Edit

kc3-lang/harfbuzz/src/hb-vector.hh

Branch :

  • Show log

    Commit

  • Author : Behdad Esfahbod
    Date : 2023-01-04 11:53:49
    Hash : 3e471bbc
    Message : [vector] Better test

  • src/hb-vector.hh
  • /*
     * Copyright © 2017,2018  Google, Inc.
     *
     *  This is part of HarfBuzz, a text shaping library.
     *
     * Permission is hereby granted, without written agreement and without
     * license or royalty fees, to use, copy, modify, and distribute this
     * software and its documentation for any purpose, provided that the
     * above copyright notice and the following two paragraphs appear in
     * all copies of this software.
     *
     * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
     * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
     * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
     * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
     * DAMAGE.
     *
     * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
     * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
     * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
     * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
     *
     * Google Author(s): Behdad Esfahbod
     */
    
    #ifndef HB_VECTOR_HH
    #define HB_VECTOR_HH
    
    #include "hb.hh"
    #include "hb-array.hh"
    #include "hb-meta.hh"
    #include "hb-null.hh"
    
    
    template <typename Type,
    	  bool sorted=false>
    struct hb_vector_t
    {
      typedef Type item_t;
      static constexpr unsigned item_size = hb_static_size (Type);
      using array_t = typename std::conditional<sorted, hb_sorted_array_t<Type>, hb_array_t<Type>>::type;
      using c_array_t = typename std::conditional<sorted, hb_sorted_array_t<const Type>, hb_array_t<const Type>>::type;
    
      hb_vector_t () = default;
      hb_vector_t (std::initializer_list<Type> lst) : hb_vector_t ()
      {
        alloc (lst.size (), true);
        for (auto&& item : lst)
          push (item);
      }
      template <typename Iterable,
    	    hb_requires (hb_is_iterable (Iterable))>
      hb_vector_t (const Iterable &o) : hb_vector_t ()
      {
        auto iter = hb_iter (o);
        if (iter.is_random_access_iterator)
          alloc (hb_len (iter), true);
        hb_copy (iter, *this);
      }
      hb_vector_t (const hb_vector_t &o) : hb_vector_t ()
      {
        alloc (o.length, true);
        if (unlikely (in_error ())) return;
        copy_vector (o);
      }
      hb_vector_t (hb_vector_t &&o)
      {
        allocated = o.allocated;
        length = o.length;
        arrayZ = o.arrayZ;
        o.init ();
      }
      ~hb_vector_t () { fini (); }
    
      public:
      int allocated = 0; /* == -1 means allocation failed. */
      unsigned int length = 0;
      public:
      Type *arrayZ = nullptr;
    
      void init ()
      {
        allocated = length = 0;
        arrayZ = nullptr;
      }
      void init0 ()
      {
      }
    
      void fini ()
      {
        shrink_vector (0);
        hb_free (arrayZ);
        init ();
      }
    
      void reset ()
      {
        if (unlikely (in_error ()))
          /* Big Hack! We don't know the true allocated size before
           * an allocation failure happened. But we know it was at
           * least as big as length. Restore it to that and continue
           * as if error did not happen. */
          allocated = length;
        resize (0);
      }
    
      friend void swap (hb_vector_t& a, hb_vector_t& b)
      {
        hb_swap (a.allocated, b.allocated);
        hb_swap (a.length, b.length);
        hb_swap (a.arrayZ, b.arrayZ);
      }
    
      hb_vector_t& operator = (const hb_vector_t &o)
      {
        reset ();
        alloc (o.length, true);
        if (unlikely (in_error ())) return *this;
    
        copy_vector (o);
    
        return *this;
      }
      hb_vector_t& operator = (hb_vector_t &&o)
      {
        hb_swap (*this, o);
        return *this;
      }
    
      hb_bytes_t as_bytes () const
      { return hb_bytes_t ((const char *) arrayZ, get_size ()); }
    
      bool operator == (const hb_vector_t &o) const { return as_array () == o.as_array (); }
      bool operator != (const hb_vector_t &o) const { return !(*this == o); }
      uint32_t hash () const { return as_array ().hash (); }
    
      Type& operator [] (int i_)
      {
        unsigned int i = (unsigned int) i_;
        if (unlikely (i >= length))
          return Crap (Type);
        return arrayZ[i];
      }
      const Type& operator [] (int i_) const
      {
        unsigned int i = (unsigned int) i_;
        if (unlikely (i >= length))
          return Null (Type);
        return arrayZ[i];
      }
    
      Type& tail () { return (*this)[length - 1]; }
      const Type& tail () const { return (*this)[length - 1]; }
    
      explicit operator bool () const { return length; }
      unsigned get_size () const { return length * item_size; }
    
      /* Sink interface. */
      template <typename T>
      hb_vector_t& operator << (T&& v) { push (std::forward<T> (v)); return *this; }
    
      array_t   as_array ()       { return hb_array (arrayZ, length); }
      c_array_t as_array () const { return hb_array (arrayZ, length); }
    
      /* Iterator. */
      typedef c_array_t   iter_t;
      typedef array_t   writer_t;
        iter_t   iter () const { return as_array (); }
      writer_t writer ()       { return as_array (); }
      operator   iter_t () const { return   iter (); }
      operator writer_t ()       { return writer (); }
    
      /* Faster range-based for loop. */
      Type *begin () const { return arrayZ; }
      Type *end () const { return arrayZ + length; }
    
    
      hb_sorted_array_t<Type> as_sorted_array ()
      { return hb_sorted_array (arrayZ, length); }
      hb_sorted_array_t<const Type> as_sorted_array () const
      { return hb_sorted_array (arrayZ, length); }
    
      template <typename T> explicit operator T * () { return arrayZ; }
      template <typename T> explicit operator const T * () const { return arrayZ; }
    
      Type * operator  + (unsigned int i) { return arrayZ + i; }
      const Type * operator  + (unsigned int i) const { return arrayZ + i; }
    
      Type *push ()
      {
        if (unlikely (!resize (length + 1)))
          return &Crap (Type);
        return std::addressof (arrayZ[length - 1]);
      }
      template <typename T,
    	    typename T2 = Type,
    	    hb_enable_if (!std::is_copy_constructible<T2>::value &&
    			  std::is_copy_assignable<T>::value)>
      Type *push (T&& v)
      {
        Type *p = push ();
        if (p == &Crap (Type))
          // If push failed to allocate then don't copy v, since this may cause
          // the created copy to leak memory since we won't have stored a
          // reference to it.
          return p;
        *p = std::forward<T> (v);
        return p;
      }
      template <typename T,
    	    typename T2 = Type,
    	    hb_enable_if (std::is_copy_constructible<T2>::value)>
      Type *push (T&& v)
      {
        if (unlikely (!alloc (length + 1)))
          // If push failed to allocate then don't copy v, since this may cause
          // the created copy to leak memory since we won't have stored a
          // reference to it.
          return &Crap (Type);
    
        /* Emplace. */
        length++;
        Type *p = std::addressof (arrayZ[length - 1]);
        return new (p) Type (std::forward<T> (v));
      }
    
      bool in_error () const { return allocated < 0; }
    
      template <typename T = Type,
    	    hb_enable_if (hb_is_trivially_copy_assignable(T))>
      Type *
      realloc_vector (unsigned new_allocated)
      {
        if (!new_allocated)
        {
          hb_free (arrayZ);
          return nullptr;
        }
        return (Type *) hb_realloc (arrayZ, new_allocated * sizeof (Type));
      }
      template <typename T = Type,
    	    hb_enable_if (!hb_is_trivially_copy_assignable(T))>
      Type *
      realloc_vector (unsigned new_allocated)
      {
        if (!new_allocated)
        {
          hb_free (arrayZ);
          return nullptr;
        }
        Type *new_array = (Type *) hb_malloc (new_allocated * sizeof (Type));
        if (likely (new_array))
        {
          for (unsigned i = 0; i < length; i++)
          {
    	new (std::addressof (new_array[i])) Type ();
    	new_array[i] = std::move (arrayZ[i]);
    	arrayZ[i].~Type ();
          }
          hb_free (arrayZ);
        }
        return new_array;
      }
    
      template <typename T = Type,
    	    hb_enable_if (hb_is_trivially_constructible(T))>
      void
      grow_vector (unsigned size)
      {
        memset (arrayZ + length, 0, (size - length) * sizeof (*arrayZ));
        length = size;
      }
      template <typename T = Type,
    	    hb_enable_if (!hb_is_trivially_constructible(T))>
      void
      grow_vector (unsigned size)
      {
        while (length < size)
        {
          length++;
          new (std::addressof (arrayZ[length - 1])) Type ();
        }
      }
    
      template <typename T = Type,
    	    hb_enable_if (hb_is_trivially_copyable (T))>
      void
      copy_vector (const hb_vector_t &other)
      {
        length = other.length;
    #ifndef HB_OPTIMIZE_SIZE
        if (sizeof (T) >= sizeof (long long))
          /* This runs faster because of alignment. */
          for (unsigned i = 0; i < length; i++)
    	arrayZ[i] = other.arrayZ[i];
        else
    #endif
           hb_memcpy ((void *) arrayZ, (const void *) other.arrayZ, length * item_size);
      }
      template <typename T = Type,
    	    hb_enable_if (!hb_is_trivially_copyable (T) &&
    			   std::is_copy_constructible<T>::value)>
      void
      copy_vector (const hb_vector_t &other)
      {
        length = 0;
        while (length < other.length)
        {
          length++;
          new (std::addressof (arrayZ[length - 1])) Type (other.arrayZ[length - 1]);
        }
      }
      template <typename T = Type,
    	    hb_enable_if (!hb_is_trivially_copyable (T) &&
    			  !std::is_copy_constructible<T>::value &&
    			  std::is_default_constructible<T>::value &&
    			  std::is_copy_assignable<T>::value)>
      void
      copy_vector (const hb_vector_t &other)
      {
        length = 0;
        while (length < other.length)
        {
          length++;
          new (std::addressof (arrayZ[length - 1])) Type ();
          arrayZ[length - 1] = other.arrayZ[length - 1];
        }
      }
    
      void
      shrink_vector (unsigned size)
      {
        while ((unsigned) length > size)
        {
          arrayZ[(unsigned) length - 1].~Type ();
          length--;
        }
      }
    
      void
      shift_down_vector (unsigned i)
      {
        for (; i < length; i++)
          arrayZ[i - 1] = std::move (arrayZ[i]);
      }
    
      /* Allocate for size but don't adjust length. */
      bool alloc (unsigned int size, bool exact=false)
      {
        if (unlikely (in_error ()))
          return false;
    
        unsigned int new_allocated;
        if (exact)
        {
          /* If exact was specified, we allow shrinking the storage. */
          size = hb_max (size, length);
          if (size <= (unsigned) allocated &&
    	  size >= (unsigned) allocated >> 2)
    	return true;
    
          new_allocated = size;
        }
        else
        {
          if (likely (size <= (unsigned) allocated))
    	return true;
    
          new_allocated = allocated;
          while (size > new_allocated)
    	new_allocated += (new_allocated >> 1) + 8;
        }
    
    
        /* Reallocate */
    
        bool overflows =
          (int) in_error () ||
          (new_allocated < size) ||
          hb_unsigned_mul_overflows (new_allocated, sizeof (Type));
    
        if (unlikely (overflows))
        {
          allocated = -1;
          return false;
        }
    
        Type *new_array = realloc_vector (new_allocated);
    
        if (unlikely (new_allocated && !new_array))
        {
          if (new_allocated <= (unsigned) allocated)
            return true; // shrinking failed; it's okay; happens in our fuzzer
    
          allocated = -1;
          return false;
        }
    
        arrayZ = new_array;
        allocated = new_allocated;
    
        return true;
      }
    
      bool resize (int size_, bool initialize = true, bool exact = false)
      {
        unsigned int size = size_ < 0 ? 0u : (unsigned int) size_;
        if (!alloc (size, exact))
          return false;
    
        if (size > length)
        {
          if (initialize)
    	grow_vector (size);
        }
        else if (size < length)
        {
          if (initialize)
    	shrink_vector (size);
        }
    
        length = size;
        return true;
      }
      bool resize_exact (int size_, bool initialize = true)
      {
        return resize (size_, initialize, true);
      }
    
      Type pop ()
      {
        if (!length) return Null (Type);
        Type v {std::move (arrayZ[length - 1])};
        arrayZ[length - 1].~Type ();
        length--;
        return v;
      }
    
      void remove_ordered (unsigned int i)
      {
        if (unlikely (i >= length))
          return;
        shift_down_vector (i + 1);
        arrayZ[length - 1].~Type ();
        length--;
      }
    
      template <bool Sorted = sorted,
    	    hb_enable_if (!Sorted)>
      void remove_unordered (unsigned int i)
      {
        if (unlikely (i >= length))
          return;
        if (i != length - 1)
          arrayZ[i] = std::move (arrayZ[length - 1]);
        arrayZ[length - 1].~Type ();
        length--;
      }
    
      void shrink (int size_)
      {
        unsigned int size = size_ < 0 ? 0u : (unsigned int) size_;
        if (size >= length)
          return;
    
        shrink_vector (size);
    
        alloc (size, true); /* To force shrinking memory if needed. */
      }
    
    
      /* Sorting API. */
      void qsort (int (*cmp)(const void*, const void*) = Type::cmp)
      { as_array ().qsort (cmp); }
    
      /* Unsorted search API. */
      template <typename T>
      Type *lsearch (const T &x, Type *not_found = nullptr)
      { return as_array ().lsearch (x, not_found); }
      template <typename T>
      const Type *lsearch (const T &x, const Type *not_found = nullptr) const
      { return as_array ().lsearch (x, not_found); }
      template <typename T>
      bool lfind (const T &x, unsigned *pos = nullptr) const
      { return as_array ().lfind (x, pos); }
    
      /* Sorted search API. */
      template <typename T,
    	    bool Sorted=sorted, hb_enable_if (Sorted)>
      Type *bsearch (const T &x, Type *not_found = nullptr)
      { return as_array ().bsearch (x, not_found); }
      template <typename T,
    	    bool Sorted=sorted, hb_enable_if (Sorted)>
      const Type *bsearch (const T &x, const Type *not_found = nullptr) const
      { return as_array ().bsearch (x, not_found); }
      template <typename T,
    	    bool Sorted=sorted, hb_enable_if (Sorted)>
      bool bfind (const T &x, unsigned int *i = nullptr,
    	      hb_not_found_t not_found = HB_NOT_FOUND_DONT_STORE,
    	      unsigned int to_store = (unsigned int) -1) const
      { return as_array ().bfind (x, i, not_found, to_store); }
    };
    
    template <typename Type>
    using hb_sorted_vector_t = hb_vector_t<Type, true>;
    
    #endif /* HB_VECTOR_HH */