Edit

kc3-lang/harfbuzz/src/test-repacker.cc

Branch :

  • Show log

    Commit

  • Author : Garret Rieger
    Date : 2024-03-29 00:19:16
    Hash : 69f9c29e
    Message : [repacker] add tests of serializer repack_last().

  • src/test-repacker.cc
  • /*
     * Copyright © 2020  Google, Inc.
     *
     *  This is part of HarfBuzz, a text shaping library.
     *
     * Permission is hereby granted, without written agreement and without
     * license or royalty fees, to use, copy, modify, and distribute this
     * software and its documentation for any purpose, provided that the
     * above copyright notice and the following two paragraphs appear in
     * all copies of this software.
     *
     * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
     * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
     * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
     * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
     * DAMAGE.
     *
     * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
     * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
     * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
     * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
     *
     * Google Author(s): Garret Rieger
     */
    
    #include <string>
    
    #include "hb-repacker.hh"
    #include "hb-open-type.hh"
    #include "graph/serialize.hh"
    
    static void extend (const char* value,
                        unsigned len,
                        hb_serialize_context_t* c)
    {
      char* obj = c->allocate_size<char> (len);
      hb_memcpy (obj, value, len);
    }
    
    static void start_object(const char* tag,
                             unsigned len,
                             hb_serialize_context_t* c)
    {
      c->push ();
      extend (tag, len, c);
    }
    
    static unsigned add_object(const char* tag,
                               unsigned len,
                               hb_serialize_context_t* c)
    {
      start_object (tag, len, c);
      return c->pop_pack (false);
    }
    
    
    static void add_offset (unsigned id,
                            hb_serialize_context_t* c)
    {
      OT::Offset16* offset = c->start_embed<OT::Offset16> ();
      c->extend_min (offset);
      c->add_link (*offset, id);
    }
    
    static void add_24_offset (unsigned id,
                               hb_serialize_context_t* c)
    {
      OT::Offset24* offset = c->start_embed<OT::Offset24> ();
      c->extend_min (offset);
      c->add_link (*offset, id);
    }
    
    static void add_wide_offset (unsigned id,
                                 hb_serialize_context_t* c)
    {
      OT::Offset32* offset = c->start_embed<OT::Offset32> ();
      c->extend_min (offset);
      c->add_link (*offset, id);
    }
    
    static void add_gsubgpos_header (unsigned lookup_list,
                                     hb_serialize_context_t* c)
    {
      char header[] = {
        0, 1, // major
        0, 0, // minor
        0, 0, // script list
        0, 0, // feature list
      };
    
      start_object (header, 8, c);
      add_offset (lookup_list, c);
      c->pop_pack (false);
    }
    
    static unsigned add_lookup_list (const unsigned* lookups,
                                     char count,
                                     hb_serialize_context_t* c)
    {
      char lookup_count[] = {0, count};
      start_object  ((char *) &lookup_count, 2, c);
    
      for (int i = 0; i < count; i++)
        add_offset (lookups[i], c);
    
      return c->pop_pack (false);
    }
    
    static void start_lookup (int8_t type,
                              int8_t num_subtables,
                              hb_serialize_context_t* c)
    {
      char lookup[] = {
        0, (char)type, // type
        0, 0, // flag
        0, (char)num_subtables, // num subtables
      };
    
      start_object (lookup, 6, c);
    }
    
    static unsigned finish_lookup (hb_serialize_context_t* c)
    {
      char filter[] = {0, 0};
      extend (filter, 2, c);
      return c->pop_pack (false);
    }
    
    static unsigned add_extension (unsigned child,
                                   uint8_t type,
                                   hb_serialize_context_t* c)
    {
      char ext[] = {
        0, 1,
        0, (char) type,
      };
    
      start_object (ext, 4, c);
      add_wide_offset (child, c);
    
      return c->pop_pack (false);
    
    }
    
    // Adds coverage table fro [start, end]
    static unsigned add_coverage (unsigned start, unsigned end,
                                  hb_serialize_context_t* c)
    {
      if (end - start == 1)
      {
        uint8_t coverage[] = {
          0, 1, // format
          0, 2, // count
    
          (uint8_t) ((start >> 8) & 0xFF),
          (uint8_t) (start & 0xFF), // glyph[0]
    
          (uint8_t) ((end >> 8) & 0xFF),
          (uint8_t) (end & 0xFF), // glyph[1]
        };
        return add_object ((char*) coverage, 8, c);
      }
    
      uint8_t coverage[] = {
        0, 2, // format
        0, 1, // range count
    
        (uint8_t) ((start >> 8) & 0xFF),
        (uint8_t) (start & 0xFF), // start
    
        (uint8_t) ((end >> 8) & 0xFF),
        (uint8_t) (end & 0xFF), // end
    
        0, 0,
      };
      return add_object ((char*) coverage, 10, c);
    }
    
    
    template<typename It>
    static unsigned add_coverage (It it,
                                  hb_serialize_context_t* c)
    {
      c->push ();
      OT::Layout::Common::Coverage_serialize (c, it);
      return c->pop_pack (false);
    }
    
    // Adds a class that maps glyphs from [start_glyph, end_glyph)
    // to classes 1...n
    static unsigned add_class_def (uint16_t start_glyph,
                                   uint16_t end_glyph,
                                   hb_serialize_context_t* c)
    {
      unsigned count = end_glyph - start_glyph;
      uint8_t header[] = {
        0, 1, // format
    
        (uint8_t) ((start_glyph >> 8) & 0xFF),
        (uint8_t) (start_glyph & 0xFF), // start_glyph
    
        (uint8_t) ((count >> 8) & 0xFF),
        (uint8_t) (count & 0xFF), // count
      };
    
      start_object ((char*) header, 6, c);
      for (uint16_t i = 1; i <= count; i++)
      {
        uint8_t class_value[] = {
          (uint8_t) ((i >> 8) & 0xFF),
          (uint8_t) (i & 0xFF), // count
        };
        extend ((char*) class_value, 2, c);
      }
    
      return c->pop_pack (false);
    }
    
    static unsigned add_pair_pos_1 (unsigned* pair_sets,
                                    char count,
                                    unsigned coverage,
                                    hb_serialize_context_t* c)
    {
      char format[] = {
        0, 1
      };
    
      start_object (format, 2, c);
      add_offset (coverage, c);
    
      char value_format[] = {
        0, 0,
        0, 0,
        0, count,
      };
      extend (value_format, 6, c);
    
      for (char i = 0; i < count; i++)
        add_offset (pair_sets[(unsigned) i], c);
    
      return c->pop_pack (false);
    }
    
    static unsigned add_pair_pos_2 (unsigned starting_class,
                                    unsigned coverage,
                                    unsigned class_def_1, uint16_t class_def_1_count,
                                    unsigned class_def_2, uint16_t class_def_2_count,
                                    unsigned* device_tables,
                                    hb_serialize_context_t* c)
    {
      uint8_t format[] = {
        0, 2
      };
    
      start_object ((char*) format, 2, c);
      add_offset (coverage, c);
    
      unsigned num_values = 4;
      uint8_t format1 = 0x01 | 0x02 | 0x08;
      uint8_t format2 = 0x04;
      if (device_tables) {
        format2 |= 0x20;
        num_values += 1;
      }
      uint8_t value_format[] = {
        0, format1,
        0, format2,
      };
    
      extend ((char*) value_format, 4, c);
    
      add_offset (class_def_1, c);
      add_offset (class_def_2, c);
    
      uint8_t class_counts[] = {
        (uint8_t) ((class_def_1_count >> 8) & 0xFF),
        (uint8_t) (class_def_1_count & 0xFF),
        (uint8_t) ((class_def_2_count >> 8) & 0xFF),
        (uint8_t) (class_def_2_count & 0xFF),
      };
      extend ((char*) class_counts, 4, c);
    
      unsigned num_bytes_per_record = class_def_2_count * num_values * 2;
      uint8_t* record = (uint8_t*) calloc (1, num_bytes_per_record);
      int device_index = 0;
      for (uint16_t i = 0; i < class_def_1_count; i++)
      {
    
        for (uint16_t j = 0; j < class_def_2_count; j++)
        {
          for (int k = 0; k < 4; k++) {
            uint8_t value[] = {
              (uint8_t) (i + starting_class),
              (uint8_t) (i + starting_class),
            };
            extend ((char*) value, 2, c);
          }
    
          if (device_tables) {
            add_offset (device_tables[device_index++], c);
          }
        }
      }
      free (record);
    
      return c->pop_pack (false);
    }
    
    static unsigned add_mark_base_pos_1 (unsigned mark_coverage,
                                         unsigned base_coverage,
                                         unsigned mark_array,
                                         unsigned base_array,
                                         unsigned class_count,
                                         hb_serialize_context_t* c)
    {
      uint8_t format[] = {
        0, 1
      };
    
      start_object ((char*) format, 2, c);
      add_offset (mark_coverage, c);
      add_offset (base_coverage, c);
    
      uint8_t count[] = {
        (uint8_t) ((class_count >> 8) & 0xFF),
        (uint8_t) (class_count & 0xFF),
      };
      extend ((char*) count, 2, c);
    
      add_offset (mark_array, c);
      add_offset (base_array, c);
    
      return c->pop_pack (false);
    }
    
    template<int mark_count,
        int class_count,
        int base_count,
        int table_count>
    struct MarkBasePosBuffers
    {
      unsigned base_anchors[class_count * base_count];
      unsigned mark_anchors[mark_count];
      uint8_t anchor_buffers[class_count * base_count + 100];
      uint8_t class_buffer[class_count * 2];
    
      MarkBasePosBuffers(hb_serialize_context_t* c)
      {
        for (unsigned i = 0; i < sizeof(anchor_buffers) / 2; i++)
        {
          OT::HBUINT16* value = (OT::HBUINT16*) (&anchor_buffers[2*i]);
          *value = i;
        }
    
        for (unsigned i = 0; i < class_count * base_count; i++)
        {
          base_anchors[i] = add_object ((char*) &anchor_buffers[i], 100, c);
          if (i < class_count) {
            class_buffer[i*2] = (uint8_t) ((i >> 8) & 0xFF);
            class_buffer[i*2 + 1] = (uint8_t) (i & 0xFF);
          }
        }
    
        for (unsigned i = 0; i < mark_count; i++)
        {
          mark_anchors[i] = add_object ((char*) &anchor_buffers[i], 4, c);
        }
      }
    
      unsigned create_mark_base_pos_1 (unsigned table_index, hb_serialize_context_t* c)
      {
        unsigned class_per_table = class_count / table_count;
        unsigned mark_per_class = mark_count / class_count;
        unsigned start_class = class_per_table * table_index;
        unsigned end_class = class_per_table * (table_index + 1) - 1;
    
        // baseArray
        uint8_t base_count_buffer[] = {
          (uint8_t) ((base_count >> 8) & 0xFF),
          (uint8_t) (base_count & 0xFF),
    
        };
        start_object ((char*) base_count_buffer, 2, c);
        for (unsigned base = 0; base < base_count; base++)
        {
          for (unsigned klass = start_class; klass <= end_class; klass++)
          {
            unsigned i = base * class_count + klass;
            add_offset (base_anchors[i], c);
          }
        }
        unsigned base_array = c->pop_pack (false);
    
        // markArray
        unsigned num_marks = class_per_table * mark_per_class;
        uint8_t mark_count_buffer[] = {
          (uint8_t) ((num_marks >> 8) & 0xFF),
          (uint8_t) (num_marks & 0xFF),
        };
        start_object ((char*) mark_count_buffer, 2, c);
        for (unsigned mark = 0; mark < mark_count; mark++)
        {
          unsigned klass = mark % class_count;
          if (klass < start_class || klass > end_class) continue;
          klass -= start_class;
    
          extend ((char*) &class_buffer[2 * klass], 2, c);
          add_offset (mark_anchors[mark], c);
        }
        unsigned mark_array = c->pop_pack (false);
    
        // markCoverage
        auto it =
            + hb_range ((hb_codepoint_t) mark_count)
            | hb_filter ([&] (hb_codepoint_t mark) {
              unsigned klass = mark % class_count;
              return klass >= class_per_table * table_index &&
                  klass < class_per_table * (table_index + 1);
            })
            ;
        unsigned mark_coverage = add_coverage (it, c);
    
        // baseCoverage
        unsigned base_coverage = add_coverage (10, 10 + base_count - 1, c);
    
        return add_mark_base_pos_1 (mark_coverage,
                                    base_coverage,
                                    mark_array,
                                    base_array,
                                    class_per_table,
                                    c);
      }
    };
    
    static void run_resolve_overflow_test (const char* name,
                                           hb_serialize_context_t& overflowing,
                                           hb_serialize_context_t& expected,
                                           unsigned num_iterations = 0,
                                           bool recalculate_extensions = false,
                                           hb_tag_t tag = HB_TAG ('G', 'S', 'U', 'B'),
                                           bool check_binary_equivalence = false)
    {
      printf (">>> Testing overflowing resolution for %s\n",
              name);
    
      graph_t graph (overflowing.object_graph ());
    
      graph_t expected_graph (expected.object_graph ());
      if (graph::will_overflow (expected_graph))
      {
        if (check_binary_equivalence) {
          printf("when binary equivalence checking is enabled, the expected graph cannot overflow.");
          assert(!check_binary_equivalence);
        }
        expected_graph.assign_spaces ();
        expected_graph.sort_shortest_distance ();
      }
    
      // Check that overflow resolution succeeds
      assert (overflowing.offset_overflow ());
      assert (hb_resolve_graph_overflows (tag,
                                          num_iterations,
                                          recalculate_extensions,
                                          graph));
    
      // Check the graphs can be serialized.
      hb_blob_t* out1 = graph::serialize (graph);
      assert (out1);
      hb_blob_t* out2 = graph::serialize (expected_graph);
      assert (out2);
      if (check_binary_equivalence) {
        unsigned l1, l2;
        const char* d1 = hb_blob_get_data(out1, &l1);
        const char* d2 = hb_blob_get_data(out2, &l2);
    
        bool match = (l1 == l2) && (memcmp(d1, d2, l1) == 0);
        if (!match) {
          printf("## Result:\n");
          graph.print();
          printf("## Expected:\n");
          expected_graph.print();
          assert(match);
        }
      }
    
      hb_blob_destroy (out1);
      hb_blob_destroy (out2);
    
      // Check the graphs are equivalent
      graph.normalize ();
      expected_graph.normalize ();
      if (!(graph == expected_graph)) {
        printf("## Expected:\n");
        expected_graph.print();
        printf("## Result:\n");
        graph.print();
      }
      assert (graph == expected_graph);
    }
    
    static void add_virtual_offset (unsigned id,
                                    hb_serialize_context_t* c)
    {
      c->add_virtual_link (id);
    }
    
    static void
    populate_serializer_simple (hb_serialize_context_t* c)
    {
      c->start_serialize<char> ();
    
      unsigned obj_1 = add_object ("ghi", 3, c);
      unsigned obj_2 = add_object ("def", 3, c);
    
      start_object ("abc", 3, c);
      add_offset (obj_2, c);
      add_offset (obj_1, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_overflow (hb_serialize_context_t* c)
    {
      std::string large_string(50000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_1 = add_object (large_string.c_str(), 10000, c);
      unsigned obj_2 = add_object (large_string.c_str(), 20000, c);
      unsigned obj_3 = add_object (large_string.c_str(), 50000, c);
    
      start_object ("abc", 3, c);
      add_offset (obj_3, c);
      add_offset (obj_2, c);
      add_offset (obj_1, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_priority_overflow (hb_serialize_context_t* c)
    {
      std::string large_string(50000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_e = add_object ("e", 1, c);
      unsigned obj_d = add_object ("d", 1, c);
    
      start_object (large_string.c_str (), 50000, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object (large_string.c_str (), 20000, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_priority_overflow_expected (hb_serialize_context_t* c)
    {
      std::string large_string(50000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_e = add_object ("e", 1, c);
    
      start_object (large_string.c_str (), 50000, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      unsigned obj_d = add_object ("d", 1, c);
    
      start_object (large_string.c_str (), 20000, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    
    static void
    populate_serializer_with_dedup_overflow (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_1 = add_object ("def", 3, c);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_1, c);
      unsigned obj_2 = c->pop_pack (false);
    
      start_object (large_string.c_str(), 10000, c);
      add_offset (obj_2, c);
      add_offset (obj_1, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_multiple_dedup_overflow (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned leaf = add_object("def", 3, c);
    
      constexpr unsigned num_mid_nodes = 20;
      unsigned mid_nodes[num_mid_nodes];
      for (unsigned i = 0; i < num_mid_nodes; i++) {
        start_object(large_string.c_str(), 10000 + i, c);
        add_offset(leaf, c);
        mid_nodes[i] = c->pop_pack(false);
      }
    
      start_object("abc", 3, c);
      for (unsigned i = 0; i < num_mid_nodes; i++) {
        add_wide_offset(mid_nodes[i], c);
      }
      c->pop_pack(false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_isolation_overflow (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_4 = add_object ("4", 1, c);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_4, c);
      unsigned obj_3 = c->pop_pack (false);
    
      start_object (large_string.c_str(), 10000, c);
      add_offset (obj_4, c);
      unsigned obj_2 = c->pop_pack (false);
    
      start_object ("1", 1, c);
      add_wide_offset (obj_3, c);
      add_offset (obj_2, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_isolation_overflow_complex (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object ("e", 1, c);
      add_offset (obj_f, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("d", 1, c);
      add_offset (obj_e, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_d, c);
      unsigned obj_h = c->pop_pack (false);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_c, c);
      add_offset (obj_h, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object (large_string.c_str(), 10000, c);
      add_offset (obj_d, c);
      unsigned obj_g = c->pop_pack (false);
    
      start_object (large_string.c_str(), 11000, c);
      add_offset (obj_d, c);
      unsigned obj_i = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_offset (obj_g, c);
      add_offset (obj_i, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_isolation_overflow_complex_expected (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
    
      // space 1
    
      unsigned obj_f_prime = add_object ("f", 1, c);
    
      start_object ("e", 1, c);
      add_offset (obj_f_prime, c);
      unsigned obj_e_prime = c->pop_pack (false);
    
      start_object ("d", 1, c);
      add_offset (obj_e_prime, c);
      unsigned obj_d_prime = c->pop_pack (false);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_d_prime, c);
      unsigned obj_h = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e_prime, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_c, c);
      add_offset (obj_h, c);
      unsigned obj_b = c->pop_pack (false);
    
      // space 0
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object ("e", 1, c);
      add_offset (obj_f, c);
      unsigned obj_e = c->pop_pack (false);
    
    
      start_object ("d", 1, c);
      add_offset (obj_e, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object (large_string.c_str(), 11000, c);
      add_offset (obj_d, c);
      unsigned obj_i = c->pop_pack (false);
    
      start_object (large_string.c_str(), 10000, c);
      add_offset (obj_d, c);
      unsigned obj_g = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_offset (obj_g, c);
      add_offset (obj_i, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_isolation_overflow_spaces (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_d = add_object ("f", 1, c);
      unsigned obj_e = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack ();
    
      start_object (large_string.c_str(), 60000, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack ();
    
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      c->pop_pack ();
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_repack_last (hb_serialize_context_t* c, bool with_overflow)
    {
      std::string large_string(70000, 'c');
      c->start_serialize<char> ();
      c->push();
    
      // Obj E
      unsigned obj_e_1, obj_e_2;
      if (with_overflow) {
        obj_e_1 = add_object("a", 1, c);
        obj_e_2 = obj_e_1;
      } else {
        obj_e_2 = add_object("a", 1, c);
      }
    
      // Obj D
      c->push();
      add_offset(obj_e_2, c);
      extend(large_string.c_str(), 30000, c);
      unsigned obj_d = c->pop_pack(false);
    
      add_offset(obj_d, c);
      assert(c->last_added_child_index() == obj_d);
    
      if (!with_overflow) {
        obj_e_1 = add_object("a", 1, c);
      }
    
      // Obj C
      c->push();
      add_offset(obj_e_1, c);
      extend(large_string.c_str(), 40000, c);
      unsigned obj_c = c->pop_pack(false);
    
      add_offset(obj_c, c);
    
      // Obj B
      unsigned obj_b = add_object("b", 1, c);
      add_offset(obj_b, c);
    
      // Obj A
      c->repack_last(obj_d);
      c->pop_pack(false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_spaces (hb_serialize_context_t* c, bool with_overflow)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_i;
    
      if (with_overflow)
        obj_i = add_object ("i", 1, c);
    
      // Space 2
      unsigned obj_h = add_object ("h", 1, c);
    
      start_object (large_string.c_str(), 30000, c);
      add_offset (obj_h, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_e, c);
      unsigned obj_b = c->pop_pack (false);
    
      // Space 1
      if (!with_overflow)
        obj_i = add_object ("i", 1, c);
    
      start_object (large_string.c_str(), 30000, c);
      add_offset (obj_i, c);
      unsigned obj_g = c->pop_pack (false);
    
      start_object (large_string.c_str(), 30000, c);
      add_offset (obj_i, c);
      unsigned obj_f = c->pop_pack (false);
    
      start_object ("d", 1, c);
      add_offset (obj_g, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_f, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      add_wide_offset (obj_d, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_spaces_16bit_connection (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_g = add_object ("g", 1, c);
      unsigned obj_h = add_object ("h", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_g, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_h, c);
      unsigned obj_f = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("d", 1, c);
      add_offset (obj_f, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_e, c);
      add_offset (obj_h, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      add_wide_offset (obj_d, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_spaces_16bit_connection_expected (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_g_prime = add_object ("g", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_g_prime, c);
      unsigned obj_e_prime = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e_prime, c);
      unsigned obj_c = c->pop_pack (false);
    
      unsigned obj_h_prime = add_object ("h", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_h_prime, c);
      unsigned obj_f = c->pop_pack (false);
    
      start_object ("d", 1, c);
      add_offset (obj_f, c);
      unsigned obj_d = c->pop_pack (false);
    
      unsigned obj_g = add_object ("g", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_g, c);
      unsigned obj_e = c->pop_pack (false);
    
      unsigned obj_h = add_object ("h", 1, c);
    
      start_object ("b", 1, c);
      add_offset (obj_e, c);
      add_offset (obj_h, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      add_wide_offset (obj_d, c);
      c->pop_pack (false);
    
      c->end_serialize ();
    }
    
    static void
    populate_serializer_short_and_wide_subgraph_root (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_e = add_object ("e", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_c, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_c, c);
      add_offset (obj_e, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      add_wide_offset (obj_d, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_short_and_wide_subgraph_root_expected (hb_serialize_context_t* c)
    {
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_e_prime = add_object ("e", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_e_prime, c);
      unsigned obj_c_prime = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_c_prime, c);
      unsigned obj_d = c->pop_pack (false);
    
      unsigned obj_e = add_object ("e", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
    
      start_object ("b", 1, c);
      add_offset (obj_c, c);
      add_offset (obj_e, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_c_prime, c);
      add_wide_offset (obj_d, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_split_spaces (hb_serialize_context_t* c)
    {
      // Overflow needs to be resolved by splitting the single space
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_split_spaces_2 (hb_serialize_context_t* c)
    {
      // Overflow needs to be resolved by splitting the single space
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_split_spaces_expected (hb_serialize_context_t* c)
    {
      // Overflow needs to be resolved by splitting the single space
    
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_f_prime = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f_prime, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_wide_offset (obj_b, c);
      add_wide_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_split_spaces_expected_2 (hb_serialize_context_t* c)
    {
      // Overflow needs to be resolved by splitting the single space
    
      std::string large_string(70000, 'a');
      c->start_serialize<char> ();
    
      // Space 2
    
      unsigned obj_f_double_prime = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f_double_prime, c);
      unsigned obj_d_prime = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_d_prime, c);
      unsigned obj_b_prime = c->pop_pack (false);
    
      // Space 1
    
      unsigned obj_f_prime = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f_prime, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      // Space 0
    
      unsigned obj_f = add_object ("f", 1, c);
    
      start_object (large_string.c_str(), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      // Root
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_wide_offset (obj_b_prime, c);
      add_wide_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_complex_2 (hb_serialize_context_t* c)
    {
      c->start_serialize<char> ();
    
      unsigned obj_5 = add_object ("mn", 2, c);
    
      unsigned obj_4 = add_object ("jkl", 3, c);
    
      start_object ("ghi", 3, c);
      add_offset (obj_4, c);
      unsigned obj_3 = c->pop_pack (false);
    
      start_object ("def", 3, c);
      add_offset (obj_3, c);
      unsigned obj_2 = c->pop_pack (false);
    
      start_object ("abc", 3, c);
      add_offset (obj_2, c);
      add_offset (obj_4, c);
      add_offset (obj_5, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_complex_3 (hb_serialize_context_t* c)
    {
      c->start_serialize<char> ();
    
      unsigned obj_6 = add_object ("opqrst", 6, c);
    
      unsigned obj_5 = add_object ("mn", 2, c);
    
      start_object ("jkl", 3, c);
      add_offset (obj_6, c);
      unsigned obj_4 = c->pop_pack (false);
    
      start_object ("ghi", 3, c);
      add_offset (obj_4, c);
      unsigned obj_3 = c->pop_pack (false);
    
      start_object ("def", 3, c);
      add_offset (obj_3, c);
      unsigned obj_2 = c->pop_pack (false);
    
      start_object ("abc", 3, c);
      add_offset (obj_2, c);
      add_offset (obj_4, c);
      add_offset (obj_5, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_virtual_link (hb_serialize_context_t* c)
    {
      c->start_serialize<char> ();
    
      unsigned obj_d = add_object ("d", 1, c);
    
      start_object ("b", 1, c);
      add_offset (obj_d, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("e", 1, c);
      add_virtual_offset (obj_b, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("c", 1, c);
      add_offset (obj_e, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_offset (obj_b, c);
      add_offset (obj_c, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_24_and_32_bit_offsets (hb_serialize_context_t* c)
    {
      std::string large_string(60000, 'a');
      c->start_serialize<char> ();
    
      unsigned obj_f = add_object ("f", 1, c);
      unsigned obj_g = add_object ("g", 1, c);
      unsigned obj_j = add_object ("j", 1, c);
      unsigned obj_k = add_object ("k", 1, c);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_f, c);
      unsigned obj_c = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_g, c);
      unsigned obj_d = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_j, c);
      unsigned obj_h = c->pop_pack (false);
    
      start_object (large_string.c_str (), 40000, c);
      add_offset (obj_k, c);
      unsigned obj_i = c->pop_pack (false);
    
      start_object ("e", 1, c);
      add_wide_offset (obj_h, c);
      add_wide_offset (obj_i, c);
      unsigned obj_e = c->pop_pack (false);
    
      start_object ("b", 1, c);
      add_24_offset (obj_c, c);
      add_24_offset (obj_d, c);
      add_24_offset (obj_e, c);
      unsigned obj_b = c->pop_pack (false);
    
      start_object ("a", 1, c);
      add_24_offset (obj_b, c);
      c->pop_pack (false);
    
      c->end_serialize();
    }
    
    static void
    populate_serializer_with_extension_promotion (hb_serialize_context_t* c,
                                                  int num_extensions = 0,
                                                  bool shared_subtables = false)
    {
      constexpr int num_lookups = 5;
      constexpr int num_subtables = num_lookups * 2;
      unsigned int lookups[num_lookups];
      unsigned int subtables[num_subtables];
      unsigned int extensions[num_subtables];
    
      std::string large_string(60000, 'a');
      c->start_serialize<char> ();
    
    
      for (int i = num_subtables - 1; i >= 0; i--)
        subtables[i] = add_object(large_string.c_str (), 15000 + i, c);
    
      for (int i = num_subtables - 1;
           i >= (num_lookups - num_extensions) * 2;
           i--)
      {
        extensions[i] = add_extension (subtables[i], 5, c);
      }
    
      for (int i = num_lookups - 1; i >= 0; i--)
      {
        bool is_ext = (i >= (num_lookups - num_extensions));
    
        start_lookup (is_ext ? (char) 7 : (char) 5,
                      shared_subtables && i > 2 ? 3 : 2,
                      c);
    
        if (is_ext) {
          if (shared_subtables && i > 2) {
            add_offset (extensions[i * 2 - 1], c);
          }
          add_offset (extensions[i * 2], c);
          add_offset (extensions[i * 2 + 1], c);
        } else {
          if (shared_subtables && i > 2) {
            add_offset (subtables[i * 2 - 1], c);
          }
          add_offset (subtables[i * 2], c);
          add_offset (subtables[i * 2 + 1], c);
        }
    
        lookups[i] = finish_lookup (c);
      }
    
      unsigned lookup_list = add_lookup_list (lookups, num_lookups, c);
    
      add_gsubgpos_header (lookup_list, c);
    
      c->end_serialize();
    }
    
    template<int num_pair_pos_1, int num_pair_set>
    static void
    populate_serializer_with_large_pair_pos_1 (hb_serialize_context_t* c,
                                               bool as_extension = false)
    {
      std::string large_string(60000, 'a');
      c->start_serialize<char> ();
    
      constexpr int total_pair_set = num_pair_pos_1 * num_pair_set;
      unsigned pair_set[total_pair_set];
      unsigned coverage[num_pair_pos_1];
      unsigned pair_pos_1[num_pair_pos_1];
    
      for (int i = num_pair_pos_1 - 1; i >= 0; i--)
      {
        for (int j = (i + 1) * num_pair_set - 1; j >= i * num_pair_set; j--)
          pair_set[j] = add_object (large_string.c_str (), 30000 + j, c);
    
        coverage[i] = add_coverage (i * num_pair_set,
                                    (i + 1) * num_pair_set - 1, c);
    
        pair_pos_1[i] = add_pair_pos_1 (&pair_set[i * num_pair_set],
                                        num_pair_set,
                                        coverage[i],
                                        c);
      }
    
      unsigned pair_pos_2 = add_object (large_string.c_str(), 200, c);
    
      if (as_extension) {
        pair_pos_2 = add_extension (pair_pos_2, 2, c);
        for (int i = num_pair_pos_1 - 1; i >= 0; i--)
          pair_pos_1[i] = add_extension (pair_pos_1[i], 2, c);
      }
    
      start_lookup (as_extension ? 9 : 2, 1 + num_pair_pos_1, c);
    
      for (int i = 0; i < num_pair_pos_1; i++)
        add_offset (pair_pos_1[i], c);
      add_offset (pair_pos_2, c);
    
      unsigned lookup = finish_lookup (c);
    
      unsigned lookup_list = add_lookup_list (&lookup, 1, c);
    
      add_gsubgpos_header (lookup_list, c);
    
      c->end_serialize();
    }
    
    template<int num_pair_pos_2, int num_class_1, int num_class_2>
    static void
    populate_serializer_with_large_pair_pos_2 (hb_serialize_context_t* c,
                                               bool as_extension = false,
                                               bool with_device_tables = false,
                                               bool extra_table = true)
    {
      std::string large_string(100000, 'a');
      c->start_serialize<char> ();
    
      unsigned coverage[num_pair_pos_2];
      unsigned class_def_1[num_pair_pos_2];
      unsigned class_def_2[num_pair_pos_2];
      unsigned pair_pos_2[num_pair_pos_2];
    
      unsigned* device_tables = (unsigned*) calloc (num_pair_pos_2 * num_class_1 * num_class_2,
                                                    sizeof(unsigned));
    
      // Total glyphs = num_class_1 * num_pair_pos_2
      for (int i = num_pair_pos_2 - 1; i >= 0; i--)
      {
        unsigned start_glyph = 5 + i * num_class_1;
        if (num_class_2 >= num_class_1)
        {
          class_def_2[i] = add_class_def (11,
                                          10 + num_class_2, c);
          class_def_1[i] = add_class_def (start_glyph + 1,
                                          start_glyph + num_class_1,
                                          c);
        } else {
          class_def_1[i] = add_class_def (start_glyph + 1,
                                          start_glyph + num_class_1,
                                          c);
          class_def_2[i] = add_class_def (11,
                                          10 + num_class_2, c);
        }
    
        coverage[i] = add_coverage (start_glyph,
                                    start_glyph + num_class_1 - 1,
                                    c);
    
        if (with_device_tables)
        {
          for(int j = (i + 1) * num_class_1 * num_class_2 - 1;
              j >= i * num_class_1 * num_class_2;
              j--)
          {
            uint8_t table[] = {
              (uint8_t) ((j >> 8) & 0xFF),
              (uint8_t) (j & 0xFF),
            };
            device_tables[j] = add_object ((char*) table, 2, c);
          }
        }
    
        pair_pos_2[i] = add_pair_pos_2 (1 + i * num_class_1,
                                        coverage[i],
                                        class_def_1[i], num_class_1,
                                        class_def_2[i], num_class_2,
                                        with_device_tables
                                        ? &device_tables[i * num_class_1 * num_class_2]
                                        : nullptr,
                                        c);
      }
    
    
      unsigned pair_pos_1 = 0;
      if (extra_table) pair_pos_1 = add_object (large_string.c_str(), 100000, c);
    
      if (as_extension) {
        for (int i = num_pair_pos_2 - 1; i >= 0; i--)
          pair_pos_2[i] = add_extension (pair_pos_2[i], 2, c);
    
        if (extra_table)
          pair_pos_1 = add_extension (pair_pos_1, 2, c);
      }
    
      start_lookup (as_extension ? 9 : 2, 1 + num_pair_pos_2, c);
    
      if (extra_table)
        add_offset (pair_pos_1, c);
    
      for (int i = 0; i < num_pair_pos_2; i++)
        add_offset (pair_pos_2[i], c);
    
      unsigned lookup = finish_lookup (c);
    
      unsigned lookup_list = add_lookup_list (&lookup, 1, c);
    
      add_gsubgpos_header (lookup_list, c);
    
      c->end_serialize();
    
      free (device_tables);
    }
    
    template<int mark_count,
        int class_count,
        int base_count,
        int table_count>
    static void
    populate_serializer_with_large_mark_base_pos_1 (hb_serialize_context_t* c)
    {
      c->start_serialize<char> ();
    
      MarkBasePosBuffers<mark_count, class_count, base_count, table_count> buffers (c);
    
      unsigned mark_base_pos[table_count];
      for (unsigned i = 0; i < table_count; i++)
        mark_base_pos[i] = buffers.create_mark_base_pos_1 (i, c);
    
      for (int i = 0; i < table_count; i++)
        mark_base_pos[i] = add_extension (mark_base_pos[i], 4, c);
    
      start_lookup (9, table_count, c);
    
      for (int i = 0; i < table_count; i++)
        add_offset (mark_base_pos[i], c);
    
      unsigned lookup = finish_lookup (c);
    
      unsigned lookup_list = add_lookup_list (&lookup, 1, c);
    
      add_gsubgpos_header (lookup_list, c);
    
      c->end_serialize();
    }
    
    static void test_sort_shortest ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_complex_2 (&c);
    
      graph_t graph (c.object_graph ());
      graph.sort_shortest_distance ();
      assert (!graph.in_error ());
    
      assert(strncmp (graph.object (4).head, "abc", 3) == 0);
      assert(graph.object (4).real_links.length == 3);
      assert(graph.object (4).real_links[0].objidx == 2);
      assert(graph.object (4).real_links[1].objidx == 0);
      assert(graph.object (4).real_links[2].objidx == 3);
    
      assert(strncmp (graph.object (3).head, "mn", 2) == 0);
      assert(graph.object (3).real_links.length == 0);
    
      assert(strncmp (graph.object (2).head, "def", 3) == 0);
      assert(graph.object (2).real_links.length == 1);
      assert(graph.object (2).real_links[0].objidx == 1);
    
      assert(strncmp (graph.object (1).head, "ghi", 3) == 0);
      assert(graph.object (1).real_links.length == 1);
      assert(graph.object (1).real_links[0].objidx == 0);
    
      assert(strncmp (graph.object (0).head, "jkl", 3) == 0);
      assert(graph.object (0).real_links.length == 0);
    
      free (buffer);
    }
    
    static void test_duplicate_leaf ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_complex_2 (&c);
    
      graph_t graph (c.object_graph ());
      graph.duplicate (4, 1);
    
      assert(strncmp (graph.object (5).head, "abc", 3) == 0);
      assert(graph.object (5).real_links.length == 3);
      assert(graph.object (5).real_links[0].objidx == 3);
      assert(graph.object (5).real_links[1].objidx == 4);
      assert(graph.object (5).real_links[2].objidx == 0);
    
      assert(strncmp (graph.object (4).head, "jkl", 3) == 0);
      assert(graph.object (4).real_links.length == 0);
    
      assert(strncmp (graph.object (3).head, "def", 3) == 0);
      assert(graph.object (3).real_links.length == 1);
      assert(graph.object (3).real_links[0].objidx == 2);
    
      assert(strncmp (graph.object (2).head, "ghi", 3) == 0);
      assert(graph.object (2).real_links.length == 1);
      assert(graph.object (2).real_links[0].objidx == 1);
    
      assert(strncmp (graph.object (1).head, "jkl", 3) == 0);
      assert(graph.object (1).real_links.length == 0);
    
      assert(strncmp (graph.object (0).head, "mn", 2) == 0);
      assert(graph.object (0).real_links.length == 0);
    
      free (buffer);
    }
    
    static void test_duplicate_interior ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_complex_3 (&c);
    
      graph_t graph (c.object_graph ());
      graph.duplicate (3, 2);
    
      assert(strncmp (graph.object (6).head, "abc", 3) == 0);
      assert(graph.object (6).real_links.length == 3);
      assert(graph.object (6).real_links[0].objidx == 4);
      assert(graph.object (6).real_links[1].objidx == 2);
      assert(graph.object (6).real_links[2].objidx == 1);
    
      assert(strncmp (graph.object (5).head, "jkl", 3) == 0);
      assert(graph.object (5).real_links.length == 1);
      assert(graph.object (5).real_links[0].objidx == 0);
    
      assert(strncmp (graph.object (4).head, "def", 3) == 0);
      assert(graph.object (4).real_links.length == 1);
      assert(graph.object (4).real_links[0].objidx == 3);
    
      assert(strncmp (graph.object (3).head, "ghi", 3) == 0);
      assert(graph.object (3).real_links.length == 1);
      assert(graph.object (3).real_links[0].objidx == 5);
    
      assert(strncmp (graph.object (2).head, "jkl", 3) == 0);
      assert(graph.object (2).real_links.length == 1);
      assert(graph.object (2).real_links[0].objidx == 0);
    
      assert(strncmp (graph.object (1).head, "mn", 2) == 0);
      assert(graph.object (1).real_links.length == 0);
    
      assert(strncmp (graph.object (0).head, "opqrst", 6) == 0);
      assert(graph.object (0).real_links.length == 0);
    
      free (buffer);
    }
    
    static void
    test_serialize ()
    {
      size_t buffer_size = 100;
      void* buffer_1 = malloc (buffer_size);
      hb_serialize_context_t c1 (buffer_1, buffer_size);
      populate_serializer_simple (&c1);
      hb_bytes_t expected = c1.copy_bytes ();
    
      graph_t graph (c1.object_graph ());
      hb_blob_t* out = graph::serialize (graph);
      free (buffer_1);
    
      hb_bytes_t actual = out->as_bytes ();
      assert (actual == expected);
      expected.fini ();
      hb_blob_destroy (out);
    }
    
    static void test_will_overflow_1 ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_complex_2 (&c);
      graph_t graph (c.object_graph ());
    
      assert (!graph::will_overflow (graph, nullptr));
    
      free (buffer);
    }
    
    static void test_will_overflow_2 ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_overflow (&c);
      graph_t graph (c.object_graph ());
    
      assert (graph::will_overflow (graph, nullptr));
    
      free (buffer);
    }
    
    static void test_will_overflow_3 ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_dedup_overflow (&c);
      graph_t graph (c.object_graph ());
    
      assert (graph::will_overflow (graph, nullptr));
    
      free (buffer);
    }
    
    static void test_resolve_overflows_via_sort ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_overflow (&c);
      graph_t graph (c.object_graph ());
    
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
      assert (out);
      hb_bytes_t result = out->as_bytes ();
      assert (result.length == (80000 + 3 + 3 * 2));
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_overflows_via_duplication ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_dedup_overflow (&c);
      graph_t graph (c.object_graph ());
    
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
      assert (out);
      hb_bytes_t result = out->as_bytes ();
      assert (result.length == (10000 + 2 * 2 + 60000 + 2 + 3 * 2));
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_overflows_via_multiple_duplications ()
    {
      size_t buffer_size = 300000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_multiple_dedup_overflow (&c);
      graph_t graph (c.object_graph ());
    
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE, 5);
      assert (out);
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_overflows_via_space_assignment ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_spaces (&c, true);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_spaces (&e, false);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_space_assignment",
                                 c,
                                 e);
    
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_isolation ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_isolation_overflow (&c);
      graph_t graph (c.object_graph ());
    
      assert (c.offset_overflow ());
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
      assert (out);
      hb_bytes_t result = out->as_bytes ();
      assert (result.length == (1 + 10000 + 60000 + 1 + 1
                                + 4 + 3 * 2));
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_overflows_via_isolation_with_recursive_duplication ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_isolation_overflow_complex (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_isolation_overflow_complex_expected (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_isolation_with_recursive_duplication",
                                 c,
                                 e);
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_isolating_16bit_space ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_spaces_16bit_connection (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_spaces_16bit_connection_expected (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space",
                                 c,
                                 e);
    
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_isolating_16bit_space_2 ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_short_and_wide_subgraph_root (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_short_and_wide_subgraph_root_expected (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space_2",
                                 c,
                                 e);
    
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_isolation_spaces ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_isolation_overflow_spaces (&c);
      graph_t graph (c.object_graph ());
    
      assert (c.offset_overflow ());
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
      assert (out);
      hb_bytes_t result = out->as_bytes ();
    
      unsigned expected_length = 3 + 2 * 60000; // objects
      expected_length += 2 * 4 + 2 * 2; // links
      assert (result.length == expected_length);
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_mixed_overflows_via_isolation_spaces ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_24_and_32_bit_offsets (&c);
      graph_t graph (c.object_graph ());
    
      assert (c.offset_overflow ());
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
      assert (out);
      hb_bytes_t result = out->as_bytes ();
    
      unsigned expected_length =
          // Objects
          7 +
          4 * 40000;
    
      expected_length +=
          // Links
          2 * 4 +  // 32
          4 * 3 +  // 24
          4 * 2;   // 16
    
      assert (result.length == expected_length);
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void test_resolve_with_extension_promotion ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_extension_promotion (&c);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_extension_promotion (&e, 3);
    
      run_resolve_overflow_test ("test_resolve_with_extension_promotion",
                                 c,
                                 e,
                                 20,
                                 true);
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_shared_extension_promotion ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_extension_promotion (&c, 0, true);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_extension_promotion (&e, 3, true);
    
      run_resolve_overflow_test ("test_resolve_with_extension_promotion",
                                 c,
                                 e,
                                 20,
                                 true);
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_basic_pair_pos_1_split ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_pair_pos_1 <1, 4>(&c);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_pair_pos_1 <2, 2>(&e, true);
    
      run_resolve_overflow_test ("test_resolve_with_basic_pair_pos_1_split",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_extension_pair_pos_1_split ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_pair_pos_1 <1, 4>(&c, true);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_pair_pos_1 <2, 2>(&e, true);
    
      run_resolve_overflow_test ("test_resolve_with_extension_pair_pos_1_split",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_basic_pair_pos_2_split ()
    {
      size_t buffer_size = 300000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <1, 4, 3000>(&c);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <2, 2, 3000>(&e, true);
    
      run_resolve_overflow_test ("test_resolve_with_basic_pair_pos_2_split",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_close_to_limit_pair_pos_2_split ()
    {
      size_t buffer_size = 300000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <1, 1636, 10>(&c, true, false, false);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <2, 818, 10>(&e, true, false, false);
    
      run_resolve_overflow_test ("test_resolve_with_close_to_limit_pair_pos_2_split",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_pair_pos_2_split_with_device_tables ()
    {
      size_t buffer_size = 300000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <1, 4, 2000>(&c, false, true);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_pair_pos_2 <2, 2, 2000>(&e, true, true);
    
      run_resolve_overflow_test ("test_resolve_with_pair_pos_2_split_with_device_tables",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_with_basic_mark_base_pos_1_split ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_large_mark_base_pos_1 <40, 10, 110, 1>(&c);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_large_mark_base_pos_1 <40, 10, 110, 2>(&e);
    
      run_resolve_overflow_test ("test_resolve_with_basic_mark_base_pos_1_split",
                                 c,
                                 e,
                                 20,
                                 true,
                                 HB_TAG('G', 'P', 'O', 'S'));
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_splitting_spaces ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_split_spaces (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_split_spaces_expected (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces",
                                 c,
                                 e,
                                 1);
    
      free (buffer);
      free (expected_buffer);
    
    }
    
    static void test_resolve_overflows_via_splitting_spaces_2 ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_split_spaces_2 (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_split_spaces_expected_2 (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces_2",
                                 c,
                                 e,
                                 1);
      free (buffer);
      free (expected_buffer);
    }
    
    static void test_resolve_overflows_via_priority ()
    {
      size_t buffer_size = 160000;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_priority_overflow (&c);
    
      void* expected_buffer = malloc (buffer_size);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_priority_overflow_expected (&e);
    
      run_resolve_overflow_test ("test_resolve_overflows_via_priority",
                                 c,
                                 e,
                                 3);
      free (buffer);
      free (expected_buffer);
    }
    
    
    static void test_virtual_link ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_virtual_link (&c);
    
      hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
      assert (out);
    
      hb_bytes_t result = out->as_bytes ();
      assert (result.length == 5 + 4 * 2);
      assert (result[0]  == 'a');
      assert (result[5]  == 'c');
      assert (result[8]  == 'e');
      assert (result[9]  == 'b');
      assert (result[12] == 'd');
    
      free (buffer);
      hb_blob_destroy (out);
    }
    
    static void
    test_shared_node_with_virtual_links ()
    {
      size_t buffer_size = 100;
      void* buffer = malloc (buffer_size);
      hb_serialize_context_t c (buffer, buffer_size);
    
      c.start_serialize<char> ();
    
      unsigned obj_b = add_object ("b", 1, &c);
      unsigned obj_c = add_object ("c", 1, &c);
    
      start_object ("d", 1, &c);
      add_virtual_offset (obj_b, &c);
      unsigned obj_d_1 = c.pop_pack ();
    
      start_object ("d", 1, &c);
      add_virtual_offset (obj_c, &c);
      unsigned obj_d_2 = c.pop_pack ();
    
      assert (obj_d_1 == obj_d_2);
    
      start_object ("a", 1, &c);
      add_offset (obj_b, &c);
      add_offset (obj_c, &c);
      add_offset (obj_d_1, &c);
      add_offset (obj_d_2, &c);
      c.pop_pack ();
      c.end_serialize ();
    
      assert(c.object_graph() [obj_d_1]->virtual_links.length == 2);
      assert(c.object_graph() [obj_d_1]->virtual_links[0].objidx == obj_b);
      assert(c.object_graph() [obj_d_1]->virtual_links[1].objidx == obj_c);
      free(buffer);
    }
    
    static void
    test_repack_last ()
    {
      size_t buffer_size = 200000;
      void* buffer = malloc (buffer_size);
      assert (buffer);
      hb_serialize_context_t c (buffer, buffer_size);
      populate_serializer_with_repack_last (&c, true);
    
      void* expected_buffer = malloc (buffer_size);
      assert (expected_buffer);
      hb_serialize_context_t e (expected_buffer, buffer_size);
      populate_serializer_with_repack_last (&e, false);
    
      run_resolve_overflow_test ("test_repack_last",
                                 c,
                                 e,
                                 20,
                                 false,
                                 HB_TAG('a', 'b', 'c', 'd'),
                                 true);
    
      free (buffer);
      free (expected_buffer);
    }
    
    // TODO(garretrieger): update will_overflow tests to check the overflows array.
    // TODO(garretrieger): add tests for priority raising.
    
    int
    main (int argc, char **argv)
    {
      test_serialize ();
      test_sort_shortest ();
      test_will_overflow_1 ();
      test_will_overflow_2 ();
      test_will_overflow_3 ();
      test_resolve_overflows_via_sort ();
      test_resolve_overflows_via_duplication ();
      test_resolve_overflows_via_multiple_duplications ();
      test_resolve_overflows_via_priority ();
      test_resolve_overflows_via_space_assignment ();
      test_resolve_overflows_via_isolation ();
      test_resolve_overflows_via_isolation_with_recursive_duplication ();
      test_resolve_overflows_via_isolation_spaces ();
      test_resolve_overflows_via_isolating_16bit_space ();
      test_resolve_overflows_via_isolating_16bit_space_2 ();
      test_resolve_overflows_via_splitting_spaces ();
      test_resolve_overflows_via_splitting_spaces_2 ();
      test_resolve_mixed_overflows_via_isolation_spaces ();
      test_duplicate_leaf ();
      test_duplicate_interior ();
      test_virtual_link ();
      test_repack_last();
      test_shared_node_with_virtual_links ();
      test_resolve_with_extension_promotion ();
      test_resolve_with_shared_extension_promotion ();
      test_resolve_with_basic_pair_pos_1_split ();
      test_resolve_with_extension_pair_pos_1_split ();
      test_resolve_with_basic_pair_pos_2_split ();
      test_resolve_with_pair_pos_2_split_with_device_tables ();
      test_resolve_with_close_to_limit_pair_pos_2_split ();
      test_resolve_with_basic_mark_base_pos_1_split ();
    
      // TODO(grieger): have run overflow tests compare graph equality not final packed binary.
      // TODO(grieger): split test where multiple subtables in one lookup are split to test link ordering.
      // TODO(grieger): split test where coverage table in subtable that is being split is shared.
      // TODO(grieger): test with extensions already mixed in as well.
      // TODO(grieger): test two layer ext promotion setup.
      // TODO(grieger): test sorting by subtables per byte in ext. promotion.
    }