Branch
Hash :
a747e037
Author :
Date :
2025-05-07T11:34:47
Add syntax-check rule against CPU predef misspellings. * lib/getloadavg.c: Test __alpha, not __alpha__. * tests/test-snan-2.c: Likewise. * m4/exponentd.m4: Test __arm__, not __arm. * lib/utimensat.c: Test __hppa, not __hppa__. * tests/qemu.h: Likewise. * lib/fma.c: Test __sparc, not __sparc__. * tests/qemu.h: Likewise. * tests/test-exp2.h: Likewise. * tests/test-nonblocking-pipe.h: Likewise. * tests/test-snan-1.c: Likewise. * tests/test-snan-2.c: Likewise.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/* Fused multiply-add.
Copyright (C) 2007, 2009, 2011-2025 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2011. */
#if ! defined USE_LONG_DOUBLE
# include <config.h>
#endif
/* Specification. */
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#if HAVE_FEGETROUND
# include <fenv.h>
#endif
#include "float+.h"
#include "integer_length.h"
#ifdef USE_LONG_DOUBLE
# define FUNC fmal
# define DOUBLE long double
# define FREXP frexpl
# define LDEXP ldexpl
# define MIN_EXP LDBL_MIN_EXP
# define MANT_BIT LDBL_MANT_BIT
# define L_(literal) literal##L
#elif ! defined USE_FLOAT
# define FUNC fma
# define DOUBLE double
# define FREXP frexp
# define LDEXP ldexp
# define MIN_EXP DBL_MIN_EXP
# define MANT_BIT DBL_MANT_BIT
# define L_(literal) literal
#else /* defined USE_FLOAT */
# define FUNC fmaf
# define DOUBLE float
# define FREXP frexpf
# define LDEXP ldexpf
# define MIN_EXP FLT_MIN_EXP
# define MANT_BIT FLT_MANT_BIT
# define L_(literal) literal##f
#endif
#undef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#undef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
/* MSVC with option -fp:strict refuses to compile constant initializers that
contain floating-point operations. Pacify this compiler. */
#if defined _MSC_VER && !defined __clang__
# pragma fenv_access (off)
#endif
/* Work around GCC 4.2.1 bug on OpenBSD 5.1/SPARC64. */
#if defined __GNUC__ && defined __sparc
# define VOLATILE volatile
#else
# define VOLATILE
#endif
/* It is possible to write an implementation of fused multiply-add with
floating-point operations alone. See
Sylvie Boldo, Guillaume Melquiond:
Emulation of FMA and correctly-rounded sums: proved algorithms using
rounding to odd.
<https://www.lri.fr/~melquion/doc/08-tc.pdf>
But is it complicated.
Here we take the simpler (and probably slower) approach of doing
multi-precision arithmetic. */
/* We use the naming conventions of GNU gmp, but vastly simpler (and slower)
algorithms. */
typedef unsigned int mp_limb_t;
#define GMP_LIMB_BITS 32
static_assert (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS);
typedef unsigned long long mp_twolimb_t;
#define GMP_TWOLIMB_BITS 64
static_assert (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS);
/* Number of limbs needed for a single DOUBLE. */
#define NLIMBS1 ((MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS)
/* Number of limbs needed for the accumulator. */
#define NLIMBS3 (3 * NLIMBS1 + 1)
/* Assuming 0.5 <= x < 1.0:
Convert the mantissa (x * 2^DBL_MANT_BIT) to a sequence of limbs. */
static void
decode (DOUBLE x, mp_limb_t limbs[NLIMBS1])
{
/* I'm not sure whether it's safe to cast a 'double' value between
2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
'double' values between 0 and 2^31 (to 'unsigned int' or 'int',
doesn't matter).
So, we split the MANT_BIT bits of x into a number of chunks of
at most 31 bits. */
enum { chunk_count = (MANT_BIT - 1) / 31 + 1 };
/* Variables used for storing the bits limb after limb. */
mp_limb_t *p = limbs + NLIMBS1 - 1;
mp_limb_t accu = 0;
unsigned int bits_needed = MANT_BIT - (NLIMBS1 - 1) * GMP_LIMB_BITS;
/* The bits bits_needed-1...0 need to be ORed into the accu.
1 <= bits_needed <= GMP_LIMB_BITS. */
/* Unroll the first 4 loop rounds. */
if (chunk_count > 0)
{
/* Here we still have MANT_BIT-0*31 bits to extract from x. */
enum { chunk_bits = MIN (31, MANT_BIT - 0 * 31) }; /* > 0, <= 31 */
mp_limb_t d;
x *= (mp_limb_t) 1 << chunk_bits;
d = (int) x; /* 0 <= d < 2^chunk_bits. */
x -= d;
if (!(x >= L_(0.0) && x < L_(1.0)))
abort ();
if (bits_needed < chunk_bits)
{
/* store bits_needed bits */
accu |= d >> (chunk_bits - bits_needed);
*p = accu;
if (p == limbs)
goto done;
p--;
/* hold (chunk_bits - bits_needed) bits */
accu = d << (GMP_LIMB_BITS - (chunk_bits - bits_needed));
bits_needed = GMP_LIMB_BITS - (chunk_bits - bits_needed);
}
else
{
/* store chunk_bits bits */
accu |= d << (bits_needed - chunk_bits);
bits_needed -= chunk_bits;
if (bits_needed == 0)
{
*p = accu;
if (p == limbs)
goto done;
p--;
accu = 0;
bits_needed = GMP_LIMB_BITS;
}
}
}
if (chunk_count > 1)
{
/* Here we still have MANT_BIT-1*31 bits to extract from x. */
enum { chunk_bits = MIN (31, MAX (MANT_BIT - 1 * 31, 0)) }; /* > 0, <= 31 */
mp_limb_t d;
x *= (mp_limb_t) 1 << chunk_bits;
d = (int) x; /* 0 <= d < 2^chunk_bits. */
x -= d;
if (!(x >= L_(0.0) && x < L_(1.0)))
abort ();
if (bits_needed < chunk_bits)
{
/* store bits_needed bits */
accu |= d >> (chunk_bits - bits_needed);
*p = accu;
if (p == limbs)
goto done;
p--;
/* hold (chunk_bits - bits_needed) bits */
accu = d << (GMP_LIMB_BITS - (chunk_bits - bits_needed));
bits_needed = GMP_LIMB_BITS - (chunk_bits - bits_needed);
}
else
{
/* store chunk_bits bits */
accu |= d << (bits_needed - chunk_bits);
bits_needed -= chunk_bits;
if (bits_needed == 0)
{
*p = accu;
if (p == limbs)
goto done;
p--;
accu = 0;
bits_needed = GMP_LIMB_BITS;
}
}
}
if (chunk_count > 2)
{
/* Here we still have MANT_BIT-2*31 bits to extract from x. */
enum { chunk_bits = MIN (31, MAX (MANT_BIT - 2 * 31, 0)) }; /* > 0, <= 31 */
mp_limb_t d;
x *= (mp_limb_t) 1 << chunk_bits;
d = (int) x; /* 0 <= d < 2^chunk_bits. */
x -= d;
if (!(x >= L_(0.0) && x < L_(1.0)))
abort ();
if (bits_needed < chunk_bits)
{
/* store bits_needed bits */
accu |= d >> (chunk_bits - bits_needed);
*p = accu;
if (p == limbs)
goto done;
p--;
/* hold (chunk_bits - bits_needed) bits */
accu = d << (GMP_LIMB_BITS - (chunk_bits - bits_needed));
bits_needed = GMP_LIMB_BITS - (chunk_bits - bits_needed);
}
else
{
/* store chunk_bits bits */
accu |= d << (bits_needed - chunk_bits);
bits_needed -= chunk_bits;
if (bits_needed == 0)
{
*p = accu;
if (p == limbs)
goto done;
p--;
accu = 0;
bits_needed = GMP_LIMB_BITS;
}
}
}
if (chunk_count > 3)
{
/* Here we still have MANT_BIT-3*31 bits to extract from x. */
enum { chunk_bits = MIN (31, MAX (MANT_BIT - 3 * 31, 0)) }; /* > 0, <= 31 */
mp_limb_t d;
x *= (mp_limb_t) 1 << chunk_bits;
d = (int) x; /* 0 <= d < 2^chunk_bits. */
x -= d;
if (!(x >= L_(0.0) && x < L_(1.0)))
abort ();
if (bits_needed < chunk_bits)
{
/* store bits_needed bits */
accu |= d >> (chunk_bits - bits_needed);
*p = accu;
if (p == limbs)
goto done;
p--;
/* hold (chunk_bits - bits_needed) bits */
accu = d << (GMP_LIMB_BITS - (chunk_bits - bits_needed));
bits_needed = GMP_LIMB_BITS - (chunk_bits - bits_needed);
}
else
{
/* store chunk_bits bits */
accu |= d << (bits_needed - chunk_bits);
bits_needed -= chunk_bits;
if (bits_needed == 0)
{
*p = accu;
if (p == limbs)
goto done;
p--;
accu = 0;
bits_needed = GMP_LIMB_BITS;
}
}
}
if (chunk_count > 4)
{
/* Here we still have MANT_BIT-4*31 bits to extract from x. */
/* Generic loop. */
size_t k;
for (k = 4; k < chunk_count; k++)
{
size_t chunk_bits = MIN (31, MANT_BIT - k * 31); /* > 0, <= 31 */
mp_limb_t d;
x *= (mp_limb_t) 1 << chunk_bits;
d = (int) x; /* 0 <= d < 2^chunk_bits. */
x -= d;
if (!(x >= L_(0.0) && x < L_(1.0)))
abort ();
if (bits_needed < chunk_bits)
{
/* store bits_needed bits */
accu |= d >> (chunk_bits - bits_needed);
*p = accu;
if (p == limbs)
goto done;
p--;
/* hold (chunk_bits - bits_needed) bits */
accu = d << (GMP_LIMB_BITS - (chunk_bits - bits_needed));
bits_needed = GMP_LIMB_BITS - (chunk_bits - bits_needed);
}
else
{
/* store chunk_bits bits */
accu |= d << (bits_needed - chunk_bits);
bits_needed -= chunk_bits;
if (bits_needed == 0)
{
*p = accu;
if (p == limbs)
goto done;
p--;
accu = 0;
bits_needed = GMP_LIMB_BITS;
}
}
}
}
/* We shouldn't get here. */
abort ();
done: ;
#ifndef USE_LONG_DOUBLE /* On FreeBSD 6.1/x86, 'long double' numbers sometimes
have excess precision. */
if (!(x == L_(0.0)))
abort ();
#endif
}
/* Multiply two sequences of limbs. */
static void
multiply (mp_limb_t xlimbs[NLIMBS1], mp_limb_t ylimbs[NLIMBS1],
mp_limb_t prod_limbs[2 * NLIMBS1])
{
size_t k, i, j;
enum { len1 = NLIMBS1 };
enum { len2 = NLIMBS1 };
for (k = len2; k > 0; )
prod_limbs[--k] = 0;
for (i = 0; i < len1; i++)
{
mp_limb_t digit1 = xlimbs[i];
mp_twolimb_t carry = 0;
for (j = 0; j < len2; j++)
{
mp_limb_t digit2 = ylimbs[j];
carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
carry += prod_limbs[i + j];
prod_limbs[i + j] = (mp_limb_t) carry;
carry = carry >> GMP_LIMB_BITS;
}
prod_limbs[i + len2] = (mp_limb_t) carry;
}
}
DOUBLE
FUNC (DOUBLE x, DOUBLE y, DOUBLE z)
{
if (isfinite (x) && isfinite (y))
{
if (isfinite (z))
{
/* x, y, z are all finite. */
if (x == L_(0.0) || y == L_(0.0))
return z;
if (z == L_(0.0))
return x * y;
/* x, y, z are all non-zero.
The result is x * y + z. */
{
int e; /* exponent of x * y + z */
int sign;
mp_limb_t sum[NLIMBS3];
size_t sum_len;
{
int xys; /* sign of x * y */
int zs; /* sign of z */
int xye; /* sum of exponents of x and y */
int ze; /* exponent of z */
mp_limb_t summand1[NLIMBS3];
size_t summand1_len;
mp_limb_t summand2[NLIMBS3];
size_t summand2_len;
{
mp_limb_t zlimbs[NLIMBS1];
mp_limb_t xylimbs[2 * NLIMBS1];
{
DOUBLE xn; /* normalized part of x */
DOUBLE yn; /* normalized part of y */
DOUBLE zn; /* normalized part of z */
int xe; /* exponent of x */
int ye; /* exponent of y */
mp_limb_t xlimbs[NLIMBS1];
mp_limb_t ylimbs[NLIMBS1];
xys = 0;
xn = x;
if (x < 0)
{
xys = 1;
xn = - x;
}
yn = y;
if (y < 0)
{
xys = 1 - xys;
yn = - y;
}
zs = 0;
zn = z;
if (z < 0)
{
zs = 1;
zn = - z;
}
/* xn, yn, zn are all positive.
The result is (-1)^xys * xn * yn + (-1)^zs * zn. */
xn = FREXP (xn, &xe);
yn = FREXP (yn, &ye);
zn = FREXP (zn, &ze);
xye = xe + ye;
/* xn, yn, zn are all < 1.0 and >= 0.5.
The result is
(-1)^xys * 2^xye * xn * yn + (-1)^zs * 2^ze * zn. */
if (xye < ze - MANT_BIT)
{
/* 2^xye * xn * yn < 2^xye <= 2^(ze-MANT_BIT-1) */
return z;
}
if (xye - 2 * MANT_BIT > ze)
{
/* 2^ze * zn < 2^ze <= 2^(xye-2*MANT_BIT-1).
We cannot simply do
return x * y;
because it would round differently: A round-to-even
in the multiplication can be a round-up or round-down
here, due to z. So replace z with a value that doesn't
require the use of long bignums but that rounds the
same way. */
zn = L_(0.5);
ze = xye - 2 * MANT_BIT - 1;
}
/* Convert mantissas of xn, yn, zn to limb sequences:
xlimbs = 2^MANT_BIT * xn
ylimbs = 2^MANT_BIT * yn
zlimbs = 2^MANT_BIT * zn */
decode (xn, xlimbs);
decode (yn, ylimbs);
decode (zn, zlimbs);
/* Multiply the mantissas of xn and yn:
xylimbs = xlimbs * ylimbs */
multiply (xlimbs, ylimbs, xylimbs);
}
/* The result is
(-1)^xys * 2^(xye-2*MANT_BIT) * xylimbs
+ (-1)^zs * 2^(ze-MANT_BIT) * zlimbs.
Compute
e = min (xye-2*MANT_BIT, ze-MANT_BIT)
then
summand1 = 2^(xye-2*MANT_BIT-e) * xylimbs
summand2 = 2^(ze-MANT_BIT-e) * zlimbs */
e = MIN (xye - 2 * MANT_BIT, ze - MANT_BIT);
if (e == xye - 2 * MANT_BIT)
{
/* Simply copy the limbs of xylimbs. */
size_t i;
for (i = 0; i < 2 * NLIMBS1; i++)
summand1[i] = xylimbs[i];
summand1_len = 2 * NLIMBS1;
}
else
{
size_t ediff = xye - 2 * MANT_BIT - e;
/* Left shift the limbs of xylimbs by ediff bits. */
size_t ldiff = ediff / GMP_LIMB_BITS;
size_t shift = ediff % GMP_LIMB_BITS;
size_t i;
for (i = 0; i < ldiff; i++)
summand1[i] = 0;
if (shift > 0)
{
mp_limb_t carry = 0;
for (i = 0; i < 2 * NLIMBS1; i++)
{
summand1[ldiff + i] = (xylimbs[i] << shift) | carry;
carry = xylimbs[i] >> (GMP_LIMB_BITS - shift);
}
summand1[ldiff + 2 * NLIMBS1] = carry;
summand1_len = ldiff + 2 * NLIMBS1 + 1;
}
else
{
for (i = 0; i < 2 * NLIMBS1; i++)
summand1[ldiff + i] = xylimbs[i];
summand1_len = ldiff + 2 * NLIMBS1;
}
/* Estimation of needed array size:
ediff = (xye - 2 * MANT_BIT) - (ze - MANT_BIT) <= MANT_BIT + 1
therefore
summand1_len
= (ediff + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS + 2 * NLIMBS1
<= (MANT_BIT + GMP_LIMB_BITS) / GMP_LIMB_BITS + 2 * NLIMBS1
<= 3 * NLIMBS1 + 1
= NLIMBS3 */
if (!(summand1_len <= NLIMBS3))
abort ();
}
if (e == ze - MANT_BIT)
{
/* Simply copy the limbs of zlimbs. */
size_t i;
for (i = 0; i < NLIMBS1; i++)
summand2[i] = zlimbs[i];
summand2_len = NLIMBS1;
}
else
{
size_t ediff = ze - MANT_BIT - e;
/* Left shift the limbs of zlimbs by ediff bits. */
size_t ldiff = ediff / GMP_LIMB_BITS;
size_t shift = ediff % GMP_LIMB_BITS;
size_t i;
for (i = 0; i < ldiff; i++)
summand2[i] = 0;
if (shift > 0)
{
mp_limb_t carry = 0;
for (i = 0; i < NLIMBS1; i++)
{
summand2[ldiff + i] = (zlimbs[i] << shift) | carry;
carry = zlimbs[i] >> (GMP_LIMB_BITS - shift);
}
summand2[ldiff + NLIMBS1] = carry;
summand2_len = ldiff + NLIMBS1 + 1;
}
else
{
for (i = 0; i < NLIMBS1; i++)
summand2[ldiff + i] = zlimbs[i];
summand2_len = ldiff + NLIMBS1;
}
/* Estimation of needed array size:
ediff = (ze - MANT_BIT) - (xye - 2 * MANT_BIT) <= 2 * MANT_BIT
therefore
summand2_len
= (ediff + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS + NLIMBS1
<= (2 * MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS + NLIMBS1
<= 3 * NLIMBS1 + 1
= NLIMBS3 */
if (!(summand2_len <= NLIMBS3))
abort ();
}
}
/* The result is
(-1)^xys * 2^e * summand1 + (-1)^zs * 2^e * summand2. */
if (xys == zs)
{
/* Perform an addition. */
size_t i;
mp_limb_t carry;
sign = xys;
carry = 0;
for (i = 0; i < MIN (summand1_len, summand2_len); i++)
{
mp_limb_t digit1 = summand1[i];
mp_limb_t digit2 = summand2[i];
sum[i] = digit1 + digit2 + carry;
carry = (carry
? digit1 >= (mp_limb_t)-1 - digit2
: digit1 > (mp_limb_t)-1 - digit2);
}
if (summand1_len > summand2_len)
for (; i < summand1_len; i++)
{
mp_limb_t digit1 = summand1[i];
sum[i] = carry + digit1;
carry = carry && digit1 == (mp_limb_t)-1;
}
else
for (; i < summand2_len; i++)
{
mp_limb_t digit2 = summand2[i];
sum[i] = carry + digit2;
carry = carry && digit2 == (mp_limb_t)-1;
}
if (carry)
sum[i++] = carry;
sum_len = i;
}
else
{
/* Perform a subtraction. */
/* Compare summand1 and summand2 by magnitude. */
while (summand1[summand1_len - 1] == 0)
summand1_len--;
while (summand2[summand2_len - 1] == 0)
summand2_len--;
if (summand1_len > summand2_len)
sign = xys;
else if (summand1_len < summand2_len)
sign = zs;
else
{
size_t i = summand1_len;
for (;;)
{
--i;
if (summand1[i] > summand2[i])
{
sign = xys;
break;
}
if (summand1[i] < summand2[i])
{
sign = zs;
break;
}
if (i == 0)
/* summand1 and summand2 are equal. */
return L_(0.0);
}
}
if (sign == xys)
{
/* Compute summand1 - summand2. */
size_t i;
mp_limb_t carry;
carry = 0;
for (i = 0; i < summand2_len; i++)
{
mp_limb_t digit1 = summand1[i];
mp_limb_t digit2 = summand2[i];
sum[i] = digit1 - digit2 - carry;
carry = (carry ? digit1 <= digit2 : digit1 < digit2);
}
for (; i < summand1_len; i++)
{
mp_limb_t digit1 = summand1[i];
sum[i] = digit1 - carry;
carry = carry && digit1 == 0;
}
if (carry)
abort ();
sum_len = summand1_len;
}
else
{
/* Compute summand2 - summand1. */
size_t i;
mp_limb_t carry;
carry = 0;
for (i = 0; i < summand1_len; i++)
{
mp_limb_t digit1 = summand1[i];
mp_limb_t digit2 = summand2[i];
sum[i] = digit2 - digit1 - carry;
carry = (carry ? digit2 <= digit1 : digit2 < digit1);
}
for (; i < summand2_len; i++)
{
mp_limb_t digit2 = summand2[i];
sum[i] = digit2 - carry;
carry = carry && digit2 == 0;
}
if (carry)
abort ();
sum_len = summand2_len;
}
}
}
/* The result is
(-1)^sign * 2^e * sum. */
/* Now perform the rounding to MANT_BIT mantissa bits. */
while (sum[sum_len - 1] == 0)
sum_len--;
/* Here we know that the most significant limb, sum[sum_len - 1], is
non-zero. */
{
/* How many bits the sum has. */
unsigned int sum_bits =
integer_length (sum[sum_len - 1]) + (sum_len - 1) * GMP_LIMB_BITS;
/* How many bits to keep when rounding. */
unsigned int keep_bits;
/* How many bits to round off. */
unsigned int roundoff_bits;
if (e + (int) sum_bits >= MIN_EXP)
/* 2^e * sum >= 2^(MIN_EXP-1).
result will be a normalized number. */
keep_bits = MANT_BIT;
else if (e + (int) sum_bits >= MIN_EXP - MANT_BIT)
/* 2^e * sum >= 2^(MIN_EXP-MANT_BIT-1).
result will be a denormalized number or rounded to zero. */
keep_bits = e + (int) sum_bits - (MIN_EXP + MANT_BIT);
else
/* 2^e * sum < 2^(MIN_EXP-MANT_BIT-1). Round to zero. */
return L_(0.0);
/* Note: 0 <= keep_bits <= MANT_BIT. */
if (sum_bits <= keep_bits)
{
/* Nothing to do. */
roundoff_bits = 0;
keep_bits = sum_bits;
}
else
{
int round_up;
roundoff_bits = sum_bits - keep_bits; /* > 0, <= sum_bits */
{
#if HAVE_FEGETROUND && defined FE_TOWARDZERO
/* Cf. <https://pubs.opengroup.org/onlinepubs/9699919799/functions/fegetround.html> */
int rounding_mode = fegetround ();
if (rounding_mode == FE_TOWARDZERO)
round_up = 0;
# if defined FE_DOWNWARD /* not defined on sh4 */
else if (rounding_mode == FE_DOWNWARD)
round_up = sign;
# endif
# if defined FE_UPWARD /* not defined on sh4 */
else if (rounding_mode == FE_UPWARD)
round_up = !sign;
# endif
#else
/* Cf. <https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/float.h.html> */
int rounding_mode = FLT_ROUNDS;
if (rounding_mode == 0) /* toward zero */
round_up = 0;
else if (rounding_mode == 3) /* toward negative infinity */
round_up = sign;
else if (rounding_mode == 2) /* toward positive infinity */
round_up = !sign;
#endif
else
{
/* Round to nearest. */
round_up = 0;
/* Test bit (roundoff_bits-1). */
if ((sum[(roundoff_bits - 1) / GMP_LIMB_BITS]
>> ((roundoff_bits - 1) % GMP_LIMB_BITS)) & 1)
{
/* Test bits roundoff_bits-1 .. 0. */
bool halfway =
((sum[(roundoff_bits - 1) / GMP_LIMB_BITS]
& (((mp_limb_t) 1 << ((roundoff_bits - 1) % GMP_LIMB_BITS)) - 1))
== 0);
if (halfway)
{
int i;
for (i = (roundoff_bits - 1) / GMP_LIMB_BITS - 1; i >= 0; i--)
if (sum[i] != 0)
{
halfway = false;
break;
}
}
if (halfway)
/* Round to even. Test bit roundoff_bits. */
round_up = ((sum[roundoff_bits / GMP_LIMB_BITS]
>> (roundoff_bits % GMP_LIMB_BITS)) & 1);
else
/* Round up. */
round_up = 1;
}
}
}
/* Perform the rounding. */
{
size_t i = roundoff_bits / GMP_LIMB_BITS;
{
size_t j = i;
while (j > 0)
sum[--j] = 0;
}
if (round_up)
{
/* Round up. */
sum[i] =
(sum[i]
| (((mp_limb_t) 1 << (roundoff_bits % GMP_LIMB_BITS)) - 1))
+ 1;
if (sum[i] == 0)
{
/* Propagate carry. */
while (i < sum_len - 1)
{
++i;
sum[i] += 1;
if (sum[i] != 0)
break;
}
}
/* sum[i] is the most significant limb that was
incremented. */
if (i == sum_len - 1 && (sum[i] & (sum[i] - 1)) == 0)
{
/* Through the carry, one more bit is needed. */
if (sum[i] != 0)
sum_bits += 1;
else
{
/* Instead of requiring one more limb of memory,
perform a shift by one bit, and adjust the
exponent. */
sum[i] = (mp_limb_t) 1 << (GMP_LIMB_BITS - 1);
e += 1;
}
/* The bit sequence has the form 1000...000. */
keep_bits = 1;
}
}
else
{
/* Round down. */
sum[i] &= ((mp_limb_t) -1 << (roundoff_bits % GMP_LIMB_BITS));
if (i == sum_len - 1 && sum[i] == 0)
/* The entire sum has become zero. */
return L_(0.0);
}
}
}
/* The result is
(-1)^sign * 2^e * sum
and here we know that
2^(sum_bits-1) <= sum < 2^sum_bits,
and sum is a multiple of 2^(sum_bits-keep_bits), where
0 < keep_bits <= MANT_BIT and keep_bits <= sum_bits.
(If keep_bits was initially 0, the rounding either returned zero
or produced a bit sequence of the form 1000...000, setting
keep_bits to 1.) */
{
/* Split the keep_bits bits into chunks of at most 32 bits. */
unsigned int chunk_count = (keep_bits - 1) / GMP_LIMB_BITS + 1;
/* 1 <= chunk_count <= ceil (sum_bits / GMP_LIMB_BITS) = sum_len. */
static const DOUBLE chunk_multiplier = /* 2^-GMP_LIMB_BITS */
L_(1.0) / ((DOUBLE) (1 << (GMP_LIMB_BITS / 2))
* (DOUBLE) (1 << ((GMP_LIMB_BITS + 1) / 2)));
unsigned int shift = sum_bits % GMP_LIMB_BITS;
DOUBLE fsum;
if (MANT_BIT <= GMP_LIMB_BITS)
{
/* Since keep_bits <= MANT_BIT <= GMP_LIMB_BITS,
chunk_count is 1. No need for a loop. */
if (shift == 0)
fsum = (DOUBLE) sum[sum_len - 1];
else
fsum = (DOUBLE)
((sum[sum_len - 1] << (GMP_LIMB_BITS - shift))
| (sum_len >= 2 ? sum[sum_len - 2] >> shift : 0));
}
else
{
int k;
k = chunk_count - 1;
if (shift == 0)
{
/* First loop round. */
fsum = (DOUBLE) sum[sum_len - k - 1];
/* General loop. */
while (--k >= 0)
{
fsum *= chunk_multiplier;
fsum += (DOUBLE) sum[sum_len - k - 1];
}
}
else
{
/* First loop round. */
{
VOLATILE mp_limb_t chunk =
(sum[sum_len - k - 1] << (GMP_LIMB_BITS - shift))
| (sum_len >= k + 2 ? sum[sum_len - k - 2] >> shift : 0);
fsum = (DOUBLE) chunk;
}
/* General loop. */
while (--k >= 0)
{
fsum *= chunk_multiplier;
{
VOLATILE mp_limb_t chunk =
(sum[sum_len - k - 1] << (GMP_LIMB_BITS - shift))
| (sum[sum_len - k - 2] >> shift);
fsum += (DOUBLE) chunk;
}
}
}
}
fsum = LDEXP (fsum, e + (int) sum_bits - GMP_LIMB_BITS);
return (sign ? - fsum : fsum);
}
}
}
}
else
return z;
}
else
return (x * y) + z;
}