Edit

kc3-lang/harfbuzz/src/hb-iter.hh

Branch :

  • Show log

    Commit

  • Author : Behdad Esfahbod
    Date : 2024-02-06 14:58:05
    Hash : ef04b5c2
    Message : Try fixing MSVC builds

  • src/hb-iter.hh
  • /*
     * Copyright © 2018  Google, Inc.
     * Copyright © 2019  Facebook, Inc.
     *
     *  This is part of HarfBuzz, a text shaping library.
     *
     * Permission is hereby granted, without written agreement and without
     * license or royalty fees, to use, copy, modify, and distribute this
     * software and its documentation for any purpose, provided that the
     * above copyright notice and the following two paragraphs appear in
     * all copies of this software.
     *
     * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
     * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
     * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
     * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
     * DAMAGE.
     *
     * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
     * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
     * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
     * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
     *
     * Google Author(s): Behdad Esfahbod
     * Facebook Author(s): Behdad Esfahbod
     */
    
    #ifndef HB_ITER_HH
    #define HB_ITER_HH
    
    #include "hb.hh"
    #include "hb-algs.hh"
    #include "hb-meta.hh"
    
    
    /* Unified iterator object.
     *
     * The goal of this template is to make the same iterator interface
     * available to all types, and make it very easy and compact to use.
     * hb_iter_tator objects are small, light-weight, objects that can be
     * copied by value.  If the collection / object being iterated on
     * is writable, then the iterator returns lvalues, otherwise it
     * returns rvalues.
     *
     * If iterator implementation implements operator!=, then it can be
     * used in range-based for loop.  That already happens if the iterator
     * is random-access.  Otherwise, the range-based for loop incurs
     * one traversal to find end(), which can be avoided if written
     * as a while-style for loop, or if iterator implements a faster
     * __end__() method. */
    
    /*
     * Base classes for iterators.
     */
    
    /* Base class for all iterators. */
    template <typename iter_t, typename Item = typename iter_t::__item_t__>
    struct hb_iter_t
    {
      typedef Item item_t;
      constexpr unsigned get_item_size () const { return hb_static_size (Item); }
      static constexpr bool is_iterator = true;
      static constexpr bool is_random_access_iterator = false;
      static constexpr bool is_sorted_iterator = false;
      static constexpr bool has_fast_len = false; // Should be checked in combination with is_random_access_iterator.
    
      private:
      /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
      const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
    	iter_t* thiz ()       { return static_cast<      iter_t *> (this); }
      public:
    
      /* Operators. */
      iter_t iter () const { return *thiz(); }
      iter_t operator + () const { return *thiz(); }
      iter_t _begin () const { return *thiz(); }
      iter_t begin () const { return _begin (); }
      iter_t _end () const { return thiz()->__end__ (); }
      iter_t end () const { return _end (); }
      explicit operator bool () const { return thiz()->__more__ (); }
      unsigned len () const { return thiz()->__len__ (); }
      /* The following can only be enabled if item_t is reference type.  Otherwise
       * it will be returning pointer to temporary rvalue. */
      template <typename T = item_t,
    	    hb_enable_if (std::is_reference<T>::value)>
      hb_remove_reference<item_t>* operator -> () const { return std::addressof (**thiz()); }
      item_t operator * () const { return thiz()->__item__ (); }
      item_t operator * () { return thiz()->__item__ (); }
      item_t operator [] (unsigned i) const { return thiz()->__item_at__ (i); }
      item_t operator [] (unsigned i) { return thiz()->__item_at__ (i); }
      iter_t& operator += (unsigned count) &  { thiz()->__forward__ (count); return *thiz(); }
      iter_t  operator += (unsigned count) && { thiz()->__forward__ (count); return *thiz(); }
      iter_t& operator ++ () &  { thiz()->__next__ (); return *thiz(); }
      iter_t  operator ++ () && { thiz()->__next__ (); return *thiz(); }
      iter_t& operator -= (unsigned count) &  { thiz()->__rewind__ (count); return *thiz(); }
      iter_t  operator -= (unsigned count) && { thiz()->__rewind__ (count); return *thiz(); }
      iter_t& operator -- () &  { thiz()->__prev__ (); return *thiz(); }
      iter_t  operator -- () && { thiz()->__prev__ (); return *thiz(); }
      iter_t operator + (unsigned count) const { auto c = thiz()->iter (); c += count; return c; }
      friend iter_t operator + (unsigned count, const iter_t &it) { return it + count; }
      iter_t operator ++ (int) { iter_t c (*thiz()); ++*thiz(); return c; }
      iter_t operator - (unsigned count) const { auto c = thiz()->iter (); c -= count; return c; }
      iter_t operator -- (int) { iter_t c (*thiz()); --*thiz(); return c; }
      template <typename T>
      iter_t& operator >> (T &v) &  { v = **thiz(); ++*thiz(); return *thiz(); }
      template <typename T>
      iter_t  operator >> (T &v) && { v = **thiz(); ++*thiz(); return *thiz(); }
      template <typename T>
      iter_t& operator << (const T v) &  { **thiz() = v; ++*thiz(); return *thiz(); }
      template <typename T>
      iter_t  operator << (const T v) && { **thiz() = v; ++*thiz(); return *thiz(); }
    
      protected:
      hb_iter_t () = default;
      hb_iter_t (const hb_iter_t &o HB_UNUSED) = default;
      hb_iter_t (hb_iter_t &&o HB_UNUSED) = default;
      hb_iter_t& operator = (const hb_iter_t &o HB_UNUSED) = default;
      hb_iter_t& operator = (hb_iter_t &&o HB_UNUSED) = default;
    };
    
    #define HB_ITER_USING(Name) \
      using item_t = typename Name::item_t; \
      using Name::_begin; \
      using Name::begin; \
      using Name::_end; \
      using Name::end; \
      using Name::get_item_size; \
      using Name::is_iterator; \
      using Name::iter; \
      using Name::operator bool; \
      using Name::len; \
      using Name::operator ->; \
      using Name::operator *; \
      using Name::operator []; \
      using Name::operator +=; \
      using Name::operator ++; \
      using Name::operator -=; \
      using Name::operator --; \
      using Name::operator +; \
      using Name::operator -; \
      using Name::operator >>; \
      using Name::operator <<; \
      static_assert (true, "")
    
    /* Returns iterator / item type of a type. */
    template <typename Iterable>
    using hb_iter_type = decltype (hb_deref (hb_declval (Iterable)).iter ());
    template <typename Iterable>
    using hb_item_type = decltype (*hb_deref (hb_declval (Iterable)).iter ());
    
    
    template <typename> struct hb_array_t;
    template <typename> struct hb_sorted_array_t;
    
    struct
    {
      template <typename T> hb_iter_type<T>
      operator () (T&& c) const
      { return hb_deref (std::forward<T> (c)).iter (); }
    
      /* Specialization for C arrays. */
    
      template <typename Type> inline hb_array_t<Type>
      operator () (Type *array, unsigned int length) const
      { return hb_array_t<Type> (array, length); }
    
      template <typename Type, unsigned int length> hb_array_t<Type>
      operator () (Type (&array)[length]) const
      { return hb_array_t<Type> (array, length); }
    
    }
    HB_FUNCOBJ (hb_iter);
    struct
    {
      template <typename T> auto
      impl (T&& c, hb_priority<1>) const HB_RETURN (unsigned, c.len ())
    
      template <typename T> auto
      impl (T&& c, hb_priority<0>) const HB_RETURN (unsigned, c.len)
    
      public:
    
      template <typename T> auto
      operator () (T&& c) const HB_RETURN (unsigned, impl (std::forward<T> (c), hb_prioritize))
    }
    HB_FUNCOBJ (hb_len);
    
    /* Mixin to fill in what the subclass doesn't provide. */
    template <typename iter_t, typename item_t = typename iter_t::__item_t__>
    struct hb_iter_fallback_mixin_t
    {
      private:
      /* https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern */
      const iter_t* thiz () const { return static_cast<const iter_t *> (this); }
    	iter_t* thiz ()       { return static_cast<      iter_t *> (this); }
      public:
    
      /* Access: Implement __item__(), or __item_at__() if random-access. */
      item_t __item__ () const { return (*thiz())[0]; }
      item_t __item_at__ (unsigned i) const { return *(*thiz() + i); }
    
      /* Termination: Implement __more__(), or __len__() if random-access. */
      bool __more__ () const { return bool (thiz()->len ()); }
      unsigned __len__ () const
      { iter_t c (*thiz()); unsigned l = 0; while (c) { c++; l++; } return l; }
    
      /* Advancing: Implement __next__(), or __forward__() if random-access. */
      void __next__ () { *thiz() += 1; }
      void __forward__ (unsigned n) { while (*thiz() && n--) ++*thiz(); }
    
      /* Rewinding: Implement __prev__() or __rewind__() if bidirectional. */
      void __prev__ () { *thiz() -= 1; }
      void __rewind__ (unsigned n) { while (*thiz() && n--) --*thiz(); }
    
      /* Range-based for: Implement __end__() if can be done faster,
       * and operator!=. */
      iter_t __end__ () const
      {
        if (thiz()->is_random_access_iterator)
          return *thiz() + thiz()->len ();
        /* Above expression loops twice. Following loops once. */
        auto it = *thiz();
        while (it) ++it;
        return it;
      }
    
      protected:
      hb_iter_fallback_mixin_t () = default;
      hb_iter_fallback_mixin_t (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default;
      hb_iter_fallback_mixin_t (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default;
      hb_iter_fallback_mixin_t& operator = (const hb_iter_fallback_mixin_t &o HB_UNUSED) = default;
      hb_iter_fallback_mixin_t& operator = (hb_iter_fallback_mixin_t &&o HB_UNUSED) = default;
    };
    
    template <typename iter_t, typename item_t = typename iter_t::__item_t__>
    struct hb_iter_with_fallback_t :
      hb_iter_t<iter_t, item_t>,
      hb_iter_fallback_mixin_t<iter_t, item_t>
    {
      protected:
      hb_iter_with_fallback_t () = default;
      hb_iter_with_fallback_t (const hb_iter_with_fallback_t &o HB_UNUSED) = default;
      hb_iter_with_fallback_t (hb_iter_with_fallback_t &&o HB_UNUSED) = default;
      hb_iter_with_fallback_t& operator = (const hb_iter_with_fallback_t &o HB_UNUSED) = default;
      hb_iter_with_fallback_t& operator = (hb_iter_with_fallback_t &&o HB_UNUSED) = default;
    };
    
    /*
     * Meta-programming predicates.
     */
    
    /* hb_is_iterator() / hb_is_iterator_of() */
    
    template<typename Iter, typename Item>
    struct hb_is_iterator_of
    {
      template <typename Item2 = Item>
      static hb_true_type impl (hb_priority<2>, hb_iter_t<Iter, hb_type_identity<Item2>> *);
      static hb_false_type impl (hb_priority<0>, const void *);
    
      public:
      static constexpr bool value = decltype (impl (hb_prioritize, hb_declval (Iter*)))::value;
    };
    #define hb_is_iterator_of(Iter, Item) hb_is_iterator_of<Iter, Item>::value
    #define hb_is_iterator(Iter) hb_is_iterator_of (Iter, typename Iter::item_t)
    #define hb_is_sorted_iterator_of(Iter, Item) (hb_is_iterator_of<Iter, Item>::value && Iter::is_sorted_iterator)
    #define hb_is_sorted_iterator(Iter) hb_is_sorted_iterator_of (Iter, typename Iter::item_t)
    
    /* hb_is_iterable() */
    
    template <typename T>
    struct hb_is_iterable
    {
      private:
    
      template <typename U>
      static auto impl (hb_priority<1>) -> decltype (hb_declval (U).iter (), hb_true_type ());
    
      template <typename>
      static hb_false_type impl (hb_priority<0>);
    
      public:
      static constexpr bool value = decltype (impl<T> (hb_prioritize))::value;
    };
    #define hb_is_iterable(Iterable) hb_is_iterable<Iterable>::value
    
    /* hb_is_source_of() / hb_is_sink_of() */
    
    template<typename Iter, typename Item>
    struct hb_is_source_of
    {
      private:
      template <typename Iter2 = Iter,
    	    hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<const Item>))>
      static hb_true_type impl (hb_priority<2>);
      template <typename Iter2 = Iter>
      static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) >> hb_declval (Item &), hb_true_type ());
      static hb_false_type impl (hb_priority<0>);
    
      public:
      static constexpr bool value = decltype (impl (hb_prioritize))::value;
    };
    #define hb_is_source_of(Iter, Item) hb_is_source_of<Iter, Item>::value
    
    template<typename Iter, typename Item>
    struct hb_is_sink_of
    {
      private:
      template <typename Iter2 = Iter,
    	    hb_enable_if (hb_is_convertible (typename Iter2::item_t, hb_add_lvalue_reference<Item>))>
      static hb_true_type impl (hb_priority<2>);
      template <typename Iter2 = Iter>
      static auto impl (hb_priority<1>) -> decltype (hb_declval (Iter2) << hb_declval (Item), hb_true_type ());
      static hb_false_type impl (hb_priority<0>);
    
      public:
      static constexpr bool value = decltype (impl (hb_prioritize))::value;
    };
    #define hb_is_sink_of(Iter, Item) hb_is_sink_of<Iter, Item>::value
    
    /* This is commonly used, so define: */
    #define hb_is_sorted_source_of(Iter, Item) \
    	(hb_is_source_of(Iter, Item) && Iter::is_sorted_iterator)
    
    
    struct
    {
      template <typename Iterable,
    	    hb_requires (hb_is_iterable (Iterable))>
      unsigned operator () (const Iterable &_) const { return hb_len (hb_iter (_)); }
    
      unsigned operator () (unsigned _) const { return _; }
    }
    HB_FUNCOBJ (hb_len_of);
    
    /* Range-based 'for' for iterables. */
    
    template <typename Iterable,
    	  hb_requires (hb_is_iterable (Iterable))>
    static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ())
    
    template <typename Iterable,
    	  hb_requires (hb_is_iterable (Iterable))>
    static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ())
    
    /* begin()/end() are NOT looked up non-ADL.  So each namespace must declare them.
     * Do it for namespace OT. */
    namespace OT {
    
    template <typename Iterable,
    	  hb_requires (hb_is_iterable (Iterable))>
    static inline auto begin (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).begin ())
    
    template <typename Iterable,
    	  hb_requires (hb_is_iterable (Iterable))>
    static inline auto end (Iterable&& iterable) HB_AUTO_RETURN (hb_iter (iterable).end ())
    
    }
    
    
    /*
     * Adaptors, combiners, etc.
     */
    
    template <typename Lhs, typename Rhs,
    	  hb_requires (hb_is_iterator (Lhs))>
    static inline auto
    operator | (Lhs&& lhs, Rhs&& rhs) HB_AUTO_RETURN (std::forward<Rhs> (rhs) (std::forward<Lhs> (lhs)))
    
    /* hb_map(), hb_filter(), hb_reduce() */
    
    enum  class hb_function_sortedness_t {
      NOT_SORTED,
      RETAINS_SORTING,
      SORTED,
    };
    
    template <typename Iter, typename Proj, hb_function_sortedness_t Sorted,
    	 hb_requires (hb_is_iterator (Iter))>
    struct hb_map_iter_t :
      hb_iter_t<hb_map_iter_t<Iter, Proj, Sorted>,
    	    decltype (hb_get (hb_declval (Proj), *hb_declval (Iter)))>
    {
      hb_map_iter_t (const Iter& it, Proj f_) : it (it), f (f_) {}
    
      typedef decltype (hb_get (hb_declval (Proj), *hb_declval (Iter))) __item_t__;
      static constexpr bool is_random_access_iterator = Iter::is_random_access_iterator;
      static constexpr bool is_sorted_iterator =
        Sorted == hb_function_sortedness_t::SORTED ? true :
        Sorted == hb_function_sortedness_t::RETAINS_SORTING ? Iter::is_sorted_iterator :
        false;
      __item_t__ __item__ () const { return hb_get (f.get (), *it); }
      __item_t__ __item_at__ (unsigned i) const { return hb_get (f.get (), it[i]); }
      bool __more__ () const { return bool (it); }
      unsigned __len__ () const { return it.len (); }
      void __next__ () { ++it; }
      void __forward__ (unsigned n) { it += n; }
      void __prev__ () { --it; }
      void __rewind__ (unsigned n) { it -= n; }
      hb_map_iter_t __end__ () const { return hb_map_iter_t (it._end (), f); }
      bool operator != (const hb_map_iter_t& o) const
      { return it != o.it; }
    
      private:
      Iter it;
      mutable hb_reference_wrapper<Proj> f;
    };
    
    template <typename Proj, hb_function_sortedness_t Sorted>
    struct hb_map_iter_factory_t
    {
      hb_map_iter_factory_t (Proj f) : f (f) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      hb_map_iter_t<Iter, Proj, Sorted>
      operator () (Iter it)
      { return hb_map_iter_t<Iter, Proj, Sorted> (it, f); }
    
      private:
      Proj f;
    };
    struct
    {
      template <typename Proj>
      hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED>
      operator () (Proj&& f) const
      { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::NOT_SORTED> (f); }
    }
    HB_FUNCOBJ (hb_map);
    struct
    {
      template <typename Proj>
      hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING>
      operator () (Proj&& f) const
      { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::RETAINS_SORTING> (f); }
    }
    HB_FUNCOBJ (hb_map_retains_sorting);
    struct
    {
      template <typename Proj>
      hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED>
      operator () (Proj&& f) const
      { return hb_map_iter_factory_t<Proj, hb_function_sortedness_t::SORTED> (f); }
    }
    HB_FUNCOBJ (hb_map_sorted);
    
    template <typename Iter, typename Pred, typename Proj,
    	 hb_requires (hb_is_iterator (Iter))>
    struct hb_filter_iter_t :
      hb_iter_with_fallback_t<hb_filter_iter_t<Iter, Pred, Proj>,
    			  typename Iter::item_t>
    {
      hb_filter_iter_t (const Iter& it_, Pred p_, Proj f_) : it (it_), p (p_), f (f_)
      { while (it && !hb_has (p.get (), hb_get (f.get (), *it))) ++it; }
    
      typedef typename Iter::item_t __item_t__;
      static constexpr bool is_sorted_iterator = Iter::is_sorted_iterator;
      __item_t__ __item__ () const { return *it; }
      bool __more__ () const { return bool (it); }
      void __next__ () { do ++it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); }
      void __prev__ () { do --it; while (it && !hb_has (p.get (), hb_get (f.get (), *it))); }
      hb_filter_iter_t __end__ () const { return hb_filter_iter_t (it._end (), p, f); }
      bool operator != (const hb_filter_iter_t& o) const
      { return it != o.it; }
    
      private:
      Iter it;
      mutable hb_reference_wrapper<Pred> p;
      mutable hb_reference_wrapper<Proj> f;
    };
    template <typename Pred, typename Proj>
    struct hb_filter_iter_factory_t
    {
      hb_filter_iter_factory_t (Pred p, Proj f) : p (p), f (f) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      hb_filter_iter_t<Iter, Pred, Proj>
      operator () (Iter it)
      { return hb_filter_iter_t<Iter, Pred, Proj> (it, p, f); }
    
      private:
      Pred p;
      Proj f;
    };
    struct
    {
      template <typename Pred = decltype ((hb_identity)),
    	    typename Proj = decltype ((hb_identity))>
      hb_filter_iter_factory_t<Pred, Proj>
      operator () (Pred&& p = hb_identity, Proj&& f = hb_identity) const
      { return hb_filter_iter_factory_t<Pred, Proj> (p, f); }
    }
    HB_FUNCOBJ (hb_filter);
    
    template <typename Redu, typename InitT>
    struct hb_reduce_t
    {
      hb_reduce_t (Redu r, InitT init_value) : r (r), init_value (init_value) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter)),
    	    typename AccuT = hb_decay<decltype (hb_declval (Redu) (hb_declval (InitT), hb_declval (typename Iter::item_t)))>>
      AccuT
      operator () (Iter it)
      {
        AccuT value = init_value;
        for (; it; ++it)
          value = r (value, *it);
        return value;
      }
    
      private:
      Redu r;
      InitT init_value;
    };
    struct
    {
      template <typename Redu, typename InitT>
      hb_reduce_t<Redu, InitT>
      operator () (Redu&& r, InitT init_value) const
      { return hb_reduce_t<Redu, InitT> (r, init_value); }
    }
    HB_FUNCOBJ (hb_reduce);
    
    
    /* hb_zip() */
    
    template <typename A, typename B>
    struct hb_zip_iter_t :
      hb_iter_t<hb_zip_iter_t<A, B>,
    	    hb_pair_t<typename A::item_t, typename B::item_t>>
    {
      hb_zip_iter_t () {}
      hb_zip_iter_t (const A& a, const B& b) : a (a), b (b) {}
    
      typedef hb_pair_t<typename A::item_t, typename B::item_t> __item_t__;
      static constexpr bool is_random_access_iterator =
        A::is_random_access_iterator &&
        B::is_random_access_iterator;
      /* Note.  The following categorization is only valid if A is strictly sorted,
       * ie. does NOT have duplicates.  Previously I tried to categorize sortedness
       * more granularly, see commits:
       *
       *   513762849a683914fc266a17ddf38f133cccf072
       *   4d3cf2adb669c345cc43832d11689271995e160a
       *
       * However, that was not enough, since hb_sorted_array_t, hb_sorted_vector_t,
       * SortedArrayOf, etc all needed to be updated to add more variants.  At that
       * point I saw it not worth the effort, and instead we now deem all sorted
       * collections as essentially strictly-sorted for the purposes of zip.
       *
       * The above assumption is not as bad as it sounds.  Our "sorted" comes with
       * no guarantees.  It's just a contract, put in place to help you remember,
       * and think about, whether an iterator you receive is expected to be
       * sorted or not.  As such, it's not perfect by definition, and should not
       * be treated so.  The inaccuracy here just errs in the direction of being
       * more permissive, so your code compiles instead of erring on the side of
       * marking your zipped iterator unsorted in which case your code won't
       * compile.
       *
       * This semantical limitation does NOT affect logic in any other place I
       * know of as of this writing.
       */
      static constexpr bool is_sorted_iterator = A::is_sorted_iterator;
    
      __item_t__ __item__ () const { return __item_t__ (*a, *b); }
      __item_t__ __item_at__ (unsigned i) const { return __item_t__ (a[i], b[i]); }
      bool __more__ () const { return bool (a) && bool (b); }
      unsigned __len__ () const { return hb_min (a.len (), b.len ()); }
      void __next__ () { ++a; ++b; }
      void __forward__ (unsigned n) { a += n; b += n; }
      void __prev__ () { --a; --b; }
      void __rewind__ (unsigned n) { a -= n; b -= n; }
      hb_zip_iter_t __end__ () const { return hb_zip_iter_t (a._end (), b._end ()); }
      /* Note, we should stop if ANY of the iters reaches end.  As such two compare
       * unequal if both items are unequal, NOT if either is unequal. */
      bool operator != (const hb_zip_iter_t& o) const
      { return a != o.a && b != o.b; }
    
      private:
      A a;
      B b;
    };
    struct
    { HB_PARTIALIZE(2);
      template <typename A, typename B,
    	    hb_requires (hb_is_iterable (A) && hb_is_iterable (B))>
      hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>>
      operator () (A&& a, B&& b) const
      { return hb_zip_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); }
    }
    HB_FUNCOBJ (hb_zip);
    
    /* hb_concat() */
    
    template <typename A, typename B>
    struct hb_concat_iter_t :
        hb_iter_t<hb_concat_iter_t<A, B>, typename A::item_t>
    {
      hb_concat_iter_t () {}
      hb_concat_iter_t (A& a, B& b) : a (a), b (b) {}
      hb_concat_iter_t (const A& a, const B& b) : a (a), b (b) {}
    
    
      typedef typename A::item_t __item_t__;
      static constexpr bool is_random_access_iterator =
        A::is_random_access_iterator &&
        B::is_random_access_iterator;
      static constexpr bool is_sorted_iterator = false;
    
      __item_t__ __item__ () const
      {
        if (!a)
          return *b;
        return *a;
      }
    
      __item_t__ __item_at__ (unsigned i) const
      {
        unsigned a_len = a.len ();
        if (i < a_len)
          return a[i];
        return b[i - a_len];
      }
    
      bool __more__ () const { return bool (a) || bool (b); }
    
      unsigned __len__ () const { return a.len () + b.len (); }
    
      void __next__ ()
      {
        if (a)
          ++a;
        else
          ++b;
      }
    
      void __forward__ (unsigned n)
      {
        if (!n) return;
        if (!is_random_access_iterator) {
          while (n-- && *this) {
            (*this)++;
          }
          return;
        }
    
        unsigned a_len = a.len ();
        if (n > a_len) {
          n -= a_len;
          a.__forward__ (a_len);
          b.__forward__ (n);
        } else {
          a.__forward__ (n);
        }
      }
    
      hb_concat_iter_t __end__ () const { return hb_concat_iter_t (a._end (), b._end ()); }
      bool operator != (const hb_concat_iter_t& o) const
      {
        return a != o.a
            || b != o.b;
      }
    
      private:
      A a;
      B b;
    };
    struct
    { HB_PARTIALIZE(2);
      template <typename A, typename B,
    	    hb_requires (hb_is_iterable (A) && hb_is_iterable (B))>
      hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>>
      operator () (A&& a, B&& b) const
      { return hb_concat_iter_t<hb_iter_type<A>, hb_iter_type<B>> (hb_iter (a), hb_iter (b)); }
    }
    HB_FUNCOBJ (hb_concat);
    
    /* hb_apply() */
    
    template <typename Appl>
    struct hb_apply_t
    {
      hb_apply_t (Appl a) : a (a) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      void operator () (Iter it)
      {
        for (; it; ++it)
          (void) hb_invoke (a, *it);
      }
    
      private:
      Appl a;
    };
    struct
    {
      template <typename Appl> hb_apply_t<Appl>
      operator () (Appl&& a) const
      { return hb_apply_t<Appl> (a); }
    
      template <typename Appl> hb_apply_t<Appl&>
      operator () (Appl *a) const
      { return hb_apply_t<Appl&> (*a); }
    }
    HB_FUNCOBJ (hb_apply);
    
    /* hb_range()/hb_iota()/hb_repeat() */
    
    template <typename T, typename S>
    struct hb_range_iter_t :
      hb_iter_t<hb_range_iter_t<T, S>, T>
    {
      hb_range_iter_t (T start, T end_, S step) : v (start), end_ (end_for (start, end_, step)), step (step) {}
    
      typedef T __item_t__;
      static constexpr bool is_random_access_iterator = true;
      static constexpr bool is_sorted_iterator = true;
      __item_t__ __item__ () const { return hb_ridentity (v); }
      __item_t__ __item_at__ (unsigned j) const { return v + j * step; }
      bool __more__ () const { return v != end_; }
      unsigned __len__ () const { return !step ? UINT_MAX : (end_ - v) / step; }
      void __next__ () { v += step; }
      void __forward__ (unsigned n) { v += n * step; }
      void __prev__ () { v -= step; }
      void __rewind__ (unsigned n) { v -= n * step; }
      hb_range_iter_t __end__ () const { return hb_range_iter_t (end_, end_, step); }
      bool operator != (const hb_range_iter_t& o) const
      { return v != o.v; }
    
      private:
      static inline T end_for (T start, T end_, S step)
      {
        if (!step)
          return end_;
        auto res = (end_ - start) % step;
        if (!res)
          return end_;
        end_ += step - res;
        return end_;
      }
    
      private:
      T v;
      T end_;
      S step;
    };
    struct
    {
      template <typename T = unsigned> hb_range_iter_t<T, unsigned>
      operator () (T end = (unsigned) -1) const
      { return hb_range_iter_t<T, unsigned> (0, end, 1u); }
    
      template <typename T, typename S = unsigned> hb_range_iter_t<T, S>
      operator () (T start, T end, S step = 1u) const
      { return hb_range_iter_t<T, S> (start, end, step); }
    }
    HB_FUNCOBJ (hb_range);
    
    template <typename T, typename S>
    struct hb_iota_iter_t :
      hb_iter_with_fallback_t<hb_iota_iter_t<T, S>, T>
    {
      hb_iota_iter_t (T start, S step) : v (start), step (step) {}
    
      private:
    
      template <typename S2 = S>
      auto
      inc (hb_type_identity<S2> s, hb_priority<1>)
        -> hb_void_t<decltype (hb_invoke (std::forward<S2> (s), hb_declval<T&> ()))>
      { v = hb_invoke (std::forward<S2> (s), v); }
    
      void
      inc (S s, hb_priority<0>)
      { v += s; }
    
      public:
    
      typedef T __item_t__;
      static constexpr bool is_random_access_iterator = true;
      static constexpr bool is_sorted_iterator = true;
      __item_t__ __item__ () const { return hb_ridentity (v); }
      bool __more__ () const { return true; }
      unsigned __len__ () const { return UINT_MAX; }
      void __next__ () { inc (step, hb_prioritize); }
      void __prev__ () { v -= step; }
      hb_iota_iter_t __end__ () const { return *this; }
      bool operator != (const hb_iota_iter_t& o) const { return true; }
    
      private:
      T v;
      S step;
    };
    struct
    {
      template <typename T = unsigned, typename S = unsigned> hb_iota_iter_t<T, S>
      operator () (T start = 0u, S step = 1u) const
      { return hb_iota_iter_t<T, S> (start, step); }
    }
    HB_FUNCOBJ (hb_iota);
    
    template <typename T>
    struct hb_repeat_iter_t :
      hb_iter_t<hb_repeat_iter_t<T>, T>
    {
      hb_repeat_iter_t (T value) : v (value) {}
    
      typedef T __item_t__;
      static constexpr bool is_random_access_iterator = true;
      static constexpr bool is_sorted_iterator = true;
      __item_t__ __item__ () const { return v; }
      __item_t__ __item_at__ (unsigned j) const { return v; }
      bool __more__ () const { return true; }
      unsigned __len__ () const { return UINT_MAX; }
      void __next__ () {}
      void __forward__ (unsigned) {}
      void __prev__ () {}
      void __rewind__ (unsigned) {}
      hb_repeat_iter_t __end__ () const { return *this; }
      bool operator != (const hb_repeat_iter_t& o) const { return true; }
    
      private:
      T v;
    };
    struct
    {
      template <typename T> hb_repeat_iter_t<T>
      operator () (T value) const
      { return hb_repeat_iter_t<T> (value); }
    }
    HB_FUNCOBJ (hb_repeat);
    
    /* hb_enumerate()/hb_take() */
    
    struct
    {
      template <typename Iterable,
    	    typename Index = unsigned,
    	    hb_requires (hb_is_iterable (Iterable))>
      auto operator () (Iterable&& it, Index start = 0u) const HB_AUTO_RETURN
      ( hb_zip (hb_iota (start), it) )
    }
    HB_FUNCOBJ (hb_enumerate);
    
    struct
    { HB_PARTIALIZE(2);
      template <typename Iterable,
    	    hb_requires (hb_is_iterable (Iterable))>
      auto operator () (Iterable&& it, unsigned count) const HB_AUTO_RETURN
      ( hb_zip (hb_range (count), it) | hb_map_retains_sorting (hb_second) )
    
      /* Specialization arrays. */
    
      template <typename Type> inline hb_array_t<Type>
      operator () (hb_array_t<Type> array, unsigned count) const
      { return array.sub_array (0, count); }
    
      template <typename Type> inline hb_sorted_array_t<Type>
      operator () (hb_sorted_array_t<Type> array, unsigned count) const
      { return array.sub_array (0, count); }
    }
    HB_FUNCOBJ (hb_take);
    
    struct
    { HB_PARTIALIZE(2);
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      auto operator () (Iter it, unsigned count) const HB_AUTO_RETURN
      (
        + hb_iota (it, hb_add (count))
        | hb_map (hb_take (count))
        | hb_take ((hb_len (it) + count - 1) / count)
      )
    }
    HB_FUNCOBJ (hb_chop);
    
    /* hb_sink() */
    
    template <typename Sink>
    struct hb_sink_t
    {
      hb_sink_t (Sink s) : s (s) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      void operator () (Iter it)
      {
        for (; it; ++it)
          s << *it;
      }
    
      private:
      Sink s;
    };
    struct
    {
      template <typename Sink> hb_sink_t<Sink>
      operator () (Sink&& s) const
      { return hb_sink_t<Sink> (s); }
    
      template <typename Sink> hb_sink_t<Sink&>
      operator () (Sink *s) const
      { return hb_sink_t<Sink&> (*s); }
    }
    HB_FUNCOBJ (hb_sink);
    
    /* hb-drain: hb_sink to void / blackhole / /dev/null. */
    
    struct
    {
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      void operator () (Iter it) const
      {
        for (; it; ++it)
          (void) *it;
      }
    }
    HB_FUNCOBJ (hb_drain);
    
    /* hb_unzip(): unzip and sink to two sinks. */
    
    template <typename Sink1, typename Sink2>
    struct hb_unzip_t
    {
      hb_unzip_t (Sink1 s1, Sink2 s2) : s1 (s1), s2 (s2) {}
    
      template <typename Iter,
    	    hb_requires (hb_is_iterator (Iter))>
      void operator () (Iter it)
      {
        for (; it; ++it)
        {
          const auto &v = *it;
          s1 << v.first;
          s2 << v.second;
        }
      }
    
      private:
      Sink1 s1;
      Sink2 s2;
    };
    struct
    {
      template <typename Sink1, typename Sink2> hb_unzip_t<Sink1, Sink2>
      operator () (Sink1&& s1, Sink2&& s2) const
      { return hb_unzip_t<Sink1, Sink2> (s1, s2); }
    
      template <typename Sink1, typename Sink2> hb_unzip_t<Sink1&, Sink2&>
      operator () (Sink1 *s1, Sink2 *s2) const
      { return hb_unzip_t<Sink1&, Sink2&> (*s1, *s2); }
    }
    HB_FUNCOBJ (hb_unzip);
    
    
    /* hb-all, hb-any, hb-none. */
    
    struct
    {
      template <typename Iterable,
    	    typename Pred = decltype ((hb_identity)),
    	    typename Proj = decltype ((hb_identity)),
    	    hb_requires (hb_is_iterable (Iterable))>
      bool operator () (Iterable&& c,
    		    Pred&& p = hb_identity,
    		    Proj&& f = hb_identity) const
      {
        for (auto it = hb_iter (c); it; ++it)
          if (!hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
    	return false;
        return true;
      }
    }
    HB_FUNCOBJ (hb_all);
    struct
    {
      template <typename Iterable,
    	    typename Pred = decltype ((hb_identity)),
    	    typename Proj = decltype ((hb_identity)),
    	    hb_requires (hb_is_iterable (Iterable))>
      bool operator () (Iterable&& c,
    		    Pred&& p = hb_identity,
    		    Proj&& f = hb_identity) const
      {
        for (auto it = hb_iter (c); it; ++it)
          if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
    	return true;
        return false;
      }
    }
    HB_FUNCOBJ (hb_any);
    struct
    {
      template <typename Iterable,
    	    typename Pred = decltype ((hb_identity)),
    	    typename Proj = decltype ((hb_identity)),
    	    hb_requires (hb_is_iterable (Iterable))>
      bool operator () (Iterable&& c,
    		    Pred&& p = hb_identity,
    		    Proj&& f = hb_identity) const
      {
        for (auto it = hb_iter (c); it; ++it)
          if (hb_match (std::forward<Pred> (p), hb_get (std::forward<Proj> (f), *it)))
    	return false;
        return true;
      }
    }
    HB_FUNCOBJ (hb_none);
    
    /*
     * Algorithms operating on iterators.
     */
    
    template <typename C, typename V,
    	  hb_requires (hb_is_iterable (C))>
    inline void
    hb_fill (C&& c, const V &v)
    {
      for (auto i = hb_iter (c); i; i++)
        *i = v;
    }
    
    template <typename S, typename D>
    inline void
    hb_copy (S&& is, D&& id)
    {
      hb_iter (is) | hb_sink (id);
    }
    
    
    #endif /* HB_ITER_HH */