Hash :
b4f561db
Author :
Date :
2022-07-06T18:49:23
[subset] Add some comments to find_space_roots/find_32_bit_roots methods.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/*
* Copyright © 2022 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Garret Rieger
*/
#ifndef GRAPH_GRAPH_HH
#define GRAPH_GRAPH_HH
namespace graph {
/**
* Represents a serialized table in the form of a graph.
* Provides methods for modifying and reordering the graph.
*/
struct graph_t
{
struct vertex_t
{
hb_serialize_context_t::object_t obj;
int64_t distance = 0 ;
int64_t space = 0 ;
hb_vector_t<unsigned> parents;
unsigned start = 0;
unsigned end = 0;
unsigned priority = 0;
friend void swap (vertex_t& a, vertex_t& b)
{
hb_swap (a.obj, b.obj);
hb_swap (a.distance, b.distance);
hb_swap (a.space, b.space);
hb_swap (a.parents, b.parents);
hb_swap (a.start, b.start);
hb_swap (a.end, b.end);
hb_swap (a.priority, b.priority);
}
bool is_shared () const
{
return parents.length > 1;
}
unsigned incoming_edges () const
{
return parents.length;
}
void remove_parent (unsigned parent_index)
{
for (unsigned i = 0; i < parents.length; i++)
{
if (parents[i] != parent_index) continue;
parents.remove (i);
break;
}
}
void remap_parents (const hb_vector_t<unsigned>& id_map)
{
for (unsigned i = 0; i < parents.length; i++)
parents[i] = id_map[parents[i]];
}
void remap_parent (unsigned old_index, unsigned new_index)
{
for (unsigned i = 0; i < parents.length; i++)
{
if (parents[i] == old_index)
parents[i] = new_index;
}
}
bool is_leaf () const
{
return !obj.real_links.length && !obj.virtual_links.length;
}
bool raise_priority ()
{
if (has_max_priority ()) return false;
priority++;
return true;
}
bool has_max_priority () const {
return priority >= 3;
}
int64_t modified_distance (unsigned order) const
{
// TODO(garretrieger): once priority is high enough, should try
// setting distance = 0 which will force to sort immediately after
// it's parent where possible.
int64_t modified_distance =
hb_min (hb_max(distance + distance_modifier (), 0), 0x7FFFFFFFFFF);
if (has_max_priority ()) {
modified_distance = 0;
}
return (modified_distance << 18) | (0x003FFFF & order);
}
int64_t distance_modifier () const
{
if (!priority) return 0;
int64_t table_size = obj.tail - obj.head;
if (priority == 1)
return -table_size / 2;
return -table_size;
}
};
/*
* A topological sorting of an object graph. Ordered
* in reverse serialization order (first object in the
* serialization is at the end of the list). This matches
* the 'packed' object stack used internally in the
* serializer
*/
template<typename T>
graph_t (const T& objects)
: parents_invalid (true),
distance_invalid (true),
positions_invalid (true),
successful (true)
{
num_roots_for_space_.push (1);
bool removed_nil = false;
vertices_.alloc (objects.length);
vertices_scratch_.alloc (objects.length);
for (unsigned i = 0; i < objects.length; i++)
{
// TODO(grieger): check all links point to valid objects.
// If this graph came from a serialization buffer object 0 is the
// nil object. We don't need it for our purposes here so drop it.
if (i == 0 && !objects[i])
{
removed_nil = true;
continue;
}
vertex_t* v = vertices_.push ();
if (check_success (!vertices_.in_error ()))
v->obj = *objects[i];
if (!removed_nil) continue;
// Fix indices to account for removed nil object.
for (auto& l : v->obj.all_links_writer ()) {
l.objidx--;
}
}
}
~graph_t ()
{
vertices_.fini ();
}
bool in_error () const
{
return !successful ||
vertices_.in_error () ||
num_roots_for_space_.in_error ();
}
const vertex_t& root () const
{
return vertices_[root_idx ()];
}
unsigned root_idx () const
{
// Object graphs are in reverse order, the first object is at the end
// of the vector. Since the graph is topologically sorted it's safe to
// assume the first object has no incoming edges.
return vertices_.length - 1;
}
const hb_serialize_context_t::object_t& object(unsigned i) const
{
return vertices_[i].obj;
}
/*
* Generates a new topological sorting of graph ordered by the shortest
* distance to each node.
*/
void sort_shortest_distance ()
{
positions_invalid = true;
if (vertices_.length <= 1) {
// Graph of 1 or less doesn't need sorting.
return;
}
update_distances ();
hb_priority_queue_t queue;
hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
hb_vector_t<unsigned> id_map;
if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
hb_vector_t<unsigned> removed_edges;
if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
update_parents ();
queue.insert (root ().modified_distance (0), root_idx ());
int new_id = root_idx ();
unsigned order = 1;
while (!queue.in_error () && !queue.is_empty ())
{
unsigned next_id = queue.pop_minimum().second;
hb_swap (sorted_graph[new_id], vertices_[next_id]);
const vertex_t& next = sorted_graph[new_id];
id_map[next_id] = new_id--;
for (const auto& link : next.obj.all_links ()) {
removed_edges[link.objidx]++;
if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
// Add the order that the links were encountered to the priority.
// This ensures that ties between priorities objects are broken in a consistent
// way. More specifically this is set up so that if a set of objects have the same
// distance they'll be added to the topological order in the order that they are
// referenced from the parent object.
queue.insert (vertices_[link.objidx].modified_distance (order++),
link.objidx);
}
}
check_success (!queue.in_error ());
check_success (!sorted_graph.in_error ());
if (!check_success (new_id == -1))
print_orphaned_nodes ();
remap_all_obj_indices (id_map, &sorted_graph);
hb_swap (vertices_, sorted_graph);
}
/*
* Finds the set of nodes (placed into roots) that should be assigned unique spaces.
* More specifically this looks for the top most 24 bit or 32 bit links in the graph.
* Some special casing is done that is specific to the layout of GSUB/GPOS tables.
*/
void find_space_roots (hb_set_t& visited, hb_set_t& roots)
{
int root_index = (int) root_idx ();
for (int i = root_index; i >= 0; i--)
{
if (visited.has (i)) continue;
// Only real links can form 32 bit spaces
for (auto& l : vertices_[i].obj.real_links)
{
if (l.is_signed || l.width < 3)
continue;
if (i == root_index && l.width == 3)
// Ignore 24bit links from the root node, this skips past the single 24bit
// pointer to the lookup list.
continue;
if (l.width == 3)
{
// A 24bit offset forms a root, unless there is 32bit offsets somewhere
// in it's subgraph, then those become the roots instead. This is to make sure
// that extension subtables beneath a 24bit lookup become the spaces instead
// of the offset to the lookup.
hb_set_t sub_roots;
find_32bit_roots (l.objidx, sub_roots);
if (sub_roots) {
for (unsigned sub_root_idx : sub_roots) {
roots.add (sub_root_idx);
find_subgraph (sub_root_idx, visited);
}
continue;
}
}
roots.add (l.objidx);
find_subgraph (l.objidx, visited);
}
}
}
/*
* Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s).
* Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB
* (including with 24bit offsets) table.
*/
bool assign_spaces ()
{
hb_set_t visited;
hb_set_t roots;
find_space_roots (visited, roots);
// Mark everything not in the subgraphs of the roots as visited. This prevents
// subgraphs from being connected via nodes not in those subgraphs.
visited.invert ();
if (!roots) return false;
while (roots)
{
unsigned next = HB_SET_VALUE_INVALID;
if (unlikely (!check_success (!roots.in_error ()))) break;
if (!roots.next (&next)) break;
hb_set_t connected_roots;
find_connected_nodes (next, roots, visited, connected_roots);
if (unlikely (!check_success (!connected_roots.in_error ()))) break;
isolate_subgraph (connected_roots);
if (unlikely (!check_success (!connected_roots.in_error ()))) break;
unsigned next_space = this->next_space ();
num_roots_for_space_.push (0);
for (unsigned root : connected_roots)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
vertices_[root].space = next_space;
num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
distance_invalid = true;
positions_invalid = true;
}
// TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
// into the 32 bit space as needed, instead of using isolation.
}
return true;
}
/*
* Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
* that originate from outside of the subgraph will be removed by duplicating the linked to
* object.
*
* Indices stored in roots will be updated if any of the roots are duplicated to new indices.
*/
bool isolate_subgraph (hb_set_t& roots)
{
update_parents ();
hb_map_t subgraph;
// incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
// set the subgraph incoming edge count to match all of root_idx's incoming edges
hb_set_t parents;
for (unsigned root_idx : roots)
{
subgraph.set (root_idx, wide_parents (root_idx, parents));
find_subgraph (root_idx, subgraph);
}
unsigned original_root_idx = root_idx ();
hb_map_t index_map;
bool made_changes = false;
for (auto entry : subgraph.iter ())
{
const auto& node = vertices_[entry.first];
unsigned subgraph_incoming_edges = entry.second;
if (subgraph_incoming_edges < node.incoming_edges ())
{
// Only de-dup objects with incoming links from outside the subgraph.
made_changes = true;
duplicate_subgraph (entry.first, index_map);
}
}
if (!made_changes)
return false;
if (original_root_idx != root_idx ()
&& parents.has (original_root_idx))
{
// If the root idx has changed since parents was determined, update root idx in parents
parents.add (root_idx ());
parents.del (original_root_idx);
}
auto new_subgraph =
+ subgraph.keys ()
| hb_map([&] (unsigned node_idx) {
const unsigned *v;
if (index_map.has (node_idx, &v)) return *v;
return node_idx;
})
;
remap_obj_indices (index_map, new_subgraph);
remap_obj_indices (index_map, parents.iter (), true);
// Update roots set with new indices as needed.
unsigned next = HB_SET_VALUE_INVALID;
while (roots.next (&next))
{
const unsigned *v;
if (index_map.has (next, &v))
{
roots.del (next);
roots.add (*v);
}
}
return true;
}
void find_subgraph (unsigned node_idx, hb_map_t& subgraph)
{
for (const auto& link : vertices_[node_idx].obj.all_links ())
{
const unsigned *v;
if (subgraph.has (link.objidx, &v))
{
subgraph.set (link.objidx, *v + 1);
continue;
}
subgraph.set (link.objidx, 1);
find_subgraph (link.objidx, subgraph);
}
}
void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
{
if (subgraph.has (node_idx)) return;
subgraph.add (node_idx);
for (const auto& link : vertices_[node_idx].obj.all_links ())
find_subgraph (link.objidx, subgraph);
}
/*
* Finds the topmost children of 32bit offsets in the subgraph starting
* at node_idx. Found indices are placed into 'found'.
*/
void find_32bit_roots (unsigned node_idx, hb_set_t& found)
{
for (const auto& link : vertices_[node_idx].obj.all_links ())
{
if (!link.is_signed && link.width == 4) {
found.add (link.objidx);
continue;
}
find_32bit_roots (link.objidx, found);
}
}
/*
* duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
* links. index_map is updated with mappings from old id to new id. If a duplication has already
* been performed for a given index, then it will be skipped.
*/
void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map)
{
if (index_map.has (node_idx))
return;
index_map.set (node_idx, duplicate (node_idx));
for (const auto& l : object (node_idx).all_links ()) {
duplicate_subgraph (l.objidx, index_map);
}
}
/*
* Creates a copy of node_idx and returns it's new index.
*/
unsigned duplicate (unsigned node_idx)
{
positions_invalid = true;
distance_invalid = true;
auto* clone = vertices_.push ();
auto& child = vertices_[node_idx];
if (vertices_.in_error ()) {
return -1;
}
clone->obj.head = child.obj.head;
clone->obj.tail = child.obj.tail;
clone->distance = child.distance;
clone->space = child.space;
clone->parents.reset ();
unsigned clone_idx = vertices_.length - 2;
for (const auto& l : child.obj.real_links)
{
clone->obj.real_links.push (l);
vertices_[l.objidx].parents.push (clone_idx);
}
for (const auto& l : child.obj.virtual_links)
{
clone->obj.virtual_links.push (l);
vertices_[l.objidx].parents.push (clone_idx);
}
check_success (!clone->obj.real_links.in_error ());
check_success (!clone->obj.virtual_links.in_error ());
// The last object is the root of the graph, so swap back the root to the end.
// The root's obj idx does change, however since it's root nothing else refers to it.
// all other obj idx's will be unaffected.
hb_swap (vertices_[vertices_.length - 2], *clone);
// Since the root moved, update the parents arrays of all children on the root.
for (const auto& l : root ().obj.all_links ())
vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
return clone_idx;
}
/*
* Creates a copy of child and re-assigns the link from
* parent to the clone. The copy is a shallow copy, objects
* linked from child are not duplicated.
*/
bool duplicate (unsigned parent_idx, unsigned child_idx)
{
update_parents ();
unsigned links_to_child = 0;
for (const auto& l : vertices_[parent_idx].obj.all_links ())
{
if (l.objidx == child_idx) links_to_child++;
}
if (vertices_[child_idx].incoming_edges () <= links_to_child)
{
// Can't duplicate this node, doing so would orphan the original one as all remaining links
// to child are from parent.
DEBUG_MSG (SUBSET_REPACK, nullptr, " Not duplicating %d => %d",
parent_idx, child_idx);
return false;
}
DEBUG_MSG (SUBSET_REPACK, nullptr, " Duplicating %d => %d",
parent_idx, child_idx);
unsigned clone_idx = duplicate (child_idx);
if (clone_idx == (unsigned) -1) return false;
// duplicate shifts the root node idx, so if parent_idx was root update it.
if (parent_idx == clone_idx) parent_idx++;
auto& parent = vertices_[parent_idx];
for (auto& l : parent.obj.all_links_writer ())
{
if (l.objidx != child_idx)
continue;
reassign_link (l, parent_idx, clone_idx);
}
return true;
}
/*
* Raises the sorting priority of all children.
*/
bool raise_childrens_priority (unsigned parent_idx)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, " Raising priority of all children of %d",
parent_idx);
// This operation doesn't change ordering until a sort is run, so no need
// to invalidate positions. It does not change graph structure so no need
// to update distances or edge counts.
auto& parent = vertices_[parent_idx].obj;
bool made_change = false;
for (auto& l : parent.all_links_writer ())
made_change |= vertices_[l.objidx].raise_priority ();
return made_change;
}
void print_orphaned_nodes ()
{
if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
parents_invalid = true;
update_parents();
for (unsigned i = 0; i < root_idx (); i++)
{
const auto& v = vertices_[i];
if (!v.parents)
DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
}
}
unsigned num_roots_for_space (unsigned space) const
{
return num_roots_for_space_[space];
}
unsigned next_space () const
{
return num_roots_for_space_.length;
}
void move_to_new_space (const hb_set_t& indices)
{
num_roots_for_space_.push (0);
unsigned new_space = num_roots_for_space_.length - 1;
for (unsigned index : indices) {
auto& node = vertices_[index];
num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
node.space = new_space;
distance_invalid = true;
positions_invalid = true;
}
}
unsigned space_for (unsigned index, unsigned* root = nullptr) const
{
const auto& node = vertices_[index];
if (node.space)
{
if (root != nullptr)
*root = index;
return node.space;
}
if (!node.parents)
{
if (root)
*root = index;
return 0;
}
return space_for (node.parents[0], root);
}
void err_other_error () { this->successful = false; }
size_t total_size_in_bytes () const {
size_t total_size = 0;
for (unsigned i = 0; i < vertices_.length; i++) {
size_t size = vertices_[i].obj.tail - vertices_[i].obj.head;
total_size += size;
}
return total_size;
}
private:
/*
* Returns the numbers of incoming edges that are 24 or 32 bits wide.
*/
unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
{
unsigned count = 0;
hb_set_t visited;
for (unsigned p : vertices_[node_idx].parents)
{
if (visited.has (p)) continue;
visited.add (p);
// Only real links can be wide
for (const auto& l : vertices_[p].obj.real_links)
{
if (l.objidx == node_idx
&& (l.width == 3 || l.width == 4)
&& !l.is_signed)
{
count++;
parents.add (p);
}
}
}
return count;
}
bool check_success (bool success)
{ return this->successful && (success || ((void) err_other_error (), false)); }
public:
/*
* Creates a map from objid to # of incoming edges.
*/
void update_parents ()
{
if (!parents_invalid) return;
for (unsigned i = 0; i < vertices_.length; i++)
vertices_[i].parents.reset ();
for (unsigned p = 0; p < vertices_.length; p++)
{
for (auto& l : vertices_[p].obj.all_links ())
{
vertices_[l.objidx].parents.push (p);
}
}
parents_invalid = false;
}
/*
* compute the serialized start and end positions for each vertex.
*/
void update_positions ()
{
if (!positions_invalid) return;
unsigned current_pos = 0;
for (int i = root_idx (); i >= 0; i--)
{
auto& v = vertices_[i];
v.start = current_pos;
current_pos += v.obj.tail - v.obj.head;
v.end = current_pos;
}
positions_invalid = false;
}
/*
* Finds the distance to each object in the graph
* from the initial node.
*/
void update_distances ()
{
if (!distance_invalid) return;
// Uses Dijkstra's algorithm to find all of the shortest distances.
// https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//
// Implementation Note:
// Since our priority queue doesn't support fast priority decreases
// we instead just add new entries into the queue when a priority changes.
// Redundant ones are filtered out later on by the visited set.
// According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
// for practical performance this is faster then using a more advanced queue
// (such as a fibonacci queue) with a fast decrease priority.
for (unsigned i = 0; i < vertices_.length; i++)
{
if (i == vertices_.length - 1)
vertices_[i].distance = 0;
else
vertices_[i].distance = hb_int_max (int64_t);
}
hb_priority_queue_t queue;
queue.insert (0, vertices_.length - 1);
hb_vector_t<bool> visited;
visited.resize (vertices_.length);
while (!queue.in_error () && !queue.is_empty ())
{
unsigned next_idx = queue.pop_minimum ().second;
if (visited[next_idx]) continue;
const auto& next = vertices_[next_idx];
int64_t next_distance = vertices_[next_idx].distance;
visited[next_idx] = true;
for (const auto& link : next.obj.all_links ())
{
if (visited[link.objidx]) continue;
const auto& child = vertices_[link.objidx].obj;
unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
int64_t child_weight = (child.tail - child.head) +
((int64_t) 1 << (link_width * 8)) * (vertices_[link.objidx].space + 1);
int64_t child_distance = next_distance + child_weight;
if (child_distance < vertices_[link.objidx].distance)
{
vertices_[link.objidx].distance = child_distance;
queue.insert (child_distance, link.objidx);
}
}
}
check_success (!queue.in_error ());
if (!check_success (queue.is_empty ()))
{
print_orphaned_nodes ();
return;
}
distance_invalid = false;
}
private:
/*
* Updates a link in the graph to point to a different object. Corrects the
* parents vector on the previous and new child nodes.
*/
void reassign_link (hb_serialize_context_t::object_t::link_t& link,
unsigned parent_idx,
unsigned new_idx)
{
unsigned old_idx = link.objidx;
link.objidx = new_idx;
vertices_[old_idx].remove_parent (parent_idx);
vertices_[new_idx].parents.push (parent_idx);
}
/*
* Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
*/
template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
void remap_obj_indices (const hb_map_t& id_map,
Iterator subgraph,
bool only_wide = false)
{
if (!id_map) return;
for (unsigned i : subgraph)
{
for (auto& link : vertices_[i].obj.all_links_writer ())
{
const unsigned *v;
if (!id_map.has (link.objidx, &v)) continue;
if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
reassign_link (link, i, *v);
}
}
}
/*
* Updates all objidx's in all links using the provided mapping.
*/
void remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
hb_vector_t<vertex_t>* sorted_graph) const
{
for (unsigned i = 0; i < sorted_graph->length; i++)
{
(*sorted_graph)[i].remap_parents (id_map);
for (auto& link : (*sorted_graph)[i].obj.all_links_writer ())
{
link.objidx = id_map[link.objidx];
}
}
}
/*
* Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
* For this search the graph is treated as being undirected.
*
* Connected targets will be added to connected and removed from targets. All visited nodes
* will be added to visited.
*/
void find_connected_nodes (unsigned start_idx,
hb_set_t& targets,
hb_set_t& visited,
hb_set_t& connected)
{
if (unlikely (!check_success (!visited.in_error ()))) return;
if (visited.has (start_idx)) return;
visited.add (start_idx);
if (targets.has (start_idx))
{
targets.del (start_idx);
connected.add (start_idx);
}
const auto& v = vertices_[start_idx];
// Graph is treated as undirected so search children and parents of start_idx
for (const auto& l : v.obj.all_links ())
find_connected_nodes (l.objidx, targets, visited, connected);
for (unsigned p : v.parents)
find_connected_nodes (p, targets, visited, connected);
}
public:
// TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
hb_vector_t<vertex_t> vertices_;
hb_vector_t<vertex_t> vertices_scratch_;
private:
bool parents_invalid;
bool distance_invalid;
bool positions_invalid;
bool successful;
hb_vector_t<unsigned> num_roots_for_space_;
};
}
#endif // GRAPH_GRAPH_HH