Branch
Hash :
8cec9fea
Author :
Date :
2025-09-10T22:59:11
fma: Remove support for IRIX. * m4/fma.m4 (gl_FUNC_FMA): Don't test whether fma is declared.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
# fma.m4
# serial 9
dnl Copyright (C) 2011-2025 Free Software Foundation, Inc.
dnl This file is free software; the Free Software Foundation
dnl gives unlimited permission to copy and/or distribute it,
dnl with or without modifications, as long as this notice is preserved.
dnl This file is offered as-is, without any warranty.
AC_DEFUN([gl_FUNC_FMA],
[
AC_REQUIRE([gl_MATH_H_DEFAULTS])
dnl Determine FMA_LIBM.
gl_MATHFUNC([fma], [double], [(double, double, double)],
[extern
#ifdef __cplusplus
"C"
#endif
double fma (double, double, double);
])
if test $gl_cv_func_fma_no_libm = yes \
|| test $gl_cv_func_fma_in_libm = yes; then
gl_FUNC_FMA_WORKS
case "$gl_cv_func_fma_works" in
*no) REPLACE_FMA=1 ;;
esac
else
HAVE_FMA=0
fi
if test $HAVE_FMA = 0 || test $REPLACE_FMA = 1; then
dnl Find libraries needed to link lib/fmal.c.
AC_REQUIRE([gl_FUNC_FREXP])
AC_REQUIRE([gl_FUNC_LDEXP])
AC_REQUIRE([gl_FUNC_FEGETROUND])
FMA_LIBM=
dnl Append $FREXP_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
case " $FMA_LIBM " in
*" $FREXP_LIBM "*) ;;
*) FMA_LIBM="$FMA_LIBM $FREXP_LIBM" ;;
esac
dnl Append $LDEXP_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
case " $FMA_LIBM " in
*" $LDEXP_LIBM "*) ;;
*) FMA_LIBM="$FMA_LIBM $LDEXP_LIBM" ;;
esac
dnl Append $FEGETROUND_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
case " $FMA_LIBM " in
*" $FEGETROUND_LIBM "*) ;;
*) FMA_LIBM="$FMA_LIBM $FEGETROUND_LIBM" ;;
esac
fi
AC_SUBST([FMA_LIBM])
])
dnl Test whether fma() has any of the 7 known bugs of glibc 2.11.3 on x86_64.
AC_DEFUN([gl_FUNC_FMA_WORKS],
[
AC_REQUIRE([AC_PROG_CC])
AC_REQUIRE([AC_CANONICAL_HOST]) dnl for cross-compiles
AC_REQUIRE([gl_FUNC_LDEXP])
saved_LIBS="$LIBS"
LIBS="$LIBS $FMA_LIBM $LDEXP_LIBM"
AC_CACHE_CHECK([whether fma works], [gl_cv_func_fma_works],
[
AC_RUN_IFELSE(
[AC_LANG_SOURCE([[
#include <float.h>
#include <math.h>
double (* volatile my_fma) (double, double, double) = fma;
double p0 = 0.0;
int main()
{
int failed_tests = 0;
/* These tests fail with glibc 2.11.3 on x86_64. */
{
volatile double x = 1.5; /* 3 * 2^-1 */
volatile double y = x;
volatile double z = ldexp (1.0, DBL_MANT_DIG + 1); /* 2^54 */
/* x * y + z with infinite precision: 2^54 + 9 * 2^-2.
Lies between (2^52 + 0) * 2^2 and (2^52 + 1) * 2^2
and is closer to (2^52 + 1) * 2^2, therefore the rounding
must round up and produce (2^52 + 1) * 2^2. */
volatile double expected = z + 4.0;
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 1;
}
{
volatile double x = 1.25; /* 2^0 + 2^-2 */
volatile double y = - x;
volatile double z = ldexp (1.0, DBL_MANT_DIG + 1); /* 2^54 */
/* x * y + z with infinite precision: 2^54 - 2^0 - 2^-1 - 2^-4.
Lies between (2^53 - 1) * 2^1 and 2^53 * 2^1
and is closer to (2^53 - 1) * 2^1, therefore the rounding
must round down and produce (2^53 - 1) * 2^1. */
volatile double expected = (ldexp (1.0, DBL_MANT_DIG) - 1.0) * 2.0;
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 2;
}
{
volatile double x = 1.0 + ldexp (1.0, 1 - DBL_MANT_DIG); /* 2^0 + 2^-52 */
volatile double y = x;
volatile double z = 4.0; /* 2^2 */
/* x * y + z with infinite precision: 2^2 + 2^0 + 2^-51 + 2^-104.
Lies between (2^52 + 2^50) * 2^-50 and (2^52 + 2^50 + 1) * 2^-50
and is closer to (2^52 + 2^50 + 1) * 2^-50, therefore the rounding
must round up and produce (2^52 + 2^50 + 1) * 2^-50. */
volatile double expected = 4.0 + 1.0 + ldexp (1.0, 3 - DBL_MANT_DIG);
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 4;
}
{
volatile double x = 1.0 + ldexp (1.0, 1 - DBL_MANT_DIG); /* 2^0 + 2^-52 */
volatile double y = - x;
volatile double z = 8.0; /* 2^3 */
/* x * y + z with infinite precision: 2^2 + 2^1 + 2^0 - 2^-51 - 2^-104.
Lies between (2^52 + 2^51 + 2^50 - 1) * 2^-50 and
(2^52 + 2^51 + 2^50) * 2^-50 and is closer to
(2^52 + 2^51 + 2^50 - 1) * 2^-50, therefore the rounding
must round down and produce (2^52 + 2^51 + 2^50 - 1) * 2^-50. */
volatile double expected = 7.0 - ldexp (1.0, 3 - DBL_MANT_DIG);
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 8;
}
{
volatile double x = 1.25; /* 2^0 + 2^-2 */
volatile double y = - 0.75; /* - 2^0 + 2^-2 */
volatile double z = ldexp (1.0, DBL_MANT_DIG); /* 2^53 */
/* x * y + z with infinite precision: 2^53 - 2^0 + 2^-4.
Lies between (2^53 - 2^0) and 2^53 and is closer to (2^53 - 2^0),
therefore the rounding must round down and produce (2^53 - 2^0). */
volatile double expected = ldexp (1.0, DBL_MANT_DIG) - 1.0;
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 16;
}
/* This test fails on OpenBSD 7.4/arm64. */
if ((DBL_MANT_DIG % 2) == 1)
{
volatile double x = 1.0 + ldexp (1.0, - (DBL_MANT_DIG + 1) / 2); /* 2^0 + 2^-27 */
volatile double y = 1.0 - ldexp (1.0, - (DBL_MANT_DIG + 1) / 2); /* 2^0 - 2^-27 */
volatile double z = - ldexp (1.0, DBL_MIN_EXP - DBL_MANT_DIG); /* - 2^-1074 */
/* x * y + z with infinite precision: 2^0 - 2^-54 - 2^-1074.
Lies between (2^53 - 1) * 2^-53 and 2^53 * 2^-53 and is closer to
(2^53 - 1) * 2^-53, therefore the rounding must round down and
produce (2^53 - 1) * 2^-53. */
volatile double expected = 1.0 - ldexp (1.0, - DBL_MANT_DIG);
volatile double result = my_fma (x, y, z);
if (result != expected)
failed_tests |= 32;
}
{
double minus_inf = -1.0 / p0;
volatile double x = ldexp (1.0, DBL_MAX_EXP - 1);
volatile double y = ldexp (1.0, DBL_MAX_EXP - 1);
volatile double z = minus_inf;
volatile double result = my_fma (x, y, z);
if (!(result == minus_inf))
failed_tests |= 64;
}
return failed_tests;
}]])],
[gl_cv_func_fma_works=yes],
[gl_cv_func_fma_works=no],
[dnl Guess yes on native Windows with MSVC.
dnl Otherwise guess no, even on glibc systems.
gl_cv_func_fma_works="$gl_cross_guess_normal"
case "$host_os" in
windows*-msvc*)
gl_cv_func_fma_works="guessing yes"
;;
mingw* | windows*)
AC_EGREP_CPP([Known], [
#ifdef _MSC_VER
Known
#endif
], [gl_cv_func_fma_works="guessing yes"])
;;
esac
])
])
LIBS="$saved_LIBS"
])
# Prerequisites of lib/fma.c.
AC_DEFUN([gl_PREREQ_FMA], [:])