Branch
Hash :
7b089321
Author :
Date :
2025-01-01T09:24:36
maint: run 'make update-copyright'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/* Exponential base 2 function.
Copyright (C) 2011-2025 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
/* Specification. */
#include <math.h>
#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
long double
exp2l (long double x)
{
return exp2 (x);
}
#else
# include <float.h>
/* gl_expl_table[i] = exp((i - 128) * log(2)/256). */
extern const long double gl_expl_table[257];
/* Best possible approximation of log(2) as a 'long double'. */
#define LOG2 0.693147180559945309417232121458176568075L
/* Best possible approximation of 1/log(2) as a 'long double'. */
#define LOG2_INVERSE 1.44269504088896340735992468100189213743L
/* Best possible approximation of log(2)/256 as a 'long double'. */
#define LOG2_BY_256 0.00270760617406228636491106297444600221904L
/* Best possible approximation of 256/log(2) as a 'long double'. */
#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L
long double
exp2l (long double x)
{
/* exp2(x) = exp(x*log(2)).
If we would compute it like this, there would be rounding errors for
integer or near-integer values of x. To avoid these, we inline the
algorithm for exp(), and the multiplication with log(2) cancels a
division by log(2). */
if (isnanl (x))
return x;
if (x > (long double) LDBL_MAX_EXP)
/* x > LDBL_MAX_EXP
hence exp2(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */
return HUGE_VALL;
if (x < (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG))
/* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG)
hence exp2(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG),
underflows to zero. */
return 0.0L;
/* Decompose x into
x = n + m/256 + y/log(2)
where
n is an integer,
m is an integer, -128 <= m <= 128,
y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
Then
exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
The first factor is an ldexpl() call.
The second factor is a table lookup.
The third factor is computed
- either as sinh(y) + cosh(y)
where sinh(y) is computed through the power series:
sinh(y) = y + y^3/3! + y^5/5! + ...
and cosh(y) is computed as hypot(1, sinh(y)),
- or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
where z = y/2
and tanh(z) is computed through its power series:
tanh(z) = z
- 1/3 * z^3
+ 2/15 * z^5
- 17/315 * z^7
+ 62/2835 * z^9
- 1382/155925 * z^11
+ 21844/6081075 * z^13
- 929569/638512875 * z^15
+ ...
Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we
can truncate the series after the z^11 term. */
{
long double nm = roundl (x * 256.0L); /* = 256 * n + m */
long double z = (x * 256.0L - nm) * (LOG2_BY_256 * 0.5L);
/* Coefficients of the power series for tanh(z). */
#define TANH_COEFF_1 1.0L
#define TANH_COEFF_3 -0.333333333333333333333333333333333333334L
#define TANH_COEFF_5 0.133333333333333333333333333333333333334L
#define TANH_COEFF_7 -0.053968253968253968253968253968253968254L
#define TANH_COEFF_9 0.0218694885361552028218694885361552028218L
#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L
#define TANH_COEFF_13 0.00359212803657248101692546136990581435026L
#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L
long double z2 = z * z;
long double tanh_z =
(((((TANH_COEFF_11
* z2 + TANH_COEFF_9)
* z2 + TANH_COEFF_7)
* z2 + TANH_COEFF_5)
* z2 + TANH_COEFF_3)
* z2 + TANH_COEFF_1)
* z;
long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z);
int n = (int) roundl (nm * (1.0L / 256.0L));
int m = (int) nm - 256 * n;
return ldexpl (gl_expl_table[128 + m] * exp_y, n);
}
}
#endif