Hash :
677d6646
Author :
Date :
2024-07-08T15:33:39
[subset] Make sure the clamp is done in a int64_t space
Otherwise nags about things like this,
In member function ‘int64_t graph::graph_t::vertex_t::modified_distance(unsigned int) const’,
inlined from ‘void graph::graph_t::sort_shortest_distance()’ at ../src/graph/graph.hh:626:24:
../src/graph/graph.hh:371:20: warning: dangling pointer to an unnamed temporary may be used [-Wdangling-pointer=]
371 | hb_clamp (distance + distance_modifier (), (uint64_t) 0, (uint64_t) 0x7FFFFFFFFFF);
| ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
And some of the CI bots fail also like this https://github.com/harfbuzz/harfbuzz/actions/runs/9838686960/job/27159310858?pr=4793
But it probably something else also can be improved which maybe is out of scope for this particular change.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/*
* Copyright © 2022 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Garret Rieger
*/
#include "../hb-set.hh"
#include "../hb-priority-queue.hh"
#include "../hb-serialize.hh"
#ifndef GRAPH_GRAPH_HH
#define GRAPH_GRAPH_HH
namespace graph {
/**
* Represents a serialized table in the form of a graph.
* Provides methods for modifying and reordering the graph.
*/
struct graph_t
{
struct vertex_t
{
hb_serialize_context_t::object_t obj;
int64_t distance = 0 ;
unsigned space = 0 ;
unsigned start = 0;
unsigned end = 0;
unsigned priority = 0;
private:
unsigned incoming_edges_ = 0;
unsigned single_parent = (unsigned) -1;
hb_hashmap_t<unsigned, unsigned> parents;
public:
auto parents_iter () const HB_AUTO_RETURN
(
hb_concat (
hb_iter (&single_parent, single_parent != (unsigned) -1),
parents.keys_ref ()
)
)
bool in_error () const
{
return parents.in_error ();
}
bool link_positions_valid (unsigned num_objects, bool removed_nil)
{
hb_set_t assigned_bytes;
for (const auto& l : obj.real_links)
{
if (l.objidx >= num_objects
|| (removed_nil && !l.objidx))
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Invalid graph. Invalid object index.");
return false;
}
unsigned start = l.position;
unsigned end = start + l.width - 1;
if (unlikely (l.width < 2 || l.width > 4))
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Invalid graph. Invalid link width.");
return false;
}
if (unlikely (end >= table_size ()))
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Invalid graph. Link position is out of bounds.");
return false;
}
if (unlikely (assigned_bytes.intersects (start, end)))
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Invalid graph. Found offsets whose positions overlap.");
return false;
}
assigned_bytes.add_range (start, end);
}
return !assigned_bytes.in_error ();
}
void normalize ()
{
obj.real_links.qsort ();
for (auto& l : obj.real_links)
{
for (unsigned i = 0; i < l.width; i++)
{
obj.head[l.position + i] = 0;
}
}
}
bool equals (const vertex_t& other,
const graph_t& graph,
const graph_t& other_graph,
unsigned depth) const
{
if (!(as_bytes () == other.as_bytes ()))
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
"vertex [%lu] bytes != [%lu] bytes, depth = %u",
(unsigned long) table_size (),
(unsigned long) other.table_size (),
depth);
auto a = as_bytes ();
auto b = other.as_bytes ();
while (a || b)
{
DEBUG_MSG (SUBSET_REPACK, nullptr,
" 0x%x %s 0x%x", (unsigned) *a, (*a == *b) ? "==" : "!=", (unsigned) *b);
a++;
b++;
}
return false;
}
return links_equal (obj.real_links, other.obj.real_links, graph, other_graph, depth);
}
hb_bytes_t as_bytes () const
{
return hb_bytes_t (obj.head, table_size ());
}
friend void swap (vertex_t& a, vertex_t& b)
{
hb_swap (a.obj, b.obj);
hb_swap (a.distance, b.distance);
hb_swap (a.space, b.space);
hb_swap (a.single_parent, b.single_parent);
hb_swap (a.parents, b.parents);
hb_swap (a.incoming_edges_, b.incoming_edges_);
hb_swap (a.start, b.start);
hb_swap (a.end, b.end);
hb_swap (a.priority, b.priority);
}
hb_hashmap_t<unsigned, unsigned>
position_to_index_map () const
{
hb_hashmap_t<unsigned, unsigned> result;
result.alloc (obj.real_links.length);
for (const auto& l : obj.real_links) {
result.set (l.position, l.objidx);
}
return result;
}
bool is_shared () const
{
return parents.get_population () > 1;
}
unsigned incoming_edges () const
{
if (HB_DEBUG_SUBSET_REPACK)
{
assert (incoming_edges_ == (single_parent != (unsigned) -1) +
(parents.values_ref () | hb_reduce (hb_add, 0)));
}
return incoming_edges_;
}
unsigned incoming_edges_from_parent (unsigned parent_index) const {
if (single_parent != (unsigned) -1) {
return single_parent == parent_index ? 1 : 0;
}
unsigned* count;
return parents.has(parent_index, &count) ? *count : 0;
}
void reset_parents ()
{
incoming_edges_ = 0;
single_parent = (unsigned) -1;
parents.reset ();
}
void add_parent (unsigned parent_index)
{
assert (parent_index != (unsigned) -1);
if (incoming_edges_ == 0)
{
single_parent = parent_index;
incoming_edges_ = 1;
return;
}
else if (single_parent != (unsigned) -1)
{
assert (incoming_edges_ == 1);
if (!parents.set (single_parent, 1))
return;
single_parent = (unsigned) -1;
}
unsigned *v;
if (parents.has (parent_index, &v))
{
(*v)++;
incoming_edges_++;
}
else if (parents.set (parent_index, 1))
incoming_edges_++;
}
void remove_parent (unsigned parent_index)
{
if (parent_index == single_parent)
{
single_parent = (unsigned) -1;
incoming_edges_--;
return;
}
unsigned *v;
if (parents.has (parent_index, &v))
{
incoming_edges_--;
if (*v > 1)
(*v)--;
else
parents.del (parent_index);
if (incoming_edges_ == 1)
{
single_parent = *parents.keys ();
parents.reset ();
}
}
}
void remove_real_link (unsigned child_index, const void* offset)
{
unsigned count = obj.real_links.length;
for (unsigned i = 0; i < count; i++)
{
auto& link = obj.real_links.arrayZ[i];
if (link.objidx != child_index)
continue;
if ((obj.head + link.position) != offset)
continue;
obj.real_links.remove_unordered (i);
return;
}
}
bool remap_parents (const hb_vector_t<unsigned>& id_map)
{
if (single_parent != (unsigned) -1)
{
assert (single_parent < id_map.length);
single_parent = id_map[single_parent];
return true;
}
hb_hashmap_t<unsigned, unsigned> new_parents;
new_parents.alloc (parents.get_population ());
for (auto _ : parents)
{
assert (_.first < id_map.length);
assert (!new_parents.has (id_map[_.first]));
new_parents.set (id_map[_.first], _.second);
}
if (parents.in_error() || new_parents.in_error ())
return false;
parents = std::move (new_parents);
return true;
}
void remap_parent (unsigned old_index, unsigned new_index)
{
if (single_parent != (unsigned) -1)
{
if (single_parent == old_index)
single_parent = new_index;
return;
}
const unsigned *pv;
if (parents.has (old_index, &pv))
{
unsigned v = *pv;
if (!parents.set (new_index, v))
incoming_edges_ -= v;
parents.del (old_index);
if (incoming_edges_ == 1)
{
single_parent = *parents.keys ();
parents.reset ();
}
}
}
bool is_leaf () const
{
return !obj.real_links.length && !obj.virtual_links.length;
}
bool raise_priority ()
{
if (has_max_priority ()) return false;
priority++;
return true;
}
bool give_max_priority ()
{
bool result = false;
while (!has_max_priority()) {
result = true;
priority++;
}
return result;
}
bool has_max_priority () const {
return priority >= 3;
}
size_t table_size () const {
return obj.tail - obj.head;
}
int64_t modified_distance (unsigned order) const
{
// TODO(garretrieger): once priority is high enough, should try
// setting distance = 0 which will force to sort immediately after
// it's parent where possible.
int64_t modified_distance =
hb_clamp (distance + distance_modifier (), (int64_t) 0, 0x7FFFFFFFFFF);
if (has_max_priority ()) {
modified_distance = 0;
}
return (modified_distance << 18) | (0x003FFFF & order);
}
int64_t distance_modifier () const
{
if (!priority) return 0;
int64_t table_size = obj.tail - obj.head;
if (priority == 1)
return -table_size / 2;
return -table_size;
}
private:
bool links_equal (const hb_vector_t<hb_serialize_context_t::object_t::link_t>& this_links,
const hb_vector_t<hb_serialize_context_t::object_t::link_t>& other_links,
const graph_t& graph,
const graph_t& other_graph,
unsigned depth) const
{
auto a = this_links.iter ();
auto b = other_links.iter ();
while (a && b)
{
const auto& link_a = *a;
const auto& link_b = *b;
if (link_a.width != link_b.width ||
link_a.is_signed != link_b.is_signed ||
link_a.whence != link_b.whence ||
link_a.position != link_b.position ||
link_a.bias != link_b.bias)
return false;
if (!graph.vertices_[link_a.objidx].equals (
other_graph.vertices_[link_b.objidx], graph, other_graph, depth + 1))
return false;
a++;
b++;
}
if (bool (a) != bool (b))
return false;
return true;
}
};
template <typename T>
struct vertex_and_table_t
{
vertex_and_table_t () : index (0), vertex (nullptr), table (nullptr)
{}
unsigned index;
vertex_t* vertex;
T* table;
operator bool () {
return table && vertex;
}
};
/*
* A topological sorting of an object graph. Ordered
* in reverse serialization order (first object in the
* serialization is at the end of the list). This matches
* the 'packed' object stack used internally in the
* serializer
*/
template<typename T>
graph_t (const T& objects)
: parents_invalid (true),
distance_invalid (true),
positions_invalid (true),
successful (true),
buffers ()
{
num_roots_for_space_.push (1);
bool removed_nil = false;
vertices_.alloc (objects.length);
vertices_scratch_.alloc (objects.length);
unsigned count = objects.length;
for (unsigned i = 0; i < count; i++)
{
// If this graph came from a serialization buffer object 0 is the
// nil object. We don't need it for our purposes here so drop it.
if (i == 0 && !objects.arrayZ[i])
{
removed_nil = true;
continue;
}
vertex_t* v = vertices_.push ();
if (check_success (!vertices_.in_error ()))
v->obj = *objects.arrayZ[i];
check_success (v->link_positions_valid (count, removed_nil));
if (!removed_nil) continue;
// Fix indices to account for removed nil object.
for (auto& l : v->obj.all_links_writer ()) {
l.objidx--;
}
}
}
~graph_t ()
{
for (char* b : buffers)
hb_free (b);
}
bool operator== (const graph_t& other) const
{
return root ().equals (other.root (), *this, other, 0);
}
void print () const {
for (int i = vertices_.length - 1; i >= 0; i--)
{
const auto& v = vertices_[i];
printf("%d: %u [", i, (unsigned int)v.table_size());
for (const auto &l : v.obj.real_links) {
printf("%u, ", l.objidx);
}
printf("]\n");
}
}
// Sorts links of all objects in a consistent manner and zeroes all offsets.
void normalize ()
{
for (auto& v : vertices_.writer ())
v.normalize ();
}
bool in_error () const
{
return !successful ||
vertices_.in_error () ||
num_roots_for_space_.in_error ();
}
const vertex_t& root () const
{
return vertices_[root_idx ()];
}
unsigned root_idx () const
{
// Object graphs are in reverse order, the first object is at the end
// of the vector. Since the graph is topologically sorted it's safe to
// assume the first object has no incoming edges.
return vertices_.length - 1;
}
const hb_serialize_context_t::object_t& object (unsigned i) const
{
return vertices_[i].obj;
}
bool add_buffer (char* buffer)
{
buffers.push (buffer);
return !buffers.in_error ();
}
/*
* Adds a 16 bit link from parent_id to child_id
*/
template<typename T>
void add_link (T* offset,
unsigned parent_id,
unsigned child_id)
{
auto& v = vertices_[parent_id];
auto* link = v.obj.real_links.push ();
link->width = 2;
link->objidx = child_id;
link->position = (char*) offset - (char*) v.obj.head;
vertices_[child_id].add_parent (parent_id);
}
/*
* Generates a new topological sorting of graph ordered by the shortest
* distance to each node if positions are marked as invalid.
*/
void sort_shortest_distance_if_needed ()
{
if (!positions_invalid) return;
sort_shortest_distance ();
}
/*
* Generates a new topological sorting of graph ordered by the shortest
* distance to each node.
*/
void sort_shortest_distance ()
{
positions_invalid = true;
if (vertices_.length <= 1) {
// Graph of 1 or less doesn't need sorting.
return;
}
update_distances ();
hb_priority_queue_t<int64_t> queue;
queue.alloc (vertices_.length);
hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
hb_vector_t<unsigned> id_map;
if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
hb_vector_t<unsigned> removed_edges;
if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
update_parents ();
queue.insert (root ().modified_distance (0), root_idx ());
int new_id = root_idx ();
unsigned order = 1;
while (!queue.in_error () && !queue.is_empty ())
{
unsigned next_id = queue.pop_minimum().second;
sorted_graph[new_id] = std::move (vertices_[next_id]);
const vertex_t& next = sorted_graph[new_id];
if (unlikely (!check_success(new_id >= 0))) {
// We are out of ids. Which means we've visited a node more than once.
// This graph contains a cycle which is not allowed.
DEBUG_MSG (SUBSET_REPACK, nullptr, "Invalid graph. Contains cycle.");
return;
}
id_map[next_id] = new_id--;
for (const auto& link : next.obj.all_links ()) {
removed_edges[link.objidx]++;
if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
// Add the order that the links were encountered to the priority.
// This ensures that ties between priorities objects are broken in a consistent
// way. More specifically this is set up so that if a set of objects have the same
// distance they'll be added to the topological order in the order that they are
// referenced from the parent object.
queue.insert (vertices_[link.objidx].modified_distance (order++),
link.objidx);
}
}
check_success (!queue.in_error ());
check_success (!sorted_graph.in_error ());
check_success (remap_all_obj_indices (id_map, &sorted_graph));
vertices_ = std::move (sorted_graph);
if (!check_success (new_id == -1))
print_orphaned_nodes ();
}
/*
* Finds the set of nodes (placed into roots) that should be assigned unique spaces.
* More specifically this looks for the top most 24 bit or 32 bit links in the graph.
* Some special casing is done that is specific to the layout of GSUB/GPOS tables.
*/
void find_space_roots (hb_set_t& visited, hb_set_t& roots)
{
int root_index = (int) root_idx ();
for (int i = root_index; i >= 0; i--)
{
if (visited.has (i)) continue;
// Only real links can form 32 bit spaces
for (auto& l : vertices_[i].obj.real_links)
{
if (l.is_signed || l.width < 3)
continue;
if (i == root_index && l.width == 3)
// Ignore 24bit links from the root node, this skips past the single 24bit
// pointer to the lookup list.
continue;
if (l.width == 3)
{
// A 24bit offset forms a root, unless there is 32bit offsets somewhere
// in it's subgraph, then those become the roots instead. This is to make sure
// that extension subtables beneath a 24bit lookup become the spaces instead
// of the offset to the lookup.
hb_set_t sub_roots;
find_32bit_roots (l.objidx, sub_roots);
if (sub_roots) {
for (unsigned sub_root_idx : sub_roots) {
roots.add (sub_root_idx);
find_subgraph (sub_root_idx, visited);
}
continue;
}
}
roots.add (l.objidx);
find_subgraph (l.objidx, visited);
}
}
}
template <typename T, typename ...Ts>
vertex_and_table_t<T> as_table (unsigned parent, const void* offset, Ts... ds)
{
return as_table_from_index<T> (index_for_offset (parent, offset), std::forward<Ts>(ds)...);
}
template <typename T, typename ...Ts>
vertex_and_table_t<T> as_mutable_table (unsigned parent, const void* offset, Ts... ds)
{
return as_table_from_index<T> (mutable_index_for_offset (parent, offset), std::forward<Ts>(ds)...);
}
template <typename T, typename ...Ts>
vertex_and_table_t<T> as_table_from_index (unsigned index, Ts... ds)
{
if (index >= vertices_.length)
return vertex_and_table_t<T> ();
vertex_and_table_t<T> r;
r.vertex = &vertices_[index];
r.table = (T*) r.vertex->obj.head;
r.index = index;
if (!r.table)
return vertex_and_table_t<T> ();
if (!r.table->sanitize (*(r.vertex), std::forward<Ts>(ds)...))
return vertex_and_table_t<T> ();
return r;
}
// Finds the object id of the object pointed to by the offset at 'offset'
// within object[node_idx].
unsigned index_for_offset (unsigned node_idx, const void* offset) const
{
const auto& node = object (node_idx);
if (offset < node.head || offset >= node.tail) return -1;
unsigned count = node.real_links.length;
for (unsigned i = 0; i < count; i++)
{
// Use direct access for increased performance, this is a hot method.
const auto& link = node.real_links.arrayZ[i];
if (offset != node.head + link.position)
continue;
return link.objidx;
}
return -1;
}
// Finds the object id of the object pointed to by the offset at 'offset'
// within object[node_idx]. Ensures that the returned object is safe to mutate.
// That is, if the original child object is shared by parents other than node_idx
// it will be duplicated and the duplicate will be returned instead.
unsigned mutable_index_for_offset (unsigned node_idx, const void* offset)
{
unsigned child_idx = index_for_offset (node_idx, offset);
auto& child = vertices_[child_idx];
for (unsigned p : child.parents_iter ())
{
if (p != node_idx) {
return duplicate (node_idx, child_idx);
}
}
return child_idx;
}
/*
* Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s).
* Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB
* (including with 24bit offsets) table.
*/
bool assign_spaces ()
{
update_parents ();
hb_set_t visited;
hb_set_t roots;
find_space_roots (visited, roots);
// Mark everything not in the subgraphs of the roots as visited. This prevents
// subgraphs from being connected via nodes not in those subgraphs.
visited.invert ();
if (!roots) return false;
while (roots)
{
uint32_t next = HB_SET_VALUE_INVALID;
if (unlikely (!check_success (!roots.in_error ()))) break;
if (!roots.next (&next)) break;
hb_set_t connected_roots;
find_connected_nodes (next, roots, visited, connected_roots);
if (unlikely (!check_success (!connected_roots.in_error ()))) break;
isolate_subgraph (connected_roots);
if (unlikely (!check_success (!connected_roots.in_error ()))) break;
unsigned next_space = this->next_space ();
num_roots_for_space_.push (0);
for (unsigned root : connected_roots)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
vertices_[root].space = next_space;
num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
distance_invalid = true;
positions_invalid = true;
}
// TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
// into the 32 bit space as needed, instead of using isolation.
}
return true;
}
/*
* Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
* that originate from outside of the subgraph will be removed by duplicating the linked to
* object.
*
* Indices stored in roots will be updated if any of the roots are duplicated to new indices.
*/
bool isolate_subgraph (hb_set_t& roots)
{
update_parents ();
hb_map_t subgraph;
// incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
// set the subgraph incoming edge count to match all of root_idx's incoming edges
hb_set_t parents;
for (unsigned root_idx : roots)
{
subgraph.set (root_idx, wide_parents (root_idx, parents));
find_subgraph (root_idx, subgraph);
}
if (subgraph.in_error ())
return false;
unsigned original_root_idx = root_idx ();
hb_map_t index_map;
bool made_changes = false;
for (auto entry : subgraph.iter ())
{
assert (entry.first < vertices_.length);
const auto& node = vertices_[entry.first];
unsigned subgraph_incoming_edges = entry.second;
if (subgraph_incoming_edges < node.incoming_edges ())
{
// Only de-dup objects with incoming links from outside the subgraph.
made_changes = true;
duplicate_subgraph (entry.first, index_map);
}
}
if (in_error ())
return false;
if (!made_changes)
return false;
if (original_root_idx != root_idx ()
&& parents.has (original_root_idx))
{
// If the root idx has changed since parents was determined, update root idx in parents
parents.add (root_idx ());
parents.del (original_root_idx);
}
auto new_subgraph =
+ subgraph.keys ()
| hb_map([&] (uint32_t node_idx) {
const uint32_t *v;
if (index_map.has (node_idx, &v)) return *v;
return node_idx;
})
;
remap_obj_indices (index_map, new_subgraph);
remap_obj_indices (index_map, parents.iter (), true);
// Update roots set with new indices as needed.
for (auto next : roots)
{
const uint32_t *v;
if (index_map.has (next, &v))
{
roots.del (next);
roots.add (*v);
}
}
return true;
}
void find_subgraph (unsigned node_idx, hb_map_t& subgraph)
{
for (const auto& link : vertices_[node_idx].obj.all_links ())
{
hb_codepoint_t *v;
if (subgraph.has (link.objidx, &v))
{
(*v)++;
continue;
}
subgraph.set (link.objidx, 1);
find_subgraph (link.objidx, subgraph);
}
}
void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
{
if (subgraph.has (node_idx)) return;
subgraph.add (node_idx);
for (const auto& link : vertices_[node_idx].obj.all_links ())
find_subgraph (link.objidx, subgraph);
}
size_t find_subgraph_size (unsigned node_idx, hb_set_t& subgraph, unsigned max_depth = -1)
{
if (subgraph.has (node_idx)) return 0;
subgraph.add (node_idx);
const auto& o = vertices_[node_idx].obj;
size_t size = o.tail - o.head;
if (max_depth == 0)
return size;
for (const auto& link : o.all_links ())
size += find_subgraph_size (link.objidx, subgraph, max_depth - 1);
return size;
}
/*
* Finds the topmost children of 32bit offsets in the subgraph starting
* at node_idx. Found indices are placed into 'found'.
*/
void find_32bit_roots (unsigned node_idx, hb_set_t& found)
{
for (const auto& link : vertices_[node_idx].obj.all_links ())
{
if (!link.is_signed && link.width == 4) {
found.add (link.objidx);
continue;
}
find_32bit_roots (link.objidx, found);
}
}
/*
* Moves the child of old_parent_idx pointed to by old_offset to a new
* vertex at the new_offset.
*/
template<typename O>
void move_child (unsigned old_parent_idx,
const O* old_offset,
unsigned new_parent_idx,
const O* new_offset)
{
distance_invalid = true;
positions_invalid = true;
auto& old_v = vertices_[old_parent_idx];
auto& new_v = vertices_[new_parent_idx];
unsigned child_id = index_for_offset (old_parent_idx,
old_offset);
auto* new_link = new_v.obj.real_links.push ();
new_link->width = O::static_size;
new_link->objidx = child_id;
new_link->position = (const char*) new_offset - (const char*) new_v.obj.head;
auto& child = vertices_[child_id];
child.add_parent (new_parent_idx);
old_v.remove_real_link (child_id, old_offset);
child.remove_parent (old_parent_idx);
}
/*
* duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
* links. index_map is updated with mappings from old id to new id. If a duplication has already
* been performed for a given index, then it will be skipped.
*/
void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map)
{
if (index_map.has (node_idx))
return;
unsigned clone_idx = duplicate (node_idx);
if (!check_success (clone_idx != (unsigned) -1))
return;
index_map.set (node_idx, clone_idx);
for (const auto& l : object (node_idx).all_links ()) {
duplicate_subgraph (l.objidx, index_map);
}
}
/*
* Creates a copy of node_idx and returns it's new index.
*/
unsigned duplicate (unsigned node_idx)
{
positions_invalid = true;
distance_invalid = true;
auto* clone = vertices_.push ();
auto& child = vertices_[node_idx];
if (vertices_.in_error ()) {
return -1;
}
clone->obj.head = child.obj.head;
clone->obj.tail = child.obj.tail;
clone->distance = child.distance;
clone->space = child.space;
clone->reset_parents ();
unsigned clone_idx = vertices_.length - 2;
for (const auto& l : child.obj.real_links)
{
clone->obj.real_links.push (l);
vertices_[l.objidx].add_parent (clone_idx);
}
for (const auto& l : child.obj.virtual_links)
{
clone->obj.virtual_links.push (l);
vertices_[l.objidx].add_parent (clone_idx);
}
check_success (!clone->obj.real_links.in_error ());
check_success (!clone->obj.virtual_links.in_error ());
// The last object is the root of the graph, so swap back the root to the end.
// The root's obj idx does change, however since it's root nothing else refers to it.
// all other obj idx's will be unaffected.
hb_swap (vertices_[vertices_.length - 2], *clone);
// Since the root moved, update the parents arrays of all children on the root.
for (const auto& l : root ().obj.all_links ())
vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
return clone_idx;
}
/*
* Creates a copy of child and re-assigns the link from
* parent to the clone. The copy is a shallow copy, objects
* linked from child are not duplicated.
*
* Returns the index of the newly created duplicate.
*
* If the child_idx only has incoming edges from parent_idx, this
* will do nothing and return the original child_idx.
*/
unsigned duplicate_if_shared (unsigned parent_idx, unsigned child_idx)
{
unsigned new_idx = duplicate (parent_idx, child_idx);
if (new_idx == (unsigned) -1) return child_idx;
return new_idx;
}
/*
* Creates a copy of child and re-assigns the link from
* parent to the clone. The copy is a shallow copy, objects
* linked from child are not duplicated.
*
* Returns the index of the newly created duplicate.
*
* If the child_idx only has incoming edges from parent_idx,
* duplication isn't possible and this will return -1.
*/
unsigned duplicate (unsigned parent_idx, unsigned child_idx)
{
update_parents ();
const auto& child = vertices_[child_idx];
unsigned links_to_child = child.incoming_edges_from_parent(parent_idx);
if (child.incoming_edges () <= links_to_child)
{
// Can't duplicate this node, doing so would orphan the original one as all remaining links
// to child are from parent.
DEBUG_MSG (SUBSET_REPACK, nullptr, " Not duplicating %u => %u",
parent_idx, child_idx);
return -1;
}
DEBUG_MSG (SUBSET_REPACK, nullptr, " Duplicating %u => %u",
parent_idx, child_idx);
unsigned clone_idx = duplicate (child_idx);
if (clone_idx == (unsigned) -1) return -1;
// duplicate shifts the root node idx, so if parent_idx was root update it.
if (parent_idx == clone_idx) parent_idx++;
auto& parent = vertices_[parent_idx];
for (auto& l : parent.obj.all_links_writer ())
{
if (l.objidx != child_idx)
continue;
reassign_link (l, parent_idx, clone_idx);
}
return clone_idx;
}
/*
* Creates a copy of child and re-assigns the links from
* parents to the clone. The copy is a shallow copy, objects
* linked from child are not duplicated.
*
* Returns the index of the newly created duplicate.
*
* If the child_idx only has incoming edges from parents,
* duplication isn't possible or duplication fails and this will
* return -1.
*/
unsigned duplicate (const hb_set_t* parents, unsigned child_idx)
{
if (parents->is_empty()) {
return -1;
}
update_parents ();
const auto& child = vertices_[child_idx];
unsigned links_to_child = 0;
unsigned last_parent = parents->get_max();
unsigned first_parent = parents->get_min();
for (unsigned parent_idx : *parents) {
links_to_child += child.incoming_edges_from_parent(parent_idx);
}
if (child.incoming_edges () <= links_to_child)
{
// Can't duplicate this node, doing so would orphan the original one as all remaining links
// to child are from parent.
DEBUG_MSG (SUBSET_REPACK, nullptr, " Not duplicating %u, ..., %u => %u", first_parent, last_parent, child_idx);
return -1;
}
DEBUG_MSG (SUBSET_REPACK, nullptr, " Duplicating %u, ..., %u => %u", first_parent, last_parent, child_idx);
unsigned clone_idx = duplicate (child_idx);
if (clone_idx == (unsigned) -1) return false;
for (unsigned parent_idx : *parents) {
// duplicate shifts the root node idx, so if parent_idx was root update it.
if (parent_idx == clone_idx) parent_idx++;
auto& parent = vertices_[parent_idx];
for (auto& l : parent.obj.all_links_writer ())
{
if (l.objidx != child_idx)
continue;
reassign_link (l, parent_idx, clone_idx);
}
}
return clone_idx;
}
/*
* Adds a new node to the graph, not connected to anything.
*/
unsigned new_node (char* head, char* tail)
{
positions_invalid = true;
distance_invalid = true;
auto* clone = vertices_.push ();
if (vertices_.in_error ()) {
return -1;
}
clone->obj.head = head;
clone->obj.tail = tail;
clone->distance = 0;
clone->space = 0;
unsigned clone_idx = vertices_.length - 2;
// The last object is the root of the graph, so swap back the root to the end.
// The root's obj idx does change, however since it's root nothing else refers to it.
// all other obj idx's will be unaffected.
hb_swap (vertices_[vertices_.length - 2], *clone);
// Since the root moved, update the parents arrays of all children on the root.
for (const auto& l : root ().obj.all_links ())
vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
return clone_idx;
}
/*
* Raises the sorting priority of all children.
*/
bool raise_childrens_priority (unsigned parent_idx)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, " Raising priority of all children of %u",
parent_idx);
// This operation doesn't change ordering until a sort is run, so no need
// to invalidate positions. It does not change graph structure so no need
// to update distances or edge counts.
auto& parent = vertices_[parent_idx].obj;
bool made_change = false;
for (auto& l : parent.all_links_writer ())
made_change |= vertices_[l.objidx].raise_priority ();
return made_change;
}
bool is_fully_connected ()
{
update_parents();
if (root().incoming_edges ())
// Root cannot have parents.
return false;
for (unsigned i = 0; i < root_idx (); i++)
{
if (!vertices_[i].incoming_edges ())
return false;
}
return true;
}
#if 0
/*
* Saves the current graph to a packed binary format which the repacker fuzzer takes
* as a seed.
*/
void save_fuzzer_seed (hb_tag_t tag) const
{
FILE* f = fopen ("./repacker_fuzzer_seed", "w");
fwrite ((void*) &tag, sizeof (tag), 1, f);
uint16_t num_objects = vertices_.length;
fwrite ((void*) &num_objects, sizeof (num_objects), 1, f);
for (const auto& v : vertices_)
{
uint16_t blob_size = v.table_size ();
fwrite ((void*) &blob_size, sizeof (blob_size), 1, f);
fwrite ((const void*) v.obj.head, blob_size, 1, f);
}
uint16_t link_count = 0;
for (const auto& v : vertices_)
link_count += v.obj.real_links.length;
fwrite ((void*) &link_count, sizeof (link_count), 1, f);
typedef struct
{
uint16_t parent;
uint16_t child;
uint16_t position;
uint8_t width;
} link_t;
for (unsigned i = 0; i < vertices_.length; i++)
{
for (const auto& l : vertices_[i].obj.real_links)
{
link_t link {
(uint16_t) i, (uint16_t) l.objidx,
(uint16_t) l.position, (uint8_t) l.width
};
fwrite ((void*) &link, sizeof (link), 1, f);
}
}
fclose (f);
}
#endif
void print_orphaned_nodes ()
{
if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
parents_invalid = true;
update_parents();
if (root().incoming_edges ()) {
DEBUG_MSG (SUBSET_REPACK, nullptr, "Root node has incoming edges.");
}
for (unsigned i = 0; i < root_idx (); i++)
{
const auto& v = vertices_[i];
if (!v.incoming_edges ())
DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
}
}
unsigned num_roots_for_space (unsigned space) const
{
return num_roots_for_space_[space];
}
unsigned next_space () const
{
return num_roots_for_space_.length;
}
void move_to_new_space (const hb_set_t& indices)
{
num_roots_for_space_.push (0);
unsigned new_space = num_roots_for_space_.length - 1;
for (unsigned index : indices) {
auto& node = vertices_[index];
num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
node.space = new_space;
distance_invalid = true;
positions_invalid = true;
}
}
unsigned space_for (unsigned index, unsigned* root = nullptr) const
{
loop:
assert (index < vertices_.length);
const auto& node = vertices_[index];
if (node.space)
{
if (root != nullptr)
*root = index;
return node.space;
}
if (!node.incoming_edges ())
{
if (root)
*root = index;
return 0;
}
index = *node.parents_iter ();
goto loop;
}
void err_other_error () { this->successful = false; }
size_t total_size_in_bytes () const {
size_t total_size = 0;
unsigned count = vertices_.length;
for (unsigned i = 0; i < count; i++) {
size_t size = vertices_.arrayZ[i].obj.tail - vertices_.arrayZ[i].obj.head;
total_size += size;
}
return total_size;
}
private:
/*
* Returns the numbers of incoming edges that are 24 or 32 bits wide.
*/
unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
{
unsigned count = 0;
for (unsigned p : vertices_[node_idx].parents_iter ())
{
// Only real links can be wide
for (const auto& l : vertices_[p].obj.real_links)
{
if (l.objidx == node_idx
&& (l.width == 3 || l.width == 4)
&& !l.is_signed)
{
count++;
parents.add (p);
}
}
}
return count;
}
bool check_success (bool success)
{ return this->successful && (success || ((void) err_other_error (), false)); }
public:
/*
* Creates a map from objid to # of incoming edges.
*/
void update_parents ()
{
if (!parents_invalid) return;
unsigned count = vertices_.length;
for (unsigned i = 0; i < count; i++)
vertices_.arrayZ[i].reset_parents ();
for (unsigned p = 0; p < count; p++)
{
for (auto& l : vertices_.arrayZ[p].obj.all_links ())
vertices_[l.objidx].add_parent (p);
}
for (unsigned i = 0; i < count; i++)
// parents arrays must be accurate or downstream operations like cycle detection
// and sorting won't work correctly.
check_success (!vertices_.arrayZ[i].in_error ());
parents_invalid = false;
}
/*
* compute the serialized start and end positions for each vertex.
*/
void update_positions ()
{
if (!positions_invalid) return;
unsigned current_pos = 0;
for (int i = root_idx (); i >= 0; i--)
{
auto& v = vertices_[i];
v.start = current_pos;
current_pos += v.obj.tail - v.obj.head;
v.end = current_pos;
}
positions_invalid = false;
}
/*
* Finds the distance to each object in the graph
* from the initial node.
*/
void update_distances ()
{
if (!distance_invalid) return;
// Uses Dijkstra's algorithm to find all of the shortest distances.
// https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//
// Implementation Note:
// Since our priority queue doesn't support fast priority decreases
// we instead just add new entries into the queue when a priority changes.
// Redundant ones are filtered out later on by the visited set.
// According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
// for practical performance this is faster then using a more advanced queue
// (such as a fibonacci queue) with a fast decrease priority.
unsigned count = vertices_.length;
for (unsigned i = 0; i < count; i++)
vertices_.arrayZ[i].distance = hb_int_max (int64_t);
vertices_.tail ().distance = 0;
hb_priority_queue_t<int64_t> queue;
queue.alloc (count);
queue.insert (0, vertices_.length - 1);
hb_vector_t<bool> visited;
visited.resize (vertices_.length);
while (!queue.in_error () && !queue.is_empty ())
{
unsigned next_idx = queue.pop_minimum ().second;
if (visited[next_idx]) continue;
const auto& next = vertices_[next_idx];
int64_t next_distance = vertices_[next_idx].distance;
visited[next_idx] = true;
for (const auto& link : next.obj.all_links ())
{
if (visited[link.objidx]) continue;
const auto& child = vertices_.arrayZ[link.objidx].obj;
unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
int64_t child_weight = (child.tail - child.head) +
((int64_t) 1 << (link_width * 8)) * (vertices_.arrayZ[link.objidx].space + 1);
int64_t child_distance = next_distance + child_weight;
if (child_distance < vertices_.arrayZ[link.objidx].distance)
{
vertices_.arrayZ[link.objidx].distance = child_distance;
queue.insert (child_distance, link.objidx);
}
}
}
check_success (!queue.in_error ());
if (!check_success (queue.is_empty ()))
{
print_orphaned_nodes ();
return;
}
distance_invalid = false;
}
private:
/*
* Updates a link in the graph to point to a different object. Corrects the
* parents vector on the previous and new child nodes.
*/
void reassign_link (hb_serialize_context_t::object_t::link_t& link,
unsigned parent_idx,
unsigned new_idx)
{
unsigned old_idx = link.objidx;
link.objidx = new_idx;
vertices_[old_idx].remove_parent (parent_idx);
vertices_[new_idx].add_parent (parent_idx);
}
/*
* Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
*/
template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
void remap_obj_indices (const hb_map_t& id_map,
Iterator subgraph,
bool only_wide = false)
{
if (!id_map) return;
for (unsigned i : subgraph)
{
for (auto& link : vertices_[i].obj.all_links_writer ())
{
const uint32_t *v;
if (!id_map.has (link.objidx, &v)) continue;
if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
reassign_link (link, i, *v);
}
}
}
/*
* Updates all objidx's in all links using the provided mapping.
*/
bool remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
hb_vector_t<vertex_t>* sorted_graph) const
{
unsigned count = sorted_graph->length;
for (unsigned i = 0; i < count; i++)
{
if (!(*sorted_graph)[i].remap_parents (id_map))
return false;
for (auto& link : sorted_graph->arrayZ[i].obj.all_links_writer ())
{
link.objidx = id_map[link.objidx];
}
}
return true;
}
/*
* Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
* For this search the graph is treated as being undirected.
*
* Connected targets will be added to connected and removed from targets. All visited nodes
* will be added to visited.
*/
void find_connected_nodes (unsigned start_idx,
hb_set_t& targets,
hb_set_t& visited,
hb_set_t& connected)
{
if (unlikely (!check_success (!visited.in_error ()))) return;
if (visited.has (start_idx)) return;
visited.add (start_idx);
if (targets.has (start_idx))
{
targets.del (start_idx);
connected.add (start_idx);
}
const auto& v = vertices_[start_idx];
// Graph is treated as undirected so search children and parents of start_idx
for (const auto& l : v.obj.all_links ())
find_connected_nodes (l.objidx, targets, visited, connected);
for (unsigned p : v.parents_iter ())
find_connected_nodes (p, targets, visited, connected);
}
public:
// TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
hb_vector_t<vertex_t> vertices_;
hb_vector_t<vertex_t> vertices_scratch_;
private:
bool parents_invalid;
bool distance_invalid;
bool positions_invalid;
bool successful;
hb_vector_t<unsigned> num_roots_for_space_;
hb_vector_t<char*> buffers;
};
}
#endif // GRAPH_GRAPH_HH