Hash :
9fb732a4
Author :
Date :
2012-02-29T20:00:38
hypot-ieee: Work around test failure on OSF/1 and native Windows. * lib/math.in.h (hypot): New declaration. * lib/hypot.c: New file. * m4/hypot-ieee.m4: New file. * m4/hypot.m4 (gl_FUNC_HYPOT): If gl_FUNC_HYPOT_IEEE is present, test whether hypot works with mixed NaN and Infinity arguments. Replace it if not. * m4/math_h.m4 (gl_MATH_H_DEFAULTS): Initialize GNULIB_HYPOT, REPLACE_HYPOT. * modules/math (Makefile.am): Substitute GNULIB_HYPOT, REPLACE_HYPOT. * modules/hypot (Files): Add lib/hypot.c. (Depends-on): Add dependencies. (configure.ac): Arrange to compile replacement if REPLACE_HYPOT is 1. * modules/hypot-ieee (Files): Add m4/hypot-ieee.m4. (configure.ac): Invoke gl_FUNC_HYPOT_IEEE. * tests/test-math-c++.cc: Check the declaration of hypot. * doc/posix-functions/hypot.texi: Mention the hypot-ieee module.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/* Hypotenuse of a right-angled triangle.
Copyright (C) 2012 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2012. */
#include <config.h>
/* Specification. */
#include <math.h>
double
hypot (double x, double y)
{
if (isfinite (x) && isfinite (y))
{
/* Determine absolute values. */
x = fabs (x);
y = fabs (y);
{
/* Find the bigger and the smaller one. */
double a;
double b;
if (x >= y)
{
a = x;
b = y;
}
else
{
a = y;
b = x;
}
/* Now 0 <= b <= a. */
{
int e;
double an;
double bn;
/* Write a = an * 2^e, b = bn * 2^e with 0 <= bn <= an < 1. */
an = frexp (a, &e);
bn = ldexp (b, - e);
{
double cn;
/* Through the normalization, no unneeded overflow or underflow
will occur here. */
cn = sqrt (an * an + bn * bn);
return ldexp (cn, e);
}
}
}
}
else
{
if (isinf (x) || isinf (y))
/* x or y is infinite. Return +Infinity. */
return HUGE_VAL;
else
/* x or y is NaN. Return NaN. */
return x + y;
}
}