save_state->saved_regs = regs;
save_state->saved_rxb = rxb;
save_state->saved_startpos = startpos;
save_state->saved_range = range;
save_state->saved_stop = stop;
save_state->saved_total_size = total_size;
save_state->saved_get_burst = get_burst;
save_state->saved_back_check = back_check;
save_state->outer_search_resume_pt = pc;
}
return rx_search_continuation;
}
}
switch (pc)
{
case rx_outer_start:
search_state.ret_val = rx_search_fail;
( search_state.lparen
= search_state.rparen
= search_state.best_lpspace
= search_state.best_rpspace
= 0);
/* figure the number of registers we may need for use in backreferences.
* the number here includes an element for register zero.
*/
search_state.num_regs = rxb->re_nsub + 1;
/* check for out-of-range startpos. */
if ((startpos < 0) || (startpos > total_size))
return rx_search_fail;
/* fix up range if it might eventually take us outside the string. */
{
int endpos;
endpos = startpos + range;
if (endpos < -1)
range = (-1 - startpos);
else if (endpos > (total_size + 1))
range = total_size - startpos;
}
/* if the search isn't to be a backwards one, don't waste time in a
* long search for a pattern that says it is anchored.
*/
if (rxb->begbuf_only && (range > 0))
{
if (startpos > 0)
return rx_search_fail;
else
range = 1;
}
/* decide whether to use internal or user-provided reg buffers. */
if (!regs || rxb->no_sub)
{
search_state.best_lpspace =
(regoff_t *)REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t));
search_state.best_rpspace =
(regoff_t *)REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t));
search_state.best_lparen = search_state.best_lpspace;
search_state.best_rparen = search_state.best_rpspace;
}
else
{
/* have the register data arrays been allocated? */
if (rxb->regs_allocated == REGS_UNALLOCATED)
{ /* no. so allocate them with malloc. we need one
extra element beyond `search_state.num_regs' for the `-1' marker
gnu code uses. */
regs->num_regs = MAX (RE_NREGS, rxb->re_nsub + 1);
regs->start = ((regoff_t *)
malloc (regs->num_regs * sizeof ( regoff_t)));
regs->end = ((regoff_t *)
malloc (regs->num_regs * sizeof ( regoff_t)));
if (regs->start == 0 || regs->end == 0)
return rx_search_error;
rxb->regs_allocated = REGS_REALLOCATE;
}
else if (rxb->regs_allocated == REGS_REALLOCATE)
{ /* yes. if we need more elements than were already
allocated, reallocate them. if we need fewer, just
leave it alone. */
if (regs->num_regs < search_state.num_regs + 1)
{
regs->num_regs = search_state.num_regs + 1;
regs->start = ((regoff_t *)
realloc (regs->start,
regs->num_regs * sizeof (regoff_t)));
regs->end = ((regoff_t *)
realloc (regs->end,
regs->num_regs * sizeof ( regoff_t)));
if (regs->start == 0 || regs->end == 0)
return rx_search_error;
}
}
else if (rxb->regs_allocated != REGS_FIXED)
return rx_search_error;
if (regs->num_regs < search_state.num_regs + 1)
{
search_state.best_lpspace =
((regoff_t *)
REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t)));
search_state.best_rpspace =
((regoff_t *)
REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t)));
search_state.best_lparen = search_state.best_lpspace;
search_state.best_rparen = search_state.best_rpspace;
}
else
{
search_state.best_lparen = regs->start;
search_state.best_rparen = regs->end;
}
}
search_state.lparen =
(regoff_t *) REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t));
search_state.rparen =
(regoff_t *) REGEX_ALLOCATE (search_state.num_regs * sizeof(regoff_t));
if (! ( search_state.best_rparen
&& search_state.best_lparen
&& search_state.lparen && search_state.rparen))
return rx_search_error;
search_state.best_last_l = search_state.best_last_r = -1;
search_state.translate = (rxb->translate
? rxb->translate
: rx_id_translation);
/*
* two nfa's were compiled.
* `0' is complete.
* `1' faster but gets registers wrong and ends too soon.
*/
search_state.nfa_choice = (regs && !rxb->least_subs) ? '\0' : '\1';
/* we have the option to look for the best match or the first
* one we can find. if the user isn't asking for register information,
* we don't need to find the best match.
*/
search_state.first_found = !regs;
if (range >= 0)
{
search_state.outer_pos.search_end = startpos + range;
search_state.outer_pos.search_direction = 1;
}
else
{
search_state.outer_pos.search_end = startpos + range;
search_state.outer_pos.search_direction = -1;
}
/* the vacuous search always turns up nothing. */
if ((search_state.outer_pos.search_direction == 1)
? (startpos > search_state.outer_pos.search_end)
: (startpos < search_state.outer_pos.search_end))
return rx_search_fail;
/* now we build the starting state of the supernfa. */
{
struct rx_superset * start_contents;
struct rx_nfa_state_set * start_nfa_set;
/* we presume here that the nfa start state has only one
* possible future with no side effects.
*/
start_nfa_set = rxb->start->futures->destset;
if ( rxb->rx.start_set
&& (rxb->rx.start_set->starts_for == &rxb->rx))
start_contents = rxb->rx.start_set;
else
{
start_contents =
rx_superstate_eclosure_union (&rxb->rx,
rx_superset_cons (&rxb->rx, 0, 0),
start_nfa_set);
if (!start_contents)
return rx_search_fail;
start_contents->starts_for = &rxb->rx;
rxb->rx.start_set = start_contents;
}
if ( start_contents->superstate
&& (start_contents->superstate->rx_id == rxb->rx.rx_id))
{
search_state.start_super = start_contents->superstate;
rx_lock_superstate (&rxb->rx, search_state.start_super);
}
else
{
rx_protect_superset (&rxb->rx, start_contents);
search_state.start_super = rx_superstate (&rxb->rx, start_contents);
if (!search_state.start_super)
return rx_search_fail;
rx_lock_superstate (&rxb->rx, search_state.start_super);
rx_release_superset (&rxb->rx, start_contents);
}
}
/* The outer_pos tracks the position within the strings
* as seen by loop that calls fastmap_search.
*
* The caller supplied get_burst function actually
* gives us pointers to chars.
*
* Communication with the get_burst function is through an
* rx_string_position structure. Here, the structure for
* outer_pos is initialized. It is set to point to the
* NULL string, at an offset of STARTPOS. STARTPOS is out
* of range of the NULL string, so the first call to
* getburst will patch up the rx_string_position to point
* to valid characters.
*/
( search_state.outer_pos.string
= search_state.outer_pos.end
= 0);
search_state.outer_pos.offset = 0;
search_state.outer_pos.size = 0;
search_state.outer_pos.pos = (unsigned char *)startpos;
init_fastmap (rxb, &search_state);
search_state.fastmap_resume_pt = rx_fastmap_start;
case rx_outer_fastmap:
/* do { */
pseudo_do:
{
{
int fastmap_state;
fastmap_state = fastmap_search (rxb, stop, get_burst, app_closure,
&search_state);
switch (fastmap_state)
{
case rx_fastmap_continuation:
pc = rx_outer_fastmap;
goto return_continuation;
case rx_fastmap_fail:
goto finish;
case rx_fastmap_ok:
break;
}
}
/* now the fastmap loop has brought us to a plausible
* starting point for a match. so, it's time to run the
* nfa and see if a match occured.
*/
startpos = ( search_state.outer_pos.pos
- search_state.outer_pos.string
+ search_state.outer_pos.offset);
#if 0
/*|*/ if ((range > 0) && (startpos == search_state.outer_pos.search_end))
/*|*/ goto finish;
#endif
}
search_state.test_match_resume_pt = rx_test_start;
/* do interrupted for entry point... */
case rx_outer_test:
/* ...do continued */
{
goto test_match;
test_returns_to_search:
switch (test_state)
{
case rx_test_continuation:
pc = rx_outer_test;
goto return_continuation;
case rx_test_error:
search_state.ret_val = rx_search_error;
goto finish;
case rx_test_fail:
break;
case rx_test_ok:
goto finish;
}
search_state.outer_pos.pos += search_state.outer_pos.search_direction;
startpos += search_state.outer_pos.search_direction;
#if 0
/*|*/ if (search_state.test_pos.pos < search_state.test_pos.end)
/*|*/ break;
#endif
}
/* do interrupted for entry point... */
case rx_outer_restore_pos:
{
int x;
x = get_burst (&search_state.outer_pos, app_closure, stop);
switch (x)
{
case rx_get_burst_continuation:
pc = rx_outer_restore_pos;
goto return_continuation;
case rx_get_burst_error:
search_state.ret_val = rx_search_error;
goto finish;
case rx_get_burst_no_more:
if (rxb->can_match_empty)
break;
goto finish;
case rx_get_burst_ok:
break;
}
} /* } while (...see below...) */
if ((search_state.outer_pos.search_direction == 1)
? (startpos <= search_state.outer_pos.search_end)
: (startpos > search_state.outer_pos.search_end))
goto pseudo_do;
finish:
uninit_fastmap (rxb, &search_state);
if (search_state.start_super)
rx_unlock_superstate (&rxb->rx, search_state.start_super);
#ifdef regex_malloc
if (search_state.lparen) free (search_state.lparen);
if (search_state.rparen) free (search_state.rparen);
if (search_state.best_lpspace) free (search_state.best_lpspace);
if (search_state.best_rpspace) free (search_state.best_rpspace);
#endif
return search_state.ret_val;
}
test_match:
{
enum rx_test_match_entry test_pc;
int inx;
test_pc = search_state.test_match_resume_pt;
if (test_pc == rx_test_start)
{
#ifdef RX_DEBUG
search_state.backtrack_depth = 0;
#endif
search_state.last_l = search_state.last_r = 0;
search_state.lparen[0] = startpos;
search_state.super = search_state.start_super;
search_state.c = search_state.nfa_choice;
search_state.test_pos.pos = search_state.outer_pos.pos - 1;
search_state.test_pos.string = search_state.outer_pos.string;
search_state.test_pos.end = search_state.outer_pos.end;
search_state.test_pos.offset = search_state.outer_pos.offset;
search_state.test_pos.size = search_state.outer_pos.size;
search_state.test_pos.search_direction = 1;
search_state.counter_stack = 0;
search_state.backtrack_stack = 0;
search_state.backtrack_frame_bytes =
(sizeof (struct rx_backtrack_frame)
+ (rxb->match_regs_on_stack
? sizeof (regoff_t) * (search_state.num_regs + 1) * 2
: 0));
search_state.chunk_bytes = search_state.backtrack_frame_bytes * 64;
search_state.test_ret = rx_test_line_finished;
search_state.could_have_continued = 0;
}
/* This is while (1)...except that the body of the loop is interrupted
* by some alternative entry points.
*/
pseudo_while_1:
switch (test_pc)
{
case rx_test_cache_hit_loop:
goto resume_continuation_1;
case rx_test_backreference_check:
goto resume_continuation_2;
case rx_test_backtrack_return:
goto resume_continuation_3;
case rx_test_start:
#ifdef RX_DEBUG
/* There is a search tree with every node as set of deterministic
* transitions in the super nfa. For every branch of a
* backtrack point is an edge in the tree.
* This counts up a pre-order of nodes in that tree.
* It's saved on the search stack and printed when debugging.
*/
search_state.line_no = 0;
search_state.lines_found = 0;
#endif
top_of_cycle:
/* A superstate is basicly a transition table, indexed by
* characters from the string being tested, and containing
* RX_INX (`instruction frame') structures.
*/
search_state.ifr = &search_state.super->transitions [search_state.c];
recurse_test_match:
/* This is the point to which control is sent when the
* test matcher `recurses'. Before jumping here, some variables
* need to be saved on the stack and the next instruction frame
* has to be computed.
*/
restart:
/* Some instructions don't advance the matcher, but just
* carry out some side effects and fetch a new instruction.
* To dispatch that new instruction, `goto restart'.
*/
{
struct rx_inx * next_tr_table;
struct rx_inx * this_tr_table;
/* The fastest route through the loop is when the instruction
* is RX_NEXT_CHAR. This case is detected when SEARCH_STATE.IFR->DATA
* is non-zero. In that case, it points to the next
* superstate.
*
* This allows us to not bother fetching the bytecode.
*/
next_tr_table = (struct rx_inx *)search_state.ifr->data;
this_tr_table = search_state.super->transitions;
while (next_tr_table)
{
#ifdef RX_DEBUG_0
if (rx_debug_trace)
{
struct rx_superset * setp;
fprintf (stderr, "%d %d>> re_next_char @ %d (%d)",
search_state.line_no,
search_state.backtrack_depth,
(search_state.test_pos.pos - search_state.test_pos.string
+ search_state.test_pos.offset), search_state.c);
search_state.super =
((struct rx_superstate *)
((char *)this_tr_table
- ((unsigned long)
((struct rx_superstate *)0)->transitions)));
setp = search_state.super->contents;
fprintf (stderr, " superstet (rx=%d, &=%x: ",
rxb->rx.rx_id, setp);
while (setp)
{
fprintf (stderr, "%d ", setp->id);
setp = setp->cdr;
}
fprintf (stderr, "\n");
}
#endif
this_tr_table = next_tr_table;
++search_state.test_pos.pos;
if (search_state.test_pos.pos == search_state.test_pos.end)
{
int burst_state;
try_burst_1:
burst_state = get_burst (&search_state.test_pos,
app_closure, stop);
switch (burst_state)
{
case rx_get_burst_continuation:
search_state.saved_this_tr_table = this_tr_table;
search_state.saved_next_tr_table = next_tr_table;
test_pc = rx_test_cache_hit_loop;
goto test_return_continuation;
resume_continuation_1:
/* Continuation one jumps here to do its work: */
search_state.saved_this_tr_table = this_tr_table;
search_state.saved_next_tr_table = next_tr_table;
goto try_burst_1;
case rx_get_burst_ok:
/* get_burst succeeded...keep going */
break;
case rx_get_burst_no_more:
search_state.test_ret = rx_test_line_finished;
search_state.could_have_continued = 1;
goto test_do_return;
case rx_get_burst_error:
/* An error... */
search_state.test_ret = rx_test_internal_error;
goto test_do_return;
}
}
search_state.c = *search_state.test_pos.pos;
search_state.ifr = this_tr_table + search_state.c;
next_tr_table = (struct rx_inx *)search_state.ifr->data;
} /* Fast loop through cached transition tables */
/* Here when we ran out of cached next-char transitions.
* So, it will be necessary to do a more expensive
* dispatch on the current instruction. The superstate
* pointer is allowed to become invalid during next-char
* transitions -- now we must bring it up to date.
*/
search_state.super =
((struct rx_superstate *)
((char *)this_tr_table
- ((unsigned long)
((struct rx_superstate *)0)->transitions)));
}
/* We've encountered an instruction other than next-char.
* Dispatch that instruction:
*/
inx = (int)search_state.ifr->inx;
#ifdef RX_DEBUG_0
if (rx_debug_trace)
{
struct rx_superset * setp = search_state.super->contents;
fprintf (stderr, "%d %d>> %s @ %d (%d)", search_state.line_no,
search_state.backtrack_depth,
inx_names[inx],
(search_state.test_pos.pos - search_state.test_pos.string
+ (test_pos.half == 0 ? 0 : size1)), search_state.c);
fprintf (stderr, " superstet (rx=%d, &=%x: ",
rxb->rx.rx_id, setp);
while (setp)
{
fprintf (stderr, "%d ", setp->id);
setp = setp->cdr;
}
fprintf (stderr, "\n");
}
#endif
switch ((enum rx_opcode)inx)
{
case rx_do_side_effects:
/* RX_DO_SIDE_EFFECTS occurs when we cross epsilon
* edges associated with parentheses, backreferencing, etc.
*/
{
struct rx_distinct_future * df =
(struct rx_distinct_future *)search_state.ifr->data_2;
struct rx_se_list * el = df->effects;
/* Side effects come in lists. This walks down
* a list, dispatching.
*/
while (el)
{
long effect;
effect = (long)el->car;
if (effect < 0)
{
#ifdef RX_DEBUG_0
if (rx_debug_trace)
{
struct rx_superset * setp = search_state.super->contents;
fprintf (stderr, "....%d %d>> %s\n", search_state.line_no,
search_state.backtrack_depth,
efnames[-effect]);
}
#endif
switch ((enum re_side_effects) effect)
{
case re_se_pushback:
search_state.ifr = &df->future_frame;
if (!search_state.ifr->data)
{
struct rx_superstate * sup;
sup = search_state.super;
rx_lock_superstate (rx, sup);
if (!rx_handle_cache_miss (&rxb->rx,
search_state.super,
search_state.c,
(search_state.ifr
->data_2)))
{
rx_unlock_superstate (rx, sup);
search_state.test_ret = rx_test_internal_error;
goto test_do_return;
}
rx_unlock_superstate (rx, sup);
}
/* --search_state.test_pos.pos; */
search_state.c = 't';
search_state.super
= ((struct rx_superstate *)
((char *)search_state.ifr->data
- (long)(((struct rx_superstate *)0)
->transitions)));
goto top_of_cycle;
break;
case re_se_push0:
{
struct rx_counter_frame * old_cf
= (search_state.counter_stack
? ((struct rx_counter_frame *)
search_state.counter_stack->sp)
: 0);
struct rx_counter_frame * cf;
PUSH (search_state.counter_stack,
sizeof (struct rx_counter_frame));
cf = ((struct rx_counter_frame *)
search_state.counter_stack->sp);
cf->tag = re_se_iter;
cf->val = 0;
cf->inherited_from = 0;
cf->cdr = old_cf;
break;
}
case re_se_fail:
goto test_do_return;
case re_se_begbuf:
if (!AT_STRINGS_BEG ())
goto test_do_return;
break;
case re_se_endbuf:
if (!AT_STRINGS_END ())
goto test_do_return;
break;
case re_se_wordbeg:
if ( LETTER_P (&search_state.test_pos, 1)
&& ( AT_STRINGS_BEG()
|| !LETTER_P (&search_state.test_pos, 0)))
break;
else
goto test_do_return;
case re_se_wordend:
if ( !AT_STRINGS_BEG ()
&& LETTER_P (&search_state.test_pos, 0)
&& (AT_STRINGS_END ()
|| !LETTER_P (&search_state.test_pos, 1)))
break;
else
goto test_do_return;
case re_se_wordbound:
if (AT_WORD_BOUNDARY (&search_state.test_pos))
break;
else
goto test_do_return;
case re_se_notwordbound:
if (!AT_WORD_BOUNDARY (&search_state.test_pos))
break;
else
goto test_do_return;
case re_se_hat:
if (AT_STRINGS_BEG ())
{
if (rxb->not_bol)
goto test_do_return;
else
break;
}
else
{
char pos_c = *search_state.test_pos.pos;
if ( (SRCH_TRANSLATE (pos_c)
== SRCH_TRANSLATE('\n'))
&& rxb->newline_anchor)
break;
else
goto test_do_return;
}
case re_se_dollar:
if (AT_STRINGS_END ())
{
if (rxb->not_eol)
goto test_do_return;
else
break;
}
else
{
if ( ( SRCH_TRANSLATE (fetch_char
(&search_state.test_pos, 1,
app_closure, stop))
== SRCH_TRANSLATE ('\n'))
&& rxb->newline_anchor)
break;
else
goto test_do_return;
}
case re_se_try:
/* This is the first side effect in every
* expression.
*
* FOR NO GOOD REASON...get rid of it...
*/
break;
case re_se_pushpos:
{
int urhere =
((int)(search_state.test_pos.pos
- search_state.test_pos.string)
+ search_state.test_pos.offset);
struct rx_counter_frame * old_cf
= (search_state.counter_stack
? ((struct rx_counter_frame *)
search_state.counter_stack->sp)
: 0);
struct rx_counter_frame * cf;
PUSH(search_state.counter_stack,
sizeof (struct rx_counter_frame));
cf = ((struct rx_counter_frame *)
search_state.counter_stack->sp);
cf->tag = re_se_pushpos;
cf->val = urhere;
cf->inherited_from = 0;
cf->cdr = old_cf;
break;
}
case re_se_chkpos:
{
int urhere =
((int)(search_state.test_pos.pos
- search_state.test_pos.string)
+ search_state.test_pos.offset);
struct rx_counter_frame * cf
= ((struct rx_counter_frame *)
search_state.counter_stack->sp);
if (cf->val == urhere)
goto test_do_return;
cf->val = urhere;
break;
}
break;
case re_se_poppos:
POP(search_state.counter_stack,
sizeof (struct rx_counter_frame));
break;
case re_se_at_dot:
case re_se_syntax:
case re_se_not_syntax:
#ifdef emacs
/*
* this release lacks emacs support
*/
#endif
break;
case re_se_win:
case re_se_lparen:
case re_se_rparen:
case re_se_backref:
case re_se_iter:
case re_se_end_iter:
case re_se_tv:
case re_floogle_flap:
search_state.ret_val = 0;
goto test_do_return;
}
}
else
{
#ifdef RX_DEBUG_0
if (rx_debug_trace)
fprintf (stderr, "....%d %d>> %s %d %d\n", search_state.line_no,
search_state.backtrack_depth,
efnames2[rxb->se_params [effect].se],
rxb->se_params [effect].op1,
rxb->se_params [effect].op2);
#endif
switch (rxb->se_params [effect].se)
{
case re_se_win:
/* This side effect indicates that we've
* found a match, though not necessarily the
* best match. This is a fancy assignment to
* register 0 unless the caller didn't
* care about registers. In which case,
* this stops the match.
*/
{
int urhere =
((int)(search_state.test_pos.pos
- search_state.test_pos.string)
+ search_state.test_pos.offset);
if ( (search_state.best_last_r < 0)
|| (urhere + 1 > search_state.best_rparen[0]))
{
/* Record the best known and keep
* looking.
*/
int x;
for (x = 0; x <= search_state.last_l; ++x)
search_state.best_lparen[x] = search_state.lparen[x];
search_state.best_last_l = search_state.last_l;
for (x = 0; x <= search_state.last_r; ++x)
search_state.best_rparen[x] = search_state.rparen[x];
search_state.best_rparen[0] = urhere + 1;
search_state.best_last_r = search_state.last_r;
}
/* If we're not reporting the match-length
* or other register info, we need look no
* further.
*/
if (search_state.first_found)
{
search_state.test_ret = rx_test_found_first;
goto test_do_return;
}
}
break;
case re_se_lparen:
{
int urhere =
((int)(search_state.test_pos.pos
- search_state.test_pos.string)
+ search_state.test_pos.offset);
int reg = rxb->se_params [effect].op1;
#if 0
if (reg > search_state.last_l)
#endif
{
search_state.lparen[reg] = urhere + 1;
/* In addition to making this assignment,
* we now know that lower numbered regs
* that haven't already been assigned,
* won't be. We make sure they're
* filled with -1, so they can be
* recognized as unassigned.
*/
if (search_state.last_l < reg)
while (++search_state.last_l < reg)
search_state.lparen[search_state.last_l] = -1;
}
break;
}
case re_se_rparen:
{
int urhere =
((int)(search_state.test_pos.pos
- search_state.test_pos.string)
+ search_state.test_pos.offset);
int reg = rxb->se_params [effect].op1;
search_state.rparen[reg] = urhere + 1;
if (search_state.last_r < reg)
{
while (++search_state.last_r < reg)
search_state.rparen[search_state.last_r]
= -1;
}
break;
}
case re_se_backref:
{
int reg = rxb->se_params [effect].op1;
if ( reg > search_state.last_r
|| search_state.rparen[reg] < 0)
goto test_do_return;
{
int backref_status;
check_backreference:
backref_status
= back_check (&search_state.test_pos,
search_state.lparen[reg],
search_state.rparen[reg],
search_state.translate,
app_closure,
stop);
switch (backref_status)
{
case rx_back_check_continuation:
search_state.saved_reg = reg;
test_pc = rx_test_backreference_check;
goto test_return_continuation;
resume_continuation_2:
reg = search_state.saved_reg;
goto check_backreference;
case rx_back_check_fail:
/* Fail */
goto test_do_return;
case rx_back_check_pass:
/* pass --
* test_pos now advanced to last
* char matched by backref
*/
break;
}
}
break;
}
case re_se_iter:
{
struct rx_counter_frame * csp
= ((struct rx_counter_frame *)
search_state.counter_stack->sp);
if (csp->val == rxb->se_params[effect].op2)
goto test_do_return;
else
++csp->val;
break;
}
case re_se_end_iter:
{
struct rx_counter_frame * csp
= ((struct rx_counter_frame *)
search_state.counter_stack->sp);
if (csp->val < rxb->se_params[effect].op1)
goto test_do_return;
else
{
struct rx_counter_frame * source = csp;
while (source->inherited_from)
source = source->inherited_from;
if (!source || !source->cdr)
{
POP(search_state.counter_stack,
sizeof(struct rx_counter_frame));
}
else
{
source = source->cdr;
csp->val = source->val;
csp->tag = source->tag;
csp->cdr = 0;
csp->inherited_from = source;
}
}
break;
}
case re_se_tv:
/* is a noop */
break;
case re_se_try:
case re_se_pushback:
case re_se_push0:
case re_se_pushpos:
case re_se_chkpos:
case re_se_poppos:
case re_se_at_dot:
case re_se_syntax:
case re_se_not_syntax:
case re_se_begbuf:
case re_se_hat:
case re_se_wordbeg:
case re_se_wordbound:
case re_se_notwordbound:
case re_se_wordend:
case re_se_endbuf:
case re_se_dollar:
case re_se_fail:
case re_floogle_flap:
search_state.ret_val = 0;
goto test_do_return;
}
}
el = el->cdr;
}
/* Now the side effects are done,
* so get the next instruction.
* and move on.
*/
search_state.ifr = &df->future_frame;
goto restart;
}
case rx_backtrack_point:
{
/* A backtrack point indicates that we've reached a
* non-determinism in the superstate NFA. This is a
* loop that exhaustively searches the possibilities.
*
* A backtracking strategy is used. We keep track of what
* registers are valid so we can erase side effects.
*
* First, make sure there is some stack space to hold
* our state.
*/
struct rx_backtrack_frame * bf;
PUSH(search_state.backtrack_stack,
search_state.backtrack_frame_bytes);
#ifdef RX_DEBUG_0
++search_state.backtrack_depth;
#endif
bf = ((struct rx_backtrack_frame *)
search_state.backtrack_stack->sp);
{
bf->stk_super = search_state.super;
/* We prevent the current superstate from being
* deleted from the superstate cache.
*/
rx_lock_superstate (&rxb->rx, search_state.super);
#ifdef RX_DEBUG_0
bf->stk_search_state.line_no = search_state.line_no;
#endif
bf->stk_c = search_state.c;
bf->stk_test_pos = search_state.test_pos;
bf->stk_last_l = search_state.last_l;
bf->stk_last_r = search_state.last_r;
bf->df = ((struct rx_super_edge *)
search_state.ifr->data_2)->options;
bf->first_df = bf->df;
bf->counter_stack_sp = (search_state.counter_stack
? search_state.counter_stack->sp
: 0);
bf->stk_test_ret = search_state.test_ret;
if (rxb->match_regs_on_stack)
{
int x;
regoff_t * stk =
(regoff_t *)((char *)bf + sizeof (*bf));
for (x = 0; x <= search_state.last_l; ++x)
stk[x] = search_state.lparen[x];
stk += x;
for (x = 0; x <= search_state.last_r; ++x)
stk[x] = search_state.rparen[x];
}
}
/* Here is a while loop whose body is mainly a function
* call and some code to handle a return from that
* function.
*
* From here on for the rest of `case backtrack_point' it
* is unsafe to assume that the search_state copies of
* variables saved on the backtracking stack are valid
* -- so read their values from the backtracking stack.
*
* This lets us use one generation fewer stack saves in
* the call-graph of a search.
*/
while_non_det_options:
#ifdef RX_DEBUG_0
++search_state.lines_found;
if (rx_debug_trace)
fprintf (stderr, "@@@ %d calls %d @@@\n",
search_state.line_no, search_state.lines_found);
search_state.line_no = search_state.lines_found;
#endif
if (bf->df->next_same_super_edge[0] == bf->first_df)
{
/* This is a tail-call optimization -- we don't recurse
* for the last of the possible futures.
*/
search_state.ifr = (bf->df->effects
? &bf->df->side_effects_frame
: &bf->df->future_frame);
rx_unlock_superstate (&rxb->rx, search_state.super);
POP(search_state.backtrack_stack,
search_state.backtrack_frame_bytes);
#ifdef RX_DEBUG
--search_state.backtrack_depth;
#endif
goto restart;
}
else
{
if (search_state.counter_stack)
{
struct rx_counter_frame * old_cf
= ((struct rx_counter_frame *)search_state.counter_stack->sp);
struct rx_counter_frame * cf;
PUSH(search_state.counter_stack, sizeof (struct rx_counter_frame));
cf = ((struct rx_counter_frame *)search_state.counter_stack->sp);
cf->tag = old_cf->tag;
cf->val = old_cf->val;
cf->inherited_from = old_cf;
cf->cdr = 0;
}
/* `Call' this test-match block */
search_state.ifr = (bf->df->effects
? &bf->df->side_effects_frame
: &bf->df->future_frame);
goto recurse_test_match;
}
/* Returns in this block are accomplished by
* goto test_do_return. There are two cases.
* If there is some search-stack left,
* then it is a return from a `recursive' call.
* If there is no search-stack left, then
* we should return to the fastmap/search loop.
*/
test_do_return:
if (!search_state.backtrack_stack)
{
#ifdef RX_DEBUG_0
if (rx_debug_trace)
fprintf (stderr, "!!! %d bails returning %d !!!\n",
search_state.line_no, search_state.test_ret);
#endif
/* No more search-stack -- this test is done. */
if (search_state.test_ret != rx_test_internal_error)
goto return_from_test_match;
else
goto error_in_testing_match;
}
/* Returning from a recursive call to
* the test match block:
*/
bf = ((struct rx_backtrack_frame *)
search_state.backtrack_stack->sp);
#ifdef RX_DEBUG_0
if (rx_debug_trace)
fprintf (stderr, "+++ %d returns %d (to %d)+++\n",
search_state.line_no,
search_state.test_ret,
bf->stk_search_state.line_no);
#endif
while (search_state.counter_stack
&& (!bf->counter_stack_sp
|| (bf->counter_stack_sp
!= search_state.counter_stack->sp)))
{
POP(search_state.counter_stack,
sizeof (struct rx_counter_frame));
}
if (search_state.test_ret == rx_test_internal_error)
{
POP (search_state.backtrack_stack,
search_state.backtrack_frame_bytes);
search_state.test_ret = rx_test_internal_error;
goto test_do_return;
}
/* If a non-longest match was found and that is good
* enough, return immediately.
*/
if ( (search_state.test_ret == rx_test_found_first)
&& search_state.first_found)
{
rx_unlock_superstate (&rxb->rx, bf->stk_super);
POP (search_state.backtrack_stack,
search_state.backtrack_frame_bytes);
goto test_do_return;
}
search_state.test_ret = bf->stk_test_ret;
search_state.last_l = bf->stk_last_l;
search_state.last_r = bf->stk_last_r;
bf->df = bf->df->next_same_super_edge[0];
search_state.super = bf->stk_super;
search_state.c = bf->stk_c;
#ifdef RX_DEBUG_0
search_state.line_no = bf->stk_search_state.line_no;
#endif
if (rxb->match_regs_on_stack)
{
int x;
regoff_t * stk =
(regoff_t *)((char *)bf + sizeof (*bf));
for (x = 0; x <= search_state.last_l; ++x)
search_state.lparen[x] = stk[x];
stk += x;
for (x = 0; x <= search_state.last_r; ++x)
search_state.rparen[x] = stk[x];
}
{
int x;
try_burst_2:
x = get_burst (&bf->stk_test_pos, app_closure, stop);
switch (x)
{
case rx_get_burst_continuation:
search_state.saved_bf = bf;
test_pc = rx_test_backtrack_return;
goto test_return_continuation;
resume_continuation_3:
bf = search_state.saved_bf;
goto try_burst_2;
case rx_get_burst_no_more:
/* Since we've been here before, it is some kind of
* error that we can't return.
*/
case rx_get_burst_error:
search_state.test_ret = rx_test_internal_error;
goto test_do_return;
case rx_get_burst_ok:
break;
}
}
search_state.test_pos = bf->stk_test_pos;
goto while_non_det_options;
}
case rx_cache_miss:
/* Because the superstate NFA is lazily constructed,
* and in fact may erode from underneath us, we sometimes
* have to construct the next instruction from the hard way.
* This invokes one step in the lazy-conversion.
*/
search_state.ifr = rx_handle_cache_miss (&rxb->rx,
search_state.super,
search_state.c,
search_state.ifr->data_2);
if (!search_state.ifr)
{
search_state.test_ret = rx_test_internal_error;
goto test_do_return;
}
goto restart;
case rx_backtrack:
/* RX_BACKTRACK means that we've reached the empty
* superstate, indicating that match can't succeed
* from this point.
*/
goto test_do_return;
case rx_next_char:
case rx_error_inx:
case rx_num_instructions:
search_state.ret_val = 0;
goto test_do_return;
}
goto pseudo_while_1;
}
/* Healthy exits from the test-match loop do a
* `goto return_from_test_match' On the other hand,
* we might end up here.
*/
error_in_testing_match:
test_state = rx_test_error;
goto test_returns_to_search;
/***** fastmap/search loop body
* considering the results testing for a match
*/
return_from_test_match:
if (search_state.best_last_l >= 0)
{
if (regs && (regs->start != search_state.best_lparen))
{
bcopy (search_state.best_lparen, regs->start,
regs->num_regs * sizeof (int));
bcopy (search_state.best_rparen, regs->end,
regs->num_regs * sizeof (int));
}
if (regs && !rxb->no_sub)
{
int q;
int bound = (regs->num_regs > search_state.num_regs
? regs->num_regs
: search_state.num_regs);
regoff_t * s = regs->start;
regoff_t * e = regs->end;
for (q = search_state.best_last_l + 1; q < bound; ++q)
s[q] = e[q] = -1;
}
search_state.ret_val = search_state.best_lparen[0];
test_state = rx_test_ok;
goto test_returns_to_search;
}
else
{
test_state = rx_test_fail;
goto test_returns_to_search;
}
test_return_continuation:
search_state.test_match_resume_pt = test_pc;
test_state = rx_test_continuation;
goto test_returns_to_search;
}
}
#endif /* RX_WANT_RX_DEFS */
#else /* RX_WANT_SE_DEFS */
/* Integers are used to represent side effects.
*
* Simple side effects are given negative integer names by these enums.
*
* Non-negative names are reserved for complex effects.
*
* Complex effects are those that take arguments. For example,
* a register assignment associated with a group is complex because
* it requires an argument to tell which group is being matched.
*
* The integer name of a complex effect is an index into rxb->se_params.
*/
RX_DEF_SE(1, re_se_try, = -1) /* Epsilon from start state */
RX_DEF_SE(0, re_se_pushback, = re_se_try - 1)
RX_DEF_SE(0, re_se_push0, = re_se_pushback -1)
RX_DEF_SE(0, re_se_pushpos, = re_se_push0 - 1)
RX_DEF_SE(0, re_se_chkpos, = re_se_pushpos -1)
RX_DEF_SE(0, re_se_poppos, = re_se_chkpos - 1)
RX_DEF_SE(1, re_se_at_dot, = re_se_poppos - 1) /* Emacs only */
RX_DEF_SE(0, re_se_syntax, = re_se_at_dot - 1) /* Emacs only */
RX_DEF_SE(0, re_se_not_syntax, = re_se_syntax - 1) /* Emacs only */
RX_DEF_SE(1, re_se_begbuf, = re_se_not_syntax - 1) /* match beginning of buffer */
RX_DEF_SE(1, re_se_hat, = re_se_begbuf - 1) /* match beginning of line */
RX_DEF_SE(1, re_se_wordbeg, = re_se_hat - 1)
RX_DEF_SE(1, re_se_wordbound, = re_se_wordbeg - 1)
RX_DEF_SE(1, re_se_notwordbound, = re_se_wordbound - 1)
RX_DEF_SE(1, re_se_wordend, = re_se_notwordbound - 1)
RX_DEF_SE(1, re_se_endbuf, = re_se_wordend - 1)
/* This fails except at the end of a line.
* It deserves to go here since it is typicly one of the last steps
* in a match.
*/
RX_DEF_SE(1, re_se_dollar, = re_se_endbuf - 1)
/* Simple effects: */
RX_DEF_SE(1, re_se_fail, = re_se_dollar - 1)
/* Complex effects. These are used in the 'se' field of
* a struct re_se_params. Indexes into the se array
* are stored as instructions on nfa edges.
*/
RX_DEF_CPLX_SE(1, re_se_win, = 0)
RX_DEF_CPLX_SE(1, re_se_lparen, = re_se_win + 1)
RX_DEF_CPLX_SE(1, re_se_rparen, = re_se_lparen + 1)
RX_DEF_CPLX_SE(0, re_se_backref, = re_se_rparen + 1)
RX_DEF_CPLX_SE(0, re_se_iter, = re_se_backref + 1)
RX_DEF_CPLX_SE(0, re_se_end_iter, = re_se_iter + 1)
RX_DEF_CPLX_SE(0, re_se_tv, = re_se_end_iter + 1)
#endif
#endif