Hash :
281b825e
Author :
Date :
2018-01-01T00:57:25
maint: Run 'make update-copyright'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* Copyright (C) 1991-1992, 1997, 1999, 2003, 2006, 2008-2018 Free Software
Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include "c-ctype.h"
#ifndef HAVE_LDEXP_IN_LIBC
#define HAVE_LDEXP_IN_LIBC 0
#endif
/* Return true if C is a space in the current locale, avoiding
problems with signed char and isspace. */
static bool
locale_isspace (char c)
{
unsigned char uc = c;
return isspace (uc) != 0;
}
#if !HAVE_LDEXP_IN_LIBC
#define ldexp dummy_ldexp
/* A dummy definition that will never be invoked. */
static double ldexp (double x _GL_UNUSED, int exponent _GL_UNUSED)
{
abort ();
return 0.0;
}
#endif
/* Return X * BASE**EXPONENT. Return an extreme value and set errno
to ERANGE if underflow or overflow occurs. */
static double
scale_radix_exp (double x, int radix, long int exponent)
{
/* If RADIX == 10, this code is neither precise nor fast; it is
merely a straightforward and relatively portable approximation.
If N == 2, this code is precise on a radix-2 implementation,
albeit perhaps not fast if ldexp is not in libc. */
long int e = exponent;
if (HAVE_LDEXP_IN_LIBC && radix == 2)
return ldexp (x, e < INT_MIN ? INT_MIN : INT_MAX < e ? INT_MAX : e);
else
{
double r = x;
if (r != 0)
{
if (e < 0)
{
while (e++ != 0)
{
r /= radix;
if (r == 0 && x != 0)
{
errno = ERANGE;
break;
}
}
}
else
{
while (e-- != 0)
{
if (r < -DBL_MAX / radix)
{
errno = ERANGE;
return -HUGE_VAL;
}
else if (DBL_MAX / radix < r)
{
errno = ERANGE;
return HUGE_VAL;
}
else
r *= radix;
}
}
}
return r;
}
}
/* Parse a number at NPTR; this is a bit like strtol (NPTR, ENDPTR)
except there are no leading spaces or signs or "0x", and ENDPTR is
nonnull. The number uses a base BASE (either 10 or 16) fraction, a
radix RADIX (either 10 or 2) exponent, and exponent character
EXPCHAR. To convert from a number of digits to a radix exponent,
multiply by RADIX_MULTIPLIER (either 1 or 4). */
static double
parse_number (const char *nptr,
int base, int radix, int radix_multiplier, char expchar,
char **endptr)
{
const char *s = nptr;
bool got_dot = false;
long int exponent = 0;
double num = 0;
for (;; ++s)
{
int digit;
if (c_isdigit (*s))
digit = *s - '0';
else if (base == 16 && c_isxdigit (*s))
digit = c_tolower (*s) - ('a' - 10);
else if (! got_dot && *s == '.')
{
/* Record that we have found the decimal point. */
got_dot = true;
continue;
}
else
/* Any other character terminates the number. */
break;
/* Make sure that multiplication by base will not overflow. */
if (num <= DBL_MAX / base)
num = num * base + digit;
else
{
/* The value of the digit doesn't matter, since we have already
gotten as many digits as can be represented in a 'double'.
This doesn't necessarily mean the result will overflow.
The exponent may reduce it to within range.
We just need to record that there was another
digit so that we can multiply by 10 later. */
exponent += radix_multiplier;
}
/* Keep track of the number of digits after the decimal point.
If we just divided by base here, we might lose precision. */
if (got_dot)
exponent -= radix_multiplier;
}
if (c_tolower (*s) == expchar && ! locale_isspace (s[1]))
{
/* Add any given exponent to the implicit one. */
int save = errno;
char *end;
long int value = strtol (s + 1, &end, 10);
errno = save;
if (s + 1 != end)
{
/* Skip past the exponent, and add in the implicit exponent,
resulting in an extreme value on overflow. */
s = end;
exponent =
(exponent < 0
? (value < LONG_MIN - exponent ? LONG_MIN : exponent + value)
: (LONG_MAX - exponent < value ? LONG_MAX : exponent + value));
}
}
*endptr = (char *) s;
return scale_radix_exp (num, radix, exponent);
}
static double underlying_strtod (const char *, char **);
/* HP cc on HP-UX 10.20 has a bug with the constant expression -0.0.
ICC 10.0 has a bug when optimizing the expression -zero.
The expression -DBL_MIN * DBL_MIN does not work when cross-compiling
to PowerPC on Mac OS X 10.5. */
#if defined __hpux || defined __sgi || defined __ICC
static double
compute_minus_zero (void)
{
return -DBL_MIN * DBL_MIN;
}
# define minus_zero compute_minus_zero ()
#else
double minus_zero = -0.0;
#endif
/* Convert NPTR to a double. If ENDPTR is not NULL, a pointer to the
character after the last one used in the number is put in *ENDPTR. */
double
strtod (const char *nptr, char **endptr)
{
bool negative = false;
/* The number so far. */
double num;
const char *s = nptr;
const char *end;
char *endbuf;
int saved_errno = errno;
/* Eat whitespace. */
while (locale_isspace (*s))
++s;
/* Get the sign. */
negative = *s == '-';
if (*s == '-' || *s == '+')
++s;
num = underlying_strtod (s, &endbuf);
end = endbuf;
if (c_isdigit (s[*s == '.']))
{
/* If a hex float was converted incorrectly, do it ourselves.
If the string starts with "0x" but does not contain digits,
consume the "0" ourselves. If a hex float is followed by a
'p' but no exponent, then adjust the end pointer. */
if (*s == '0' && c_tolower (s[1]) == 'x')
{
if (! c_isxdigit (s[2 + (s[2] == '.')]))
{
end = s + 1;
/* strtod() on z/OS returns ERANGE for "0x". */
errno = saved_errno;
}
else if (end <= s + 2)
{
num = parse_number (s + 2, 16, 2, 4, 'p', &endbuf);
end = endbuf;
}
else
{
const char *p = s + 2;
while (p < end && c_tolower (*p) != 'p')
p++;
if (p < end && ! c_isdigit (p[1 + (p[1] == '-' || p[1] == '+')]))
end = p;
}
}
else
{
/* If "1e 1" was misparsed as 10.0 instead of 1.0, re-do the
underlying strtod on a copy of the original string
truncated to avoid the bug. */
const char *e = s + 1;
while (e < end && c_tolower (*e) != 'e')
e++;
if (e < end && ! c_isdigit (e[1 + (e[1] == '-' || e[1] == '+')]))
{
char *dup = strdup (s);
errno = saved_errno;
if (!dup)
{
/* Not really our day, is it. Rounding errors are
better than outright failure. */
num = parse_number (s, 10, 10, 1, 'e', &endbuf);
}
else
{
dup[e - s] = '\0';
num = underlying_strtod (dup, &endbuf);
saved_errno = errno;
free (dup);
errno = saved_errno;
}
end = e;
}
}
s = end;
}
/* Check for infinities and NaNs. */
else if (c_tolower (*s) == 'i'
&& c_tolower (s[1]) == 'n'
&& c_tolower (s[2]) == 'f')
{
s += 3;
if (c_tolower (*s) == 'i'
&& c_tolower (s[1]) == 'n'
&& c_tolower (s[2]) == 'i'
&& c_tolower (s[3]) == 't'
&& c_tolower (s[4]) == 'y')
s += 5;
num = HUGE_VAL;
errno = saved_errno;
}
else if (c_tolower (*s) == 'n'
&& c_tolower (s[1]) == 'a'
&& c_tolower (s[2]) == 'n')
{
s += 3;
if (*s == '(')
{
const char *p = s + 1;
while (c_isalnum (*p))
p++;
if (*p == ')')
s = p + 1;
}
/* If the underlying implementation misparsed the NaN, assume
its result is incorrect, and return a NaN. Normally it's
better to use the underlying implementation's result, since a
nice implementation populates the bits of the NaN according
to interpreting n-char-sequence as a hexadecimal number. */
if (s != end || num == num)
num = NAN;
errno = saved_errno;
}
else
{
/* No conversion could be performed. */
errno = EINVAL;
s = nptr;
}
if (endptr != NULL)
*endptr = (char *) s;
/* Special case -0.0, since at least ICC miscompiles negation. We
can't use copysign(), as that drags in -lm on some platforms. */
if (!num && negative)
return minus_zero;
return negative ? -num : num;
}
/* The underlying strtod implementation. This must be defined
after strtod because it #undefs strtod. */
static double
underlying_strtod (const char *nptr, char **endptr)
{
#undef strtod
return strtod (nptr, endptr);
}