Hash :
fb447274
Author :
Date :
2023-08-07T09:44:41
[instancer] add instantiate () for gvar
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
* Copyright © 2021 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#ifndef HB_OT_VAR_COMMON_HH
#define HB_OT_VAR_COMMON_HH
#include "hb-ot-layout-common.hh"
namespace OT {
template <typename MapCountT>
struct DeltaSetIndexMapFormat01
{
friend struct DeltaSetIndexMap;
unsigned get_size () const
{ return min_size + mapCount * get_width (); }
private:
DeltaSetIndexMapFormat01* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
return_trace (c->embed (this));
}
template <typename T>
bool serialize (hb_serialize_context_t *c, const T &plan)
{
unsigned int width = plan.get_width ();
unsigned int inner_bit_count = plan.get_inner_bit_count ();
const hb_array_t<const uint32_t> output_map = plan.get_output_map ();
TRACE_SERIALIZE (this);
if (unlikely (output_map.length && ((((inner_bit_count-1)&~0xF)!=0) || (((width-1)&~0x3)!=0))))
return_trace (false);
if (unlikely (!c->extend_min (this))) return_trace (false);
entryFormat = ((width-1)<<4)|(inner_bit_count-1);
mapCount = output_map.length;
HBUINT8 *p = c->allocate_size<HBUINT8> (width * output_map.length);
if (unlikely (!p)) return_trace (false);
for (unsigned int i = 0; i < output_map.length; i++)
{
unsigned int v = output_map.arrayZ[i];
if (v)
{
unsigned int outer = v >> 16;
unsigned int inner = v & 0xFFFF;
unsigned int u = (outer << inner_bit_count) | inner;
for (unsigned int w = width; w > 0;)
{
p[--w] = u;
u >>= 8;
}
}
p += width;
}
return_trace (true);
}
uint32_t map (unsigned int v) const /* Returns 16.16 outer.inner. */
{
/* If count is zero, pass value unchanged. This takes
* care of direct mapping for advance map. */
if (!mapCount)
return v;
if (v >= mapCount)
v = mapCount - 1;
unsigned int u = 0;
{ /* Fetch it. */
unsigned int w = get_width ();
const HBUINT8 *p = mapDataZ.arrayZ + w * v;
for (; w; w--)
u = (u << 8) + *p++;
}
{ /* Repack it. */
unsigned int n = get_inner_bit_count ();
unsigned int outer = u >> n;
unsigned int inner = u & ((1 << n) - 1);
u = (outer<<16) | inner;
}
return u;
}
unsigned get_map_count () const { return mapCount; }
unsigned get_width () const { return ((entryFormat >> 4) & 3) + 1; }
unsigned get_inner_bit_count () const { return (entryFormat & 0xF) + 1; }
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
c->check_range (mapDataZ.arrayZ,
mapCount,
get_width ()));
}
protected:
HBUINT8 format; /* Format identifier--format = 0 */
HBUINT8 entryFormat; /* A packed field that describes the compressed
* representation of delta-set indices. */
MapCountT mapCount; /* The number of mapping entries. */
UnsizedArrayOf<HBUINT8>
mapDataZ; /* The delta-set index mapping data. */
public:
DEFINE_SIZE_ARRAY (2+MapCountT::static_size, mapDataZ);
};
struct DeltaSetIndexMap
{
template <typename T>
bool serialize (hb_serialize_context_t *c, const T &plan)
{
TRACE_SERIALIZE (this);
unsigned length = plan.get_output_map ().length;
u.format = length <= 0xFFFF ? 0 : 1;
switch (u.format) {
case 0: return_trace (u.format0.serialize (c, plan));
case 1: return_trace (u.format1.serialize (c, plan));
default:return_trace (false);
}
}
uint32_t map (unsigned v) const
{
switch (u.format) {
case 0: return (u.format0.map (v));
case 1: return (u.format1.map (v));
default:return v;
}
}
unsigned get_map_count () const
{
switch (u.format) {
case 0: return u.format0.get_map_count ();
case 1: return u.format1.get_map_count ();
default:return 0;
}
}
unsigned get_width () const
{
switch (u.format) {
case 0: return u.format0.get_width ();
case 1: return u.format1.get_width ();
default:return 0;
}
}
unsigned get_inner_bit_count () const
{
switch (u.format) {
case 0: return u.format0.get_inner_bit_count ();
case 1: return u.format1.get_inner_bit_count ();
default:return 0;
}
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!u.format.sanitize (c)) return_trace (false);
switch (u.format) {
case 0: return_trace (u.format0.sanitize (c));
case 1: return_trace (u.format1.sanitize (c));
default:return_trace (true);
}
}
DeltaSetIndexMap* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
switch (u.format) {
case 0: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format0.copy (c)));
case 1: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format1.copy (c)));
default:return_trace (nullptr);
}
}
protected:
union {
HBUINT8 format; /* Format identifier */
DeltaSetIndexMapFormat01<HBUINT16> format0;
DeltaSetIndexMapFormat01<HBUINT32> format1;
} u;
public:
DEFINE_SIZE_UNION (1, format);
};
struct VarStoreInstancer
{
VarStoreInstancer (const VariationStore *varStore,
const DeltaSetIndexMap *varIdxMap,
hb_array_t<int> coords) :
varStore (varStore), varIdxMap (varIdxMap), coords (coords) {}
operator bool () const { return varStore && bool (coords); }
/* according to the spec, if colr table has varStore but does not have
* varIdxMap, then an implicit identity mapping is used */
float operator() (uint32_t varIdx, unsigned short offset = 0) const
{ return varStore->get_delta (varIdxMap ? varIdxMap->map (VarIdx::add (varIdx, offset)) : varIdx + offset, coords); }
const VariationStore *varStore;
const DeltaSetIndexMap *varIdxMap;
hb_array_t<int> coords;
};
/* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */
struct TupleVariationHeader
{
friend struct tuple_delta_t;
unsigned get_size (unsigned axis_count) const
{ return min_size + get_all_tuples (axis_count).get_size (); }
unsigned get_data_size () const { return varDataSize; }
const TupleVariationHeader &get_next (unsigned axis_count) const
{ return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); }
bool unpack_axis_tuples (unsigned axis_count,
const hb_array_t<const F2DOT14> shared_tuples,
const hb_map_t *axes_old_index_tag_map,
hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const
{
const F2DOT14 *peak_tuple = nullptr;
if (has_peak ())
peak_tuple = get_peak_tuple (axis_count).arrayZ;
else
{
unsigned int index = get_index ();
if (unlikely ((index + 1) * axis_count > shared_tuples.length))
return false;
peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ;
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
bool has_interm = has_intermediate ();
if (has_interm)
{
start_tuple = get_start_tuple (axis_count).arrayZ;
end_tuple = get_end_tuple (axis_count).arrayZ;
}
for (unsigned i = 0; i < axis_count; i++)
{
float peak = peak_tuple[i].to_float ();
if (peak == 0.f) continue;
hb_tag_t *axis_tag;
if (!axes_old_index_tag_map->has (i, &axis_tag))
return false;
float start, end;
if (has_interm)
{
start = start_tuple[i].to_float ();
end = end_tuple[i].to_float ();
}
else
{
start = hb_min (peak, 0.f);
end = hb_max (peak, 0.f);
}
axis_tuples.set (*axis_tag, Triple (start, peak, end));
}
return true;
}
float calculate_scalar (hb_array_t<int> coords, unsigned int coord_count,
const hb_array_t<const F2DOT14> shared_tuples,
const hb_vector_t<hb_pair_t<int,int>> *shared_tuple_active_idx = nullptr) const
{
const F2DOT14 *peak_tuple;
unsigned start_idx = 0;
unsigned end_idx = coord_count;
unsigned step = 1;
if (has_peak ())
peak_tuple = get_peak_tuple (coord_count).arrayZ;
else
{
unsigned int index = get_index ();
if (unlikely ((index + 1) * coord_count > shared_tuples.length))
return 0.f;
peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count).arrayZ;
if (shared_tuple_active_idx)
{
if (unlikely (index >= shared_tuple_active_idx->length))
return 0.f;
auto _ = (*shared_tuple_active_idx).arrayZ[index];
if (_.second != -1)
{
start_idx = _.first;
end_idx = _.second + 1;
step = _.second - _.first;
}
else if (_.first != -1)
{
start_idx = _.first;
end_idx = start_idx + 1;
}
}
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
bool has_interm = has_intermediate ();
if (has_interm)
{
start_tuple = get_start_tuple (coord_count).arrayZ;
end_tuple = get_end_tuple (coord_count).arrayZ;
}
float scalar = 1.f;
for (unsigned int i = start_idx; i < end_idx; i += step)
{
int peak = peak_tuple[i].to_int ();
if (!peak) continue;
int v = coords[i];
if (v == peak) continue;
if (has_interm)
{
int start = start_tuple[i].to_int ();
int end = end_tuple[i].to_int ();
if (unlikely (start > peak || peak > end ||
(start < 0 && end > 0 && peak))) continue;
if (v < start || v > end) return 0.f;
if (v < peak)
{ if (peak != start) scalar *= (float) (v - start) / (peak - start); }
else
{ if (peak != end) scalar *= (float) (end - v) / (end - peak); }
}
else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.f;
else
scalar *= (float) v / peak;
}
return scalar;
}
bool has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; }
bool has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; }
bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; }
unsigned get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; }
protected:
struct TuppleIndex : HBUINT16
{
enum Flags {
EmbeddedPeakTuple = 0x8000u,
IntermediateRegion = 0x4000u,
PrivatePointNumbers = 0x2000u,
TupleIndexMask = 0x0FFFu
};
TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
DEFINE_SIZE_STATIC (2);
};
hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const
{ return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); }
hb_array_t<const F2DOT14> get_peak_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (0, axis_count); }
hb_array_t<const F2DOT14> get_start_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); }
hb_array_t<const F2DOT14> get_end_tuple (unsigned axis_count) const
{ return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); }
HBUINT16 varDataSize; /* The size in bytes of the serialized
* data for this tuple variation table. */
TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below).
The low 12 bits are an index into a shared tuple
records array. */
/* UnsizedArrayOf<F2DOT14> peakTuple - optional */
/* Peak tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value.
*
* Note that this must always be included in the 'cvar' table. */
/* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */
/* Intermediate start tuple record for this tuple variation table — optional,
determined by flags in the tupleIndex value. */
/* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */
/* Intermediate end tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value. */
public:
DEFINE_SIZE_MIN (4);
};
enum packed_delta_flag_t
{
DELTAS_ARE_ZERO = 0x80,
DELTAS_ARE_WORDS = 0x40,
DELTA_RUN_COUNT_MASK = 0x3F
};
struct tuple_delta_t
{
public:
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
/* indices_length = point_count, indice[i] = 1 means point i is referenced */
hb_vector_t<bool> indices;
hb_vector_t<float> deltas_x;
/* empty for cvar tuples */
hb_vector_t<float> deltas_y;
/* compiled data: header and deltas
* compiled point data is saved in a hashmap within tuple_variations_t cause
* some point sets might be reused by different tuple variations */
hb_vector_t<char> compiled_tuple_header;
hb_vector_t<char> compiled_deltas;
/* compiled peak coords, empty for non-gvar tuples */
hb_vector_t<char> compiled_peak_coords;
tuple_delta_t () = default;
tuple_delta_t (const tuple_delta_t& o) = default;
friend void swap (tuple_delta_t& a, tuple_delta_t& b)
{
hb_swap (a.axis_tuples, b.axis_tuples);
hb_swap (a.indices, b.indices);
hb_swap (a.deltas_x, b.deltas_x);
hb_swap (a.deltas_y, b.deltas_y);
hb_swap (a.compiled_tuple_header, b.compiled_tuple_header);
hb_swap (a.compiled_deltas, b.compiled_deltas);
hb_swap (a.compiled_peak_coords, b.compiled_peak_coords);
}
tuple_delta_t (tuple_delta_t&& o) : tuple_delta_t ()
{ hb_swap (*this, o); }
tuple_delta_t& operator = (tuple_delta_t&& o)
{
hb_swap (*this, o);
return *this;
}
void remove_axis (hb_tag_t axis_tag)
{ axis_tuples.del (axis_tag); }
bool set_tent (hb_tag_t axis_tag, Triple tent)
{ return axis_tuples.set (axis_tag, tent); }
tuple_delta_t& operator += (const tuple_delta_t& o)
{
unsigned num = indices.length;
for (unsigned i = 0; i < num; i++)
{
if (indices.arrayZ[i])
{
if (o.indices.arrayZ[i])
{
deltas_x[i] += o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] += o.deltas_y[i];
}
}
else
{
if (!o.indices.arrayZ[i]) continue;
indices.arrayZ[i] = true;
deltas_x[i] = o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] = o.deltas_y[i];
}
}
return *this;
}
tuple_delta_t& operator *= (float scalar)
{
if (scalar == 1.0f)
return *this;
unsigned num = indices.length;
for (unsigned i = 0; i < num; i++)
{
if (!indices.arrayZ[i]) continue;
deltas_x[i] *= scalar;
if (deltas_y)
deltas_y[i] *= scalar;
}
return *this;
}
hb_vector_t<tuple_delta_t> change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit,
TripleDistances axis_triple_distances) const
{
hb_vector_t<tuple_delta_t> out;
Triple *tent;
if (!axis_tuples.has (axis_tag, &tent))
{
out.push (*this);
return out;
}
if ((tent->minimum < 0.f && tent->maximum > 0.f) ||
!(tent->minimum <= tent->middle && tent->middle <= tent->maximum))
return out;
if (tent->middle == 0.f)
{
out.push (*this);
return out;
}
result_t solutions = rebase_tent (*tent, axis_limit, axis_triple_distances);
for (auto t : solutions)
{
tuple_delta_t new_var = *this;
if (t.second == Triple ())
new_var.remove_axis (axis_tag);
else
new_var.set_tent (axis_tag, t.second);
new_var *= t.first;
out.push (std::move (new_var));
}
return out;
}
bool compile_peak_coords (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map)
{
unsigned axis_count = axes_index_map.get_population ();
if (unlikely (!compiled_peak_coords.alloc (axis_count * F2DOT14::static_size)))
return false;
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i))
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
F2DOT14 peak_coord;
if (axis_tuples.has (axis_tag, &coords))
peak_coord.set_float (coords->middle);
else
peak_coord.set_int (0);
/* push F2DOT14 value into char vector */
int16_t val = peak_coord.to_int ();
compiled_peak_coords.push (static_cast<char> (val >> 8));
compiled_peak_coords.push (static_cast<char> (val & 0xFF));
}
return !compiled_peak_coords.in_error ();
}
/* deltas should be compiled already before we compile tuple
* variation header cause we need to fill in the size of the
* serialized data for this tuple variation */
bool compile_tuple_var_header (const hb_map_t& axes_index_map,
unsigned points_data_length,
const hb_map_t& axes_old_index_tag_map,
const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map)
{
if (!compiled_deltas) return false;
unsigned cur_axis_count = axes_index_map.get_population ();
/* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */
unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4;
if (unlikely (!compiled_tuple_header.resize (alloc_len))) return false;
unsigned flag = 0;
/* skip the first 4 header bytes: variationDataSize+tupleIndex */
F2DOT14* p = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.begin () + 4);
F2DOT14* end = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.end ());
hb_array_t<F2DOT14> coords (p, end - p);
/* encode peak coords */
unsigned peak_count = 0;
unsigned *shared_tuple_idx;
if (shared_tuples_idx_map &&
shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx))
{
flag = *shared_tuple_idx;
}
else
{
peak_count = encode_peak_coords(coords, flag, axes_index_map, axes_old_index_tag_map);
if (!peak_count) return false;
}
/* encode interim coords, it's optional so returned num could be 0 */
unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag, axes_index_map, axes_old_index_tag_map);
/* pointdata length = 0 implies "use shared points" */
if (points_data_length)
flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers;
unsigned serialized_data_size = points_data_length + compiled_deltas.length;
TupleVariationHeader *o = reinterpret_cast<TupleVariationHeader *> (compiled_tuple_header.begin ());
o->varDataSize = serialized_data_size;
o->tupleIndex = flag;
unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size);
return compiled_tuple_header.resize (total_header_len);
}
unsigned encode_peak_coords (hb_array_t<F2DOT14> peak_coords,
unsigned& flag,
const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map) const
{
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
auto it = peak_coords.iter ();
unsigned count = 0;
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i)) /* axis pinned */
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
if (!axis_tuples.has (axis_tag, &coords))
(*it).set_int (0);
else
(*it).set_float (coords->middle);
it++;
count++;
}
flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple;
return count;
}
/* if no need to encode intermediate coords, then just return p */
unsigned encode_interm_coords (hb_array_t<F2DOT14> coords,
unsigned& flag,
const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map) const
{
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
unsigned cur_axis_count = axes_index_map.get_population ();
auto start_coords_iter = coords.sub_array (0, cur_axis_count).iter ();
auto end_coords_iter = coords.sub_array (cur_axis_count).iter ();
bool encode_needed = false;
unsigned count = 0;
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i)) /* axis pinned */
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords;
float min_val = 0.f, val = 0.f, max_val = 0.f;
if (axis_tuples.has (axis_tag, &coords))
{
min_val = coords->minimum;
val = coords->middle;
max_val = coords->maximum;
}
(*start_coords_iter).set_float (min_val);
(*end_coords_iter).set_float (max_val);
start_coords_iter++;
end_coords_iter++;
count += 2;
if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f))
encode_needed = true;
}
if (encode_needed)
{
flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion;
return count;
}
return 0;
}
bool compile_deltas ()
{
hb_vector_t<int> rounded_deltas;
if (unlikely (!rounded_deltas.alloc (indices.length)))
return false;
for (unsigned i = 0; i < indices.length; i++)
{
if (!indices[i]) continue;
int rounded_delta = (int) roundf (deltas_x[i]);
rounded_deltas.push (rounded_delta);
}
if (!rounded_deltas) return false;
/* allocate enough memories 3 * num_deltas */
unsigned alloc_len = 3 * rounded_deltas.length;
if (deltas_y)
alloc_len *= 2;
if (unlikely (!compiled_deltas.resize (alloc_len))) return false;
unsigned i = 0;
unsigned encoded_len = encode_delta_run (i, compiled_deltas.as_array (), rounded_deltas);
if (deltas_y)
{
/* reuse the rounded_deltas vector, check that deltas_y have the same num of deltas as deltas_x */
unsigned j = 0;
for (unsigned idx = 0; idx < indices.length; idx++)
{
if (!indices[idx]) continue;
int rounded_delta = (int) roundf (deltas_y[idx]);
if (j >= rounded_deltas.length) return false;
rounded_deltas[j++] = rounded_delta;
}
if (j != rounded_deltas.length) return false;
/* reset i because we reuse rounded_deltas for deltas_y */
i = 0;
encoded_len += encode_delta_run (i, compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas);
}
return compiled_deltas.resize (encoded_len);
}
unsigned encode_delta_run (unsigned& i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned num_deltas = deltas.length;
unsigned encoded_len = 0;
while (i < num_deltas)
{
int val = deltas[i];
if (val == 0)
encoded_len += encode_delta_run_as_zeroes (i, encoded_bytes.sub_array (encoded_len), deltas);
else if (val >= -128 && val <= 127)
encoded_len += encode_delta_run_as_bytes (i, encoded_bytes.sub_array (encoded_len), deltas);
else
encoded_len += encode_delta_run_as_words (i, encoded_bytes.sub_array (encoded_len), deltas);
}
return encoded_len;
}
unsigned encode_delta_run_as_zeroes (unsigned& i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned num_deltas = deltas.length;
unsigned run_length = 0;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (i < num_deltas && deltas[i] == 0)
{
i++;
run_length++;
}
while (run_length >= 64)
{
*it++ = char (DELTAS_ARE_ZERO | 63);
run_length -= 64;
encoded_len++;
}
if (run_length)
{
*it++ = char (DELTAS_ARE_ZERO | (run_length - 1));
encoded_len++;
}
return encoded_len;
}
unsigned encode_delta_run_as_bytes (unsigned &i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned start = i;
unsigned num_deltas = deltas.length;
while (i < num_deltas)
{
int val = deltas[i];
if (val > 127 || val < -128)
break;
/* from fonttools: if there're 2 or more zeros in a sequence,
* it is better to start a new run to save bytes. */
if (val == 0 && i + 1 < num_deltas && deltas[i+1] == 0)
break;
i++;
}
unsigned run_length = i - start;
unsigned encoded_len = 0;
auto it = encoded_bytes.iter ();
while (run_length >= 64)
{
*it++ = 63;
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
*it++ = static_cast<char> (deltas[start + j]);
encoded_len++;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = run_length - 1;
encoded_len++;
while (start < i)
{
*it++ = static_cast<char> (deltas[start++]);
encoded_len++;
}
}
return encoded_len;
}
unsigned encode_delta_run_as_words (unsigned &i,
hb_array_t<char> encoded_bytes,
const hb_vector_t<int>& deltas) const
{
unsigned start = i;
unsigned num_deltas = deltas.length;
while (i < num_deltas)
{
int val = deltas[i];
/* start a new run for a single zero value*/
if (val == 0) break;
/* from fonttools: continue word-encoded run if there's only one
* single value in the range [-128, 127] because it is more compact.
* Only start a new run when there're 2 continuous such values. */
if (val >= -128 && val <= 127 &&
i + 1 < num_deltas &&
deltas[i+1] >= -128 && deltas[i+1] <= 127)
break;
i++;
}
unsigned run_length = i - start;
auto it = encoded_bytes.iter ();
unsigned encoded_len = 0;
while (run_length >= 64)
{
*it++ = (DELTAS_ARE_WORDS | 63);
encoded_len++;
for (unsigned j = 0; j < 64; j++)
{
int16_t delta_val = deltas[start + j];
*it++ = static_cast<char> (delta_val >> 8);
*it++ = static_cast<char> (delta_val & 0xFF);
encoded_len += 2;
}
start += 64;
run_length -= 64;
}
if (run_length)
{
*it++ = (DELTAS_ARE_WORDS | (run_length - 1));
encoded_len++;
while (start < i)
{
int16_t delta_val = deltas[start++];
*it++ = static_cast<char> (delta_val >> 8);
*it++ = static_cast<char> (delta_val & 0xFF);
encoded_len += 2;
}
}
return encoded_len;
}
bool calc_inferred_deltas (const contour_point_vector_t& orig_points)
{
unsigned point_count = orig_points.length;
if (point_count != indices.length)
return false;
unsigned ref_count = 0;
hb_vector_t<unsigned> end_points;
for (unsigned i = 0; i < point_count; i++)
{
if (indices.arrayZ[i])
ref_count++;
if (orig_points.arrayZ[i].is_end_point)
end_points.push (i);
}
/* all points are referened, nothing to do */
if (ref_count == point_count)
return true;
if (unlikely (end_points.in_error ())) return false;
hb_set_t inferred_idxes;
unsigned start_point = 0;
for (unsigned end_point : end_points)
{
/* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
unsigned unref_count = 0;
for (unsigned i = start_point; i < end_point + 1; i++)
unref_count += indices.arrayZ[i];
unref_count = (end_point - start_point + 1) - unref_count;
unsigned j = start_point;
if (unref_count == 0 || unref_count > end_point - start_point)
goto no_more_gaps;
for (;;)
{
/* Locate the next gap of unreferenced points between two referenced points prev and next.
* Note that a gap may wrap around at left (start_point) and/or at right (end_point).
*/
unsigned int prev, next, i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (indices.arrayZ[i] && !indices.arrayZ[j]) break;
}
prev = j = i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (!indices.arrayZ[i] && indices.arrayZ[j]) break;
}
next = j;
/* Infer deltas for all unref points in the gap between prev and next */
i = prev;
for (;;)
{
i = next_index (i, start_point, end_point);
if (i == next) break;
deltas_x.arrayZ[i] = infer_delta (orig_points.arrayZ[i].x, orig_points.arrayZ[prev].x, orig_points.arrayZ[next].x,
deltas_x.arrayZ[prev], deltas_x.arrayZ[next]);
deltas_y.arrayZ[i] = infer_delta (orig_points.arrayZ[i].y, orig_points.arrayZ[prev].y, orig_points.arrayZ[next].y,
deltas_y.arrayZ[prev], deltas_y.arrayZ[next]);
inferred_idxes.add (i);
if (--unref_count == 0) goto no_more_gaps;
}
}
no_more_gaps:
start_point = end_point + 1;
}
for (unsigned i : inferred_idxes)
indices[i] = true;
return true;
}
static float infer_delta (float target_val, float prev_val, float next_val, float prev_delta, float next_delta)
{
if (prev_val == next_val)
return (prev_delta == next_delta) ? prev_delta : 0.f;
else if (target_val <= hb_min (prev_val, next_val))
return (prev_val < next_val) ? prev_delta : next_delta;
else if (target_val >= hb_max (prev_val, next_val))
return (prev_val > next_val) ? prev_delta : next_delta;
float r = (target_val - prev_val) / (next_val - prev_val);
return prev_delta + r * (next_delta - prev_delta);
}
static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
{ return (i >= end) ? start : (i + 1); }
};
struct TupleVariationData
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
// here check on min_size only, TupleVariationHeader and var data will be
// checked while accessing through iterator.
return_trace (c->check_struct (this));
}
unsigned get_size (unsigned axis_count) const
{
unsigned total_size = min_size;
unsigned count = tupleVarCount.get_count ();
const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header());
for (unsigned i = 0; i < count; i++)
{
total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size ();
tuple_var_header = &tuple_var_header->get_next (axis_count);
}
return total_size;
}
const TupleVariationHeader &get_tuple_var_header (void) const
{ return StructAfter<TupleVariationHeader> (data); }
struct tuple_iterator_t;
struct tuple_variations_t
{
hb_vector_t<tuple_delta_t> tuple_vars;
private:
/* referenced point set->compiled point data map */
hb_hashmap_t<const hb_vector_t<bool>*, hb_bytes_t> point_data_map;
/* referenced point set-> count map, used in finding shared points */
hb_hashmap_t<const hb_vector_t<bool>*, unsigned> point_set_count_map;
/* empty for non-gvar tuples.
* shared_points_bytes is just a copy of some value in the point_data_map,
* which will be freed during map destruction. Save it for serialization, so
* no need to do find_shared_points () again */
hb_bytes_t shared_points_bytes;
/* total compiled byte size as TupleVariationData format, initialized to its
* min_size: 4 */
unsigned compiled_byte_size = 4;
public:
~tuple_variations_t () { fini (); }
void fini ()
{
for (auto _ : point_data_map.values ())
_.fini ();
point_set_count_map.fini ();
tuple_vars.fini ();
}
explicit operator bool () const { return bool (tuple_vars); }
unsigned get_var_count () const
{
unsigned count = tuple_vars.length;
if (shared_points_bytes.length)
count |= TupleVarCount::SharedPointNumbers;
return count;
}
unsigned get_compiled_byte_size () const
{ return compiled_byte_size; }
bool create_from_tuple_var_data (tuple_iterator_t iterator,
unsigned tuple_var_count,
unsigned point_count,
bool is_gvar,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples)
{
do
{
const HBUINT8 *p = iterator.get_serialized_data ();
unsigned int length = iterator.current_tuple->get_data_size ();
if (unlikely (!iterator.var_data_bytes.check_range (p, length)))
{ fini (); return false; }
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples)
|| axis_tuples.is_empty ())
{ fini (); return false; }
hb_vector_t<unsigned> private_indices;
bool has_private_points = iterator.current_tuple->has_private_points ();
const HBUINT8 *end = p + length;
if (has_private_points &&
!TupleVariationData::unpack_points (p, private_indices, end))
{ fini (); return false; }
const hb_vector_t<unsigned> &indices = has_private_points ? private_indices : shared_indices;
bool apply_to_all = (indices.length == 0);
unsigned num_deltas = apply_to_all ? point_count : indices.length;
hb_vector_t<int> deltas_x;
if (unlikely (!deltas_x.resize (num_deltas, false) ||
!TupleVariationData::unpack_deltas (p, deltas_x, end)))
{ fini (); return false; }
hb_vector_t<int> deltas_y;
if (is_gvar)
{
if (unlikely (!deltas_y.resize (num_deltas, false) ||
!TupleVariationData::unpack_deltas (p, deltas_y, end)))
{ fini (); return false; }
}
tuple_delta_t var;
var.axis_tuples = std::move (axis_tuples);
if (unlikely (!var.indices.resize (point_count) ||
!var.deltas_x.resize (point_count, false)))
{ fini (); return false; }
if (is_gvar && unlikely (!var.deltas_y.resize (point_count, false)))
{ fini (); return false; }
for (unsigned i = 0; i < num_deltas; i++)
{
unsigned idx = apply_to_all ? i : indices[i];
if (idx >= point_count) continue;
var.indices[idx] = true;
var.deltas_x[idx] = static_cast<float> (deltas_x[i]);
if (is_gvar)
var.deltas_y[idx] = static_cast<float> (deltas_y[i]);
}
tuple_vars.push (std::move (var));
} while (iterator.move_to_next ());
return true;
}
private:
void change_tuple_variations_axis_limits (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances)
{
for (auto _ : normalized_axes_location)
{
hb_tag_t axis_tag = _.first;
Triple axis_limit = _.second;
TripleDistances axis_triple_distances{1.f, 1.f};
if (axes_triple_distances.has (axis_tag))
axis_triple_distances = axes_triple_distances.get (axis_tag);
hb_vector_t<tuple_delta_t> new_vars;
for (const tuple_delta_t& var : tuple_vars)
{
hb_vector_t<tuple_delta_t> out = var.change_tuple_var_axis_limit (axis_tag, axis_limit, axis_triple_distances);
if (!out) continue;
unsigned new_len = new_vars.length + out.length;
if (unlikely (!new_vars.alloc (new_len, false)))
{ fini (); return;}
for (unsigned i = 0; i < out.length; i++)
new_vars.push (std::move (out[i]));
}
tuple_vars.fini ();
tuple_vars = std::move (new_vars);
}
}
/* merge tuple variations with overlapping tents */
void merge_tuple_variations ()
{
hb_vector_t<tuple_delta_t> new_vars;
hb_hashmap_t<const hb_hashmap_t<hb_tag_t, Triple>*, unsigned> m;
unsigned i = 0;
for (const tuple_delta_t& var : tuple_vars)
{
/* if all axes are pinned, drop the tuple variation */
if (var.axis_tuples.is_empty ()) continue;
unsigned *idx;
if (m.has (&(var.axis_tuples), &idx))
{
new_vars[*idx] += var;
}
else
{
new_vars.push (var);
m.set (&(var.axis_tuples), i);
i++;
}
}
tuple_vars.fini ();
tuple_vars = std::move (new_vars);
}
hb_bytes_t compile_point_set (const hb_vector_t<bool> &point_indices)
{
unsigned num_points = 0;
for (bool i : point_indices)
if (i) num_points++;
unsigned indices_length = point_indices.length;
/* If the points set consists of all points in the glyph, it's encoded with a
* single zero byte */
if (num_points == indices_length)
{
char *p = (char *) hb_calloc (1, sizeof (char));
if (unlikely (!p)) return hb_bytes_t ();
return hb_bytes_t (p, 1);
}
/* allocate enough memories: 2 bytes for count + 3 bytes for each point */
unsigned num_bytes = 2 + 3 *num_points;
char *p = (char *) hb_calloc (num_bytes, sizeof (char));
if (unlikely (!p)) return hb_bytes_t ();
unsigned pos = 0;
/* binary data starts with the total number of reference points */
if (num_points < 0x80)
p[pos++] = num_points;
else
{
p[pos++] = ((num_points >> 8) | 0x80);
p[pos++] = num_points & 0xFF;
}
const unsigned max_run_length = 0x7F;
unsigned i = 0;
unsigned last_value = 0;
unsigned num_encoded = 0;
while (i < indices_length && num_encoded < num_points)
{
unsigned run_length = 0;
unsigned header_pos = pos;
p[pos++] = 0;
bool use_byte_encoding = false;
bool new_run = true;
while (i < indices_length && num_encoded < num_points &&
run_length <= max_run_length)
{
// find out next referenced point index
while (i < indices_length && !point_indices[i])
i++;
if (i >= indices_length) break;
unsigned cur_value = i;
unsigned delta = cur_value - last_value;
if (new_run)
{
use_byte_encoding = (delta <= 0xFF);
new_run = false;
}
if (use_byte_encoding && delta > 0xFF)
break;
if (use_byte_encoding)
p[pos++] = delta;
else
{
p[pos++] = delta >> 8;
p[pos++] = delta & 0xFF;
}
i++;
last_value = cur_value;
run_length++;
num_encoded++;
}
if (use_byte_encoding)
p[header_pos] = run_length - 1;
else
p[header_pos] = (run_length - 1) | 0x80;
}
return hb_bytes_t (p, pos);
}
/* compile all point set and store byte data in a point_set->hb_bytes_t hashmap,
* also update point_set->count map, which will be used in finding shared
* point set*/
bool compile_all_point_sets ()
{
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
if (point_data_map.has (points_set))
{
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
!point_set_count_map.set (points_set, (*count) + 1)))
return false;
continue;
}
hb_bytes_t compiled_data = compile_point_set (*points_set);
if (unlikely (compiled_data == hb_bytes_t ()))
return false;
if (!point_data_map.set (points_set, compiled_data) ||
!point_set_count_map.set (points_set, 1))
return false;
}
return true;
}
/* find shared points set which saves most bytes */
hb_bytes_t find_shared_points ()
{
unsigned max_saved_bytes = 0;
hb_bytes_t res{};
for (const auto& _ : point_data_map.iter ())
{
const hb_vector_t<bool>* points_set = _.first;
unsigned data_length = _.second.length;
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
*count <= 1))
return hb_bytes_t ();
unsigned saved_bytes = data_length * ((*count) -1);
if (saved_bytes > max_saved_bytes)
{
max_saved_bytes = saved_bytes;
res = _.second;
}
}
return res;
}
bool calc_inferred_deltas (contour_point_vector_t& contour_points)
{
for (tuple_delta_t& var : tuple_vars)
if (!var.calc_inferred_deltas (contour_points))
return false;
return true;
}
public:
bool instantiate (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances,
contour_point_vector_t* contour_points = nullptr)
{
if (!tuple_vars) return true;
change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances);
/* compute inferred deltas only for gvar */
if (contour_points)
if (!calc_inferred_deltas (*contour_points))
return false;
merge_tuple_variations ();
return !tuple_vars.in_error ();
}
bool compile_bytes (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map,
bool use_shared_points,
const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map = nullptr)
{
// compile points set and store data in hashmap
if (!compile_all_point_sets ())
return false;
if (use_shared_points)
{
shared_points_bytes = find_shared_points ();
compiled_byte_size += shared_points_bytes.length;
}
// compile delta and tuple var header for each tuple variation
for (auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_bytes_t *points_data;
if (unlikely (!point_data_map.has (points_set, &points_data)))
return false;
if (!tuple.compile_deltas ())
return false;
unsigned points_data_length = (*points_data != shared_points_bytes) ? points_data->length : 0;
if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map,
shared_tuples_idx_map))
return false;
compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length;
}
return true;
}
bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const
{
TRACE_SERIALIZE (this);
for (const auto& tuple: tuple_vars)
{
tuple.compiled_tuple_header.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
total_header_len += tuple.compiled_tuple_header.length;
}
return_trace (true);
}
bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const
{
TRACE_SERIALIZE (this);
if (is_gvar)
shared_points_bytes.copy (c);
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_bytes_t *point_data;
if (!point_data_map.has (points_set, &point_data))
return_trace (false);
if (!is_gvar || *point_data != shared_points_bytes)
point_data->copy (c);
tuple.compiled_deltas.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
}
/* padding for gvar */
if (is_gvar && (compiled_byte_size % 2))
{
HBUINT8 pad;
pad = 0;
if (!c->embed (pad)) return_trace (false);
}
return_trace (true);
}
};
struct tuple_iterator_t
{
unsigned get_axis_count () const { return axis_count; }
void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_)
{
var_data_bytes = var_data_bytes_;
var_data = var_data_bytes_.as<TupleVariationData> ();
index = 0;
axis_count = axis_count_;
current_tuple = &var_data->get_tuple_var_header ();
data_offset = 0;
table_base = table_base_;
}
bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */)
{
if (var_data->has_shared_point_numbers ())
{
const HBUINT8 *base = &(table_base+var_data->data);
const HBUINT8 *p = base;
if (!unpack_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false;
data_offset = p - base;
}
return true;
}
bool is_valid () const
{
return (index < var_data->tupleVarCount.get_count ()) &&
var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) &&
var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (),
current_tuple->get_size (axis_count)));
}
bool move_to_next ()
{
data_offset += current_tuple->get_data_size ();
current_tuple = ¤t_tuple->get_next (axis_count);
index++;
return is_valid ();
}
const HBUINT8 *get_serialized_data () const
{ return &(table_base+var_data->data) + data_offset; }
private:
const TupleVariationData *var_data;
unsigned int index;
unsigned int axis_count;
unsigned int data_offset;
const void *table_base;
public:
hb_bytes_t var_data_bytes;
const TupleVariationHeader *current_tuple;
};
static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count,
const void *table_base,
hb_vector_t<unsigned int> &shared_indices /* OUT */,
tuple_iterator_t *iterator /* OUT */)
{
iterator->init (var_data_bytes, axis_count, table_base);
if (!iterator->get_shared_indices (shared_indices))
return false;
return iterator->is_valid ();
}
bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); }
static bool unpack_points (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<unsigned int> &points /* OUT */,
const HBUINT8 *end)
{
enum packed_point_flag_t
{
POINTS_ARE_WORDS = 0x80,
POINT_RUN_COUNT_MASK = 0x7F
};
if (unlikely (p + 1 > end)) return false;
unsigned count = *p++;
if (count & POINTS_ARE_WORDS)
{
if (unlikely (p + 1 > end)) return false;
count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++;
}
if (unlikely (!points.resize (count, false))) return false;
unsigned n = 0;
unsigned i = 0;
while (i < count)
{
if (unlikely (p + 1 > end)) return false;
unsigned control = *p++;
unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1;
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if (control & POINTS_ARE_WORDS)
{
if (unlikely (p + run_count * HBUINT16::static_size > end)) return false;
for (; i < stop; i++)
{
n += *(const HBUINT16 *)p;
points.arrayZ[i] = n;
p += HBUINT16::static_size;
}
}
else
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
n += *p++;
points.arrayZ[i] = n;
}
}
}
return true;
}
static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<int> &deltas /* IN/OUT */,
const HBUINT8 *end)
{
unsigned i = 0;
unsigned count = deltas.length;
while (i < count)
{
if (unlikely (p + 1 > end)) return false;
unsigned control = *p++;
unsigned run_count = (control & DELTA_RUN_COUNT_MASK) + 1;
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if (control & DELTAS_ARE_ZERO)
{
for (; i < stop; i++)
deltas.arrayZ[i] = 0;
}
else if (control & DELTAS_ARE_WORDS)
{
if (unlikely (p + run_count * HBUINT16::static_size > end)) return false;
for (; i < stop; i++)
{
deltas.arrayZ[i] = * (const HBINT16 *) p;
p += HBUINT16::static_size;
}
}
else
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
deltas.arrayZ[i] = * (const HBINT8 *) p++;
}
}
}
return true;
}
bool has_data () const { return tupleVarCount; }
bool decompile_tuple_variations (unsigned point_count,
bool is_gvar,
tuple_iterator_t iterator,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples,
tuple_variations_t& tuple_variations /* OUT */) const
{
return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount,
point_count, is_gvar,
axes_old_index_tag_map,
shared_indices,
shared_tuples);
}
bool serialize (hb_serialize_context_t *c,
bool is_gvar,
const tuple_variations_t& tuple_variations) const
{
TRACE_SERIALIZE (this);
/* empty tuple variations, just return and skip serialization. */
if (!tuple_variations) return_trace (true);
auto *out = c->start_embed (this);
if (unlikely (!c->extend_min (out))) return_trace (false);
if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (),
HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
unsigned total_header_len = 0;
if (!tuple_variations.serialize_var_headers (c, total_header_len))
return_trace (false);
unsigned data_offset = min_size + total_header_len;
if (!is_gvar) data_offset += 4;
if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
return tuple_variations.serialize_var_data (c, is_gvar);
}
protected:
struct TupleVarCount : HBUINT16
{
friend struct tuple_variations_t;
bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); }
unsigned int get_count () const { return (*this) & CountMask; }
TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
explicit operator bool () const { return get_count (); }
protected:
enum Flags
{
SharedPointNumbers= 0x8000u,
CountMask = 0x0FFFu
};
public:
DEFINE_SIZE_STATIC (2);
};
TupleVarCount tupleVarCount; /* A packed field. The high 4 bits are flags, and the
* low 12 bits are the number of tuple variation tables
* for this glyph. The number of tuple variation tables
* can be any number between 1 and 4095. */
Offset16To<HBUINT8>
data; /* Offset from the start of the base table
* to the serialized data. */
/* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */
public:
DEFINE_SIZE_MIN (4);
};
} /* namespace OT */
#endif /* HB_OT_VAR_COMMON_HH */