Hash :
33cae9b4
Author :
Date :
2024-04-19T21:58:10
[repacker] If repacking fails for GSUB/GPOS try re-running with extension promotion and table splitting.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
* Copyright © 2020 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Garret Rieger
*/
#ifndef HB_REPACKER_HH
#define HB_REPACKER_HH
#include "hb-open-type.hh"
#include "hb-map.hh"
#include "hb-vector.hh"
#include "graph/graph.hh"
#include "graph/gsubgpos-graph.hh"
#include "graph/serialize.hh"
using graph::graph_t;
/*
* For a detailed writeup on the overflow resolution algorithm see:
* docs/repacker.md
*/
struct lookup_size_t
{
unsigned lookup_index;
size_t size;
unsigned num_subtables;
static int cmp (const void* a, const void* b)
{
return cmp ((const lookup_size_t*) a,
(const lookup_size_t*) b);
}
static int cmp (const lookup_size_t* a, const lookup_size_t* b)
{
double subtables_per_byte_a = (double) a->num_subtables / (double) a->size;
double subtables_per_byte_b = (double) b->num_subtables / (double) b->size;
if (subtables_per_byte_a == subtables_per_byte_b) {
return b->lookup_index - a->lookup_index;
}
double cmp = subtables_per_byte_b - subtables_per_byte_a;
if (cmp < 0) return -1;
if (cmp > 0) return 1;
return 0;
}
};
static inline
bool _presplit_subtables_if_needed (graph::gsubgpos_graph_context_t& ext_context)
{
// For each lookup this will check the size of subtables and split them as needed
// so that no subtable is at risk of overflowing. (where we support splitting for
// that subtable type).
//
// TODO(grieger): de-dup newly added nodes as necessary. Probably just want a full de-dup
// pass after this processing is done. Not super necessary as splits are
// only done where overflow is likely, so de-dup probably will get undone
// later anyways.
// The loop below can modify the contents of ext_context.lookups if new subtables are added
// to a lookup during a split. So save the initial set of lookup indices so the iteration doesn't
// risk access free'd memory if ext_context.lookups gets resized.
hb_set_t lookup_indices(ext_context.lookups.keys ());
for (unsigned lookup_index : lookup_indices)
{
graph::Lookup* lookup = ext_context.lookups.get(lookup_index);
if (!lookup->split_subtables_if_needed (ext_context, lookup_index))
return false;
}
return true;
}
/*
* Analyze the lookups in a GSUB/GPOS table and decide if any should be promoted
* to extension lookups.
*/
static inline
bool _promote_extensions_if_needed (graph::gsubgpos_graph_context_t& ext_context)
{
// Simple Algorithm (v1, current):
// 1. Calculate how many bytes each non-extension lookup consumes.
// 2. Select up to 64k of those to remain as non-extension (greedy, highest subtables per byte first)
// 3. Promote the rest.
//
// Advanced Algorithm (v2, not implemented):
// 1. Perform connected component analysis using lookups as roots.
// 2. Compute size of each connected component.
// 3. Select up to 64k worth of connected components to remain as non-extensions.
// (greedy, highest subtables per byte first)
// 4. Promote the rest.
// TODO(garretrieger): support extension demotion, then consider all lookups. Requires advanced algo.
// TODO(garretrieger): also support extension promotion during iterative resolution phase, then
// we can use a less conservative threshold here.
// TODO(grieger): skip this for the 24 bit case.
if (!ext_context.lookups) return true;
unsigned total_lookup_table_sizes = 0;
hb_vector_t<lookup_size_t> lookup_sizes;
lookup_sizes.alloc (ext_context.lookups.get_population (), true);
for (unsigned lookup_index : ext_context.lookups.keys ())
{
const auto& lookup_v = ext_context.graph.vertices_[lookup_index];
total_lookup_table_sizes += lookup_v.table_size ();
const graph::Lookup* lookup = ext_context.lookups.get(lookup_index);
hb_set_t visited;
lookup_sizes.push (lookup_size_t {
lookup_index,
ext_context.graph.find_subgraph_size (lookup_index, visited),
lookup->number_of_subtables (),
});
}
lookup_sizes.qsort ();
size_t lookup_list_size = ext_context.graph.vertices_[ext_context.lookup_list_index].table_size ();
size_t l2_l3_size = lookup_list_size + total_lookup_table_sizes; // Lookup List + Lookups
size_t l3_l4_size = total_lookup_table_sizes; // Lookups + SubTables
size_t l4_plus_size = 0; // SubTables + their descendants
// Start by assuming all lookups are using extension subtables, this size will be removed later
// if it's decided to not make a lookup extension.
for (auto p : lookup_sizes)
{
// TODO(garretrieger): this overestimates the extension subtables size because some extension subtables may be
// reused. However, we can't correct this until we have connected component analysis in place.
unsigned subtables_size = p.num_subtables * 8;
l3_l4_size += subtables_size;
l4_plus_size += subtables_size;
}
bool layers_full = false;
for (auto p : lookup_sizes)
{
const graph::Lookup* lookup = ext_context.lookups.get(p.lookup_index);
if (lookup->is_extension (ext_context.table_tag))
// already an extension so size is counted by the loop above.
continue;
if (!layers_full)
{
size_t lookup_size = ext_context.graph.vertices_[p.lookup_index].table_size ();
hb_set_t visited;
size_t subtables_size = ext_context.graph.find_subgraph_size (p.lookup_index, visited, 1) - lookup_size;
size_t remaining_size = p.size - subtables_size - lookup_size;
l3_l4_size += subtables_size;
l3_l4_size -= p.num_subtables * 8;
l4_plus_size += subtables_size + remaining_size;
if (l2_l3_size < (1 << 16)
&& l3_l4_size < (1 << 16)
&& l4_plus_size < (1 << 16)) continue; // this lookup fits within all layers groups
layers_full = true;
}
if (!ext_context.lookups.get(p.lookup_index)->make_extension (ext_context, p.lookup_index))
return false;
}
return true;
}
static inline
bool _try_isolating_subgraphs (const hb_vector_t<graph::overflow_record_t>& overflows,
graph_t& sorted_graph)
{
unsigned space = 0;
hb_set_t roots_to_isolate;
for (int i = overflows.length - 1; i >= 0; i--)
{
const graph::overflow_record_t& r = overflows[i];
unsigned root;
unsigned overflow_space = sorted_graph.space_for (r.parent, &root);
if (!overflow_space) continue;
if (sorted_graph.num_roots_for_space (overflow_space) <= 1) continue;
if (!space) {
space = overflow_space;
}
if (space == overflow_space)
roots_to_isolate.add(root);
}
if (!roots_to_isolate) return false;
unsigned maximum_to_move = hb_max ((sorted_graph.num_roots_for_space (space) / 2u), 1u);
if (roots_to_isolate.get_population () > maximum_to_move) {
// Only move at most half of the roots in a space at a time.
unsigned extra = roots_to_isolate.get_population () - maximum_to_move;
while (extra--) {
uint32_t root = HB_SET_VALUE_INVALID;
roots_to_isolate.previous (&root);
roots_to_isolate.del (root);
}
}
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Overflow in space %u (%u roots). Moving %u roots to space %u.",
space,
sorted_graph.num_roots_for_space (space),
roots_to_isolate.get_population (),
sorted_graph.next_space ());
sorted_graph.isolate_subgraph (roots_to_isolate);
sorted_graph.move_to_new_space (roots_to_isolate);
return true;
}
static inline
bool _resolve_shared_overflow(const hb_vector_t<graph::overflow_record_t>& overflows,
int overflow_index,
graph_t& sorted_graph)
{
const graph::overflow_record_t& r = overflows[overflow_index];
// Find all of the parents in overflowing links that link to this
// same child node. We will then try duplicating the child node and
// re-assigning all of these parents to the duplicate.
hb_set_t parents;
parents.add(r.parent);
for (int i = overflow_index - 1; i >= 0; i--) {
const graph::overflow_record_t& r2 = overflows[i];
if (r2.child == r.child) {
parents.add(r2.parent);
}
}
unsigned result = sorted_graph.duplicate(&parents, r.child);
if (result == (unsigned) -1 && parents.get_population() > 2) {
// All links to the child are overflowing, so we can't include all
// in the duplication. Remove one parent from the duplication.
// Remove the lowest index parent, which will be the closest to the child.
parents.del(parents.get_min());
result = sorted_graph.duplicate(&parents, r.child);
}
if (result == (unsigned) -1) return result;
if (parents.get_population() > 1) {
// If the duplicated node has more than one parent pre-emptively raise it's priority to the maximum.
// This will place it close to the parents. Node's with only one parent, don't need this as normal overflow
// resolution will raise priority if needed.
//
// Reasoning: most of the parents to this child are likely at the same layer in the graph. Duplicating
// the child will theoretically allow it to be placed closer to it's parents. However, due to the shortest
// distance sort by default it's placement will remain in the same layer, thus it will remain in roughly the
// same position (and distance from parents) as the original child node. The overflow resolution will attempt
// to move nodes closer, but only for non-shared nodes. Since this node is shared, it will simply be given
// further duplication which defeats the attempt to duplicate with multiple parents. To fix this we
// pre-emptively raise priority now which allows the duplicated node to pack into the same layer as it's parents.
sorted_graph.vertices_[result].give_max_priority();
}
return result;
}
static inline
bool _process_overflows (const hb_vector_t<graph::overflow_record_t>& overflows,
hb_set_t& priority_bumped_parents,
graph_t& sorted_graph)
{
bool resolution_attempted = false;
// Try resolving the furthest overflows first.
for (int i = overflows.length - 1; i >= 0; i--)
{
const graph::overflow_record_t& r = overflows[i];
const auto& child = sorted_graph.vertices_[r.child];
if (child.is_shared ())
{
// The child object is shared, we may be able to eliminate the overflow
// by duplicating it.
if (!_resolve_shared_overflow(overflows, i, sorted_graph)) continue;
return true;
}
if (child.is_leaf () && !priority_bumped_parents.has (r.parent))
{
// This object is too far from it's parent, attempt to move it closer.
//
// TODO(garretrieger): initially limiting this to leaf's since they can be
// moved closer with fewer consequences. However, this can
// likely can be used for non-leafs as well.
// TODO(garretrieger): also try lowering priority of the parent. Make it
// get placed further up in the ordering, closer to it's children.
// this is probably preferable if the total size of the parent object
// is < then the total size of the children (and the parent can be moved).
// Since in that case moving the parent will cause a smaller increase in
// the length of other offsets.
if (sorted_graph.raise_childrens_priority (r.parent)) {
priority_bumped_parents.add (r.parent);
resolution_attempted = true;
}
continue;
}
// TODO(garretrieger): add additional offset resolution strategies
// - Promotion to extension lookups.
// - Table splitting.
}
return resolution_attempted;
}
inline bool
hb_resolve_graph_overflows (hb_tag_t table_tag,
unsigned max_rounds ,
bool always_recalculate_extensions,
graph_t& sorted_graph /* IN/OUT */)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Repacking %c%c%c%c.", HB_UNTAG(table_tag));
sorted_graph.sort_shortest_distance ();
if (sorted_graph.in_error ())
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Sorted graph in error state after initial sort.");
return false;
}
bool will_overflow = graph::will_overflow (sorted_graph);
if (!will_overflow)
return true;
bool is_gsub_or_gpos = (table_tag == HB_OT_TAG_GPOS || table_tag == HB_OT_TAG_GSUB);
graph::gsubgpos_graph_context_t ext_context (table_tag, sorted_graph);
if (is_gsub_or_gpos && will_overflow)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Applying GSUB/GPOS repacking specializations.");
if (always_recalculate_extensions)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Splitting subtables if needed.");
if (!_presplit_subtables_if_needed (ext_context)) {
DEBUG_MSG (SUBSET_REPACK, nullptr, "Subtable splitting failed.");
return false;
}
DEBUG_MSG (SUBSET_REPACK, nullptr, "Promoting lookups to extensions if needed.");
if (!_promote_extensions_if_needed (ext_context)) {
DEBUG_MSG (SUBSET_REPACK, nullptr, "Extensions promotion failed.");
return false;
}
}
DEBUG_MSG (SUBSET_REPACK, nullptr, "Assigning spaces to 32 bit subgraphs.");
if (sorted_graph.assign_spaces ())
sorted_graph.sort_shortest_distance ();
else
sorted_graph.sort_shortest_distance_if_needed ();
}
unsigned round = 0;
hb_vector_t<graph::overflow_record_t> overflows;
// TODO(garretrieger): select a good limit for max rounds.
while (!sorted_graph.in_error ()
&& graph::will_overflow (sorted_graph, &overflows)
&& round < max_rounds) {
DEBUG_MSG (SUBSET_REPACK, nullptr, "=== Overflow resolution round %u ===", round);
print_overflows (sorted_graph, overflows);
hb_set_t priority_bumped_parents;
if (!_try_isolating_subgraphs (overflows, sorted_graph))
{
// Don't count space isolation towards round limit. Only increment
// round counter if space isolation made no changes.
round++;
if (!_process_overflows (overflows, priority_bumped_parents, sorted_graph))
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "No resolution available :(");
break;
}
}
sorted_graph.sort_shortest_distance ();
}
if (sorted_graph.in_error ())
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Sorted graph in error state.");
return false;
}
if (graph::will_overflow (sorted_graph))
{
if (is_gsub_or_gpos && !always_recalculate_extensions) {
// If this a GSUB/GPOS table and we didn't try to extension promotion and table splitting then
// as a last ditch effort, re-run the repacker with it enabled.
DEBUG_MSG (SUBSET_REPACK, nullptr, "Failed to find a resolution. Re-running with extension promotion and table splitting enabled.");
return hb_resolve_graph_overflows (table_tag, max_rounds, true, sorted_graph);
}
DEBUG_MSG (SUBSET_REPACK, nullptr, "Offset overflow resolution failed.");
return false;
}
return true;
}
/*
* Attempts to modify the topological sorting of the provided object graph to
* eliminate offset overflows in the links between objects of the graph. If a
* non-overflowing ordering is found the updated graph is serialized it into the
* provided serialization context.
*
* If necessary the structure of the graph may be modified in ways that do not
* affect the functionality of the graph. For example shared objects may be
* duplicated.
*
* For a detailed writeup describing how the algorithm operates see:
* docs/repacker.md
*/
template<typename T>
inline hb_blob_t*
hb_resolve_overflows (const T& packed,
hb_tag_t table_tag,
unsigned max_rounds = 32,
bool recalculate_extensions = false) {
graph_t sorted_graph (packed);
if (sorted_graph.in_error ())
{
// Invalid graph definition.
return nullptr;
}
if (!sorted_graph.is_fully_connected ())
{
sorted_graph.print_orphaned_nodes ();
return nullptr;
}
if (sorted_graph.in_error ())
{
// Allocations failed somewhere
DEBUG_MSG (SUBSET_REPACK, nullptr,
"Graph is in error, likely due to a memory allocation error.");
return nullptr;
}
if (!hb_resolve_graph_overflows (table_tag, max_rounds, recalculate_extensions, sorted_graph))
return nullptr;
return graph::serialize (sorted_graph);
}
#endif /* HB_REPACKER_HH */