Edit

kc3-lang/harfbuzz/src/graph/graph.hh

Branch :

  • Show log

    Commit

  • Author : Ebrahim Byagowi
    Date : 2024-07-08 15:33:39
    Hash : 677d6646
    Message : [subset] Make sure the clamp is done in a int64_t space Otherwise nags about things like this, In member function ‘int64_t graph::graph_t::vertex_t::modified_distance(unsigned int) const’, inlined from ‘void graph::graph_t::sort_shortest_distance()’ at ../src/graph/graph.hh:626:24: ../src/graph/graph.hh:371:20: warning: dangling pointer to an unnamed temporary may be used [-Wdangling-pointer=] 371 | hb_clamp (distance + distance_modifier (), (uint64_t) 0, (uint64_t) 0x7FFFFFFFFFF); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ And some of the CI bots fail also like this https://github.com/harfbuzz/harfbuzz/actions/runs/9838686960/job/27159310858?pr=4793 But it probably something else also can be improved which maybe is out of scope for this particular change.

  • src/graph/graph.hh
  • /*
     * Copyright © 2022  Google, Inc.
     *
     *  This is part of HarfBuzz, a text shaping library.
     *
     * Permission is hereby granted, without written agreement and without
     * license or royalty fees, to use, copy, modify, and distribute this
     * software and its documentation for any purpose, provided that the
     * above copyright notice and the following two paragraphs appear in
     * all copies of this software.
     *
     * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
     * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
     * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
     * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
     * DAMAGE.
     *
     * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
     * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
     * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
     * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
     *
     * Google Author(s): Garret Rieger
     */
    
    #include "../hb-set.hh"
    #include "../hb-priority-queue.hh"
    #include "../hb-serialize.hh"
    
    #ifndef GRAPH_GRAPH_HH
    #define GRAPH_GRAPH_HH
    
    namespace graph {
    
    /**
     * Represents a serialized table in the form of a graph.
     * Provides methods for modifying and reordering the graph.
     */
    struct graph_t
    {
      struct vertex_t
      {
        hb_serialize_context_t::object_t obj;
        int64_t distance = 0 ;
        unsigned space = 0 ;
        unsigned start = 0;
        unsigned end = 0;
        unsigned priority = 0;
        private:
        unsigned incoming_edges_ = 0;
        unsigned single_parent = (unsigned) -1;
        hb_hashmap_t<unsigned, unsigned> parents;
        public:
    
        auto parents_iter () const HB_AUTO_RETURN
        (
          hb_concat (
    	hb_iter (&single_parent, single_parent != (unsigned) -1),
    	parents.keys_ref ()
          )
        )
    
        bool in_error () const
        {
          return parents.in_error ();
        }
    
        bool link_positions_valid (unsigned num_objects, bool removed_nil)
        {
          hb_set_t assigned_bytes;
          for (const auto& l : obj.real_links)
          {
            if (l.objidx >= num_objects
                || (removed_nil && !l.objidx))
            {
              DEBUG_MSG (SUBSET_REPACK, nullptr,
                         "Invalid graph. Invalid object index.");
              return false;
            }
    
            unsigned start = l.position;
            unsigned end = start + l.width - 1;
    
            if (unlikely (l.width < 2 || l.width > 4))
            {
              DEBUG_MSG (SUBSET_REPACK, nullptr,
                         "Invalid graph. Invalid link width.");
              return false;
            }
    
            if (unlikely (end >= table_size ()))
            {
              DEBUG_MSG (SUBSET_REPACK, nullptr,
                         "Invalid graph. Link position is out of bounds.");
              return false;
            }
    
            if (unlikely (assigned_bytes.intersects (start, end)))
            {
              DEBUG_MSG (SUBSET_REPACK, nullptr,
                         "Invalid graph. Found offsets whose positions overlap.");
              return false;
            }
    
            assigned_bytes.add_range (start, end);
          }
    
          return !assigned_bytes.in_error ();
        }
    
        void normalize ()
        {
          obj.real_links.qsort ();
          for (auto& l : obj.real_links)
          {
            for (unsigned i = 0; i < l.width; i++)
            {
              obj.head[l.position + i] = 0;
            }
          }
        }
    
        bool equals (const vertex_t& other,
                     const graph_t& graph,
                     const graph_t& other_graph,
                     unsigned depth) const
        {
          if (!(as_bytes () == other.as_bytes ()))
          {
            DEBUG_MSG (SUBSET_REPACK, nullptr,
                       "vertex [%lu] bytes != [%lu] bytes, depth = %u",
                       (unsigned long) table_size (),
                       (unsigned long) other.table_size (),
                       depth);
    
            auto a = as_bytes ();
            auto b = other.as_bytes ();
            while (a || b)
            {
              DEBUG_MSG (SUBSET_REPACK, nullptr,
                         "  0x%x %s 0x%x", (unsigned) *a, (*a == *b) ? "==" : "!=", (unsigned) *b);
              a++;
              b++;
            }
            return false;
          }
    
          return links_equal (obj.real_links, other.obj.real_links, graph, other_graph, depth);
        }
    
        hb_bytes_t as_bytes () const
        {
          return hb_bytes_t (obj.head, table_size ());
        }
    
        friend void swap (vertex_t& a, vertex_t& b)
        {
          hb_swap (a.obj, b.obj);
          hb_swap (a.distance, b.distance);
          hb_swap (a.space, b.space);
          hb_swap (a.single_parent, b.single_parent);
          hb_swap (a.parents, b.parents);
          hb_swap (a.incoming_edges_, b.incoming_edges_);
          hb_swap (a.start, b.start);
          hb_swap (a.end, b.end);
          hb_swap (a.priority, b.priority);
        }
    
        hb_hashmap_t<unsigned, unsigned>
        position_to_index_map () const
        {
          hb_hashmap_t<unsigned, unsigned> result;
    
          result.alloc (obj.real_links.length);
          for (const auto& l : obj.real_links) {
            result.set (l.position, l.objidx);
          }
    
          return result;
        }
    
        bool is_shared () const
        {
          return parents.get_population () > 1;
        }
    
        unsigned incoming_edges () const
        {
          if (HB_DEBUG_SUBSET_REPACK)
           {
    	assert (incoming_edges_ == (single_parent != (unsigned) -1) +
    		(parents.values_ref () | hb_reduce (hb_add, 0)));
           }
          return incoming_edges_;
        }
    
        unsigned incoming_edges_from_parent (unsigned parent_index) const {
          if (single_parent != (unsigned) -1) {
            return single_parent == parent_index ? 1 : 0;
          }
    
          unsigned* count;
          return  parents.has(parent_index, &count) ? *count : 0;
        }
    
        void reset_parents ()
        {
          incoming_edges_ = 0;
          single_parent = (unsigned) -1;
          parents.reset ();
        }
    
        void add_parent (unsigned parent_index)
        {
          assert (parent_index != (unsigned) -1);
          if (incoming_edges_ == 0)
          {
    	single_parent = parent_index;
    	incoming_edges_ = 1;
    	return;
          }
          else if (single_parent != (unsigned) -1)
          {
            assert (incoming_edges_ == 1);
    	if (!parents.set (single_parent, 1))
    	  return;
    	single_parent = (unsigned) -1;
          }
    
          unsigned *v;
          if (parents.has (parent_index, &v))
          {
            (*v)++;
    	incoming_edges_++;
          }
          else if (parents.set (parent_index, 1))
    	incoming_edges_++;
        }
    
        void remove_parent (unsigned parent_index)
        {
          if (parent_index == single_parent)
          {
    	single_parent = (unsigned) -1;
    	incoming_edges_--;
    	return;
          }
    
          unsigned *v;
          if (parents.has (parent_index, &v))
          {
    	incoming_edges_--;
    	if (*v > 1)
    	  (*v)--;
    	else
    	  parents.del (parent_index);
    
    	if (incoming_edges_ == 1)
    	{
    	  single_parent = *parents.keys ();
    	  parents.reset ();
    	}
          }
        }
    
        void remove_real_link (unsigned child_index, const void* offset)
        {
          unsigned count = obj.real_links.length;
          for (unsigned i = 0; i < count; i++)
          {
            auto& link = obj.real_links.arrayZ[i];
            if (link.objidx != child_index)
              continue;
    
            if ((obj.head + link.position) != offset)
              continue;
    
            obj.real_links.remove_unordered (i);
            return;
          }
        }
    
        bool remap_parents (const hb_vector_t<unsigned>& id_map)
        {
          if (single_parent != (unsigned) -1)
          {
            assert (single_parent < id_map.length);
    	single_parent = id_map[single_parent];
    	return true;
          }
    
          hb_hashmap_t<unsigned, unsigned> new_parents;
          new_parents.alloc (parents.get_population ());
          for (auto _ : parents)
          {
    	assert (_.first < id_map.length);
    	assert (!new_parents.has (id_map[_.first]));
    	new_parents.set (id_map[_.first], _.second);
          }
    
          if (parents.in_error() || new_parents.in_error ())
            return false;
    
          parents = std::move (new_parents);
          return true;
        }
    
        void remap_parent (unsigned old_index, unsigned new_index)
        {
          if (single_parent != (unsigned) -1)
          {
            if (single_parent == old_index)
    	  single_parent = new_index;
            return;
          }
    
          const unsigned *pv;
          if (parents.has (old_index, &pv))
          {
            unsigned v = *pv;
    	if (!parents.set (new_index, v))
              incoming_edges_ -= v;
    	parents.del (old_index);
    
            if (incoming_edges_ == 1)
    	{
    	  single_parent = *parents.keys ();
    	  parents.reset ();
    	}
          }
        }
    
        bool is_leaf () const
        {
          return !obj.real_links.length && !obj.virtual_links.length;
        }
    
        bool raise_priority ()
        {
          if (has_max_priority ()) return false;
          priority++;
          return true;
        }
    
        bool give_max_priority ()
        {
          bool result = false;
          while (!has_max_priority()) {
            result = true;
            priority++;
          }
          return result;
        }
    
        bool has_max_priority () const {
          return priority >= 3;
        }
    
        size_t table_size () const {
          return obj.tail - obj.head;
        }
    
        int64_t modified_distance (unsigned order) const
        {
          // TODO(garretrieger): once priority is high enough, should try
          // setting distance = 0 which will force to sort immediately after
          // it's parent where possible.
    
          int64_t modified_distance =
              hb_clamp (distance + distance_modifier (), (int64_t) 0, 0x7FFFFFFFFFF);
          if (has_max_priority ()) {
            modified_distance = 0;
          }
          return (modified_distance << 18) | (0x003FFFF & order);
        }
    
        int64_t distance_modifier () const
        {
          if (!priority) return 0;
          int64_t table_size = obj.tail - obj.head;
    
          if (priority == 1)
            return -table_size / 2;
    
          return -table_size;
        }
    
       private:
        bool links_equal (const hb_vector_t<hb_serialize_context_t::object_t::link_t>& this_links,
                          const hb_vector_t<hb_serialize_context_t::object_t::link_t>& other_links,
                          const graph_t& graph,
                          const graph_t& other_graph,
                          unsigned depth) const
        {
          auto a = this_links.iter ();
          auto b = other_links.iter ();
    
          while (a && b)
          {
            const auto& link_a = *a;
            const auto& link_b = *b;
    
            if (link_a.width != link_b.width ||
                link_a.is_signed != link_b.is_signed ||
                link_a.whence != link_b.whence ||
                link_a.position != link_b.position ||
                link_a.bias != link_b.bias)
              return false;
    
            if (!graph.vertices_[link_a.objidx].equals (
                    other_graph.vertices_[link_b.objidx], graph, other_graph, depth + 1))
              return false;
    
            a++;
            b++;
          }
    
          if (bool (a) != bool (b))
            return false;
    
          return true;
        }
      };
    
      template <typename T>
      struct vertex_and_table_t
      {
        vertex_and_table_t () : index (0), vertex (nullptr), table (nullptr)
        {}
    
        unsigned index;
        vertex_t* vertex;
        T* table;
    
        operator bool () {
           return table && vertex;
        }
      };
    
      /*
       * A topological sorting of an object graph. Ordered
       * in reverse serialization order (first object in the
       * serialization is at the end of the list). This matches
       * the 'packed' object stack used internally in the
       * serializer
       */
      template<typename T>
      graph_t (const T& objects)
          : parents_invalid (true),
            distance_invalid (true),
            positions_invalid (true),
            successful (true),
            buffers ()
      {
        num_roots_for_space_.push (1);
        bool removed_nil = false;
        vertices_.alloc (objects.length);
        vertices_scratch_.alloc (objects.length);
        unsigned count = objects.length;
        for (unsigned i = 0; i < count; i++)
        {
          // If this graph came from a serialization buffer object 0 is the
          // nil object. We don't need it for our purposes here so drop it.
          if (i == 0 && !objects.arrayZ[i])
          {
            removed_nil = true;
            continue;
          }
    
          vertex_t* v = vertices_.push ();
          if (check_success (!vertices_.in_error ()))
            v->obj = *objects.arrayZ[i];
    
          check_success (v->link_positions_valid (count, removed_nil));
    
          if (!removed_nil) continue;
          // Fix indices to account for removed nil object.
          for (auto& l : v->obj.all_links_writer ()) {
            l.objidx--;
          }
        }
      }
    
      ~graph_t ()
      {
        for (char* b : buffers)
          hb_free (b);
      }
    
      bool operator== (const graph_t& other) const
      {
        return root ().equals (other.root (), *this, other, 0);
      }
    
      void print () const {
        for (int i = vertices_.length - 1; i >= 0; i--)
        {
          const auto& v = vertices_[i];
          printf("%d: %u [", i, (unsigned int)v.table_size());
          for (const auto &l : v.obj.real_links) {
            printf("%u, ", l.objidx);
          }
          printf("]\n");
        }
      }
    
      // Sorts links of all objects in a consistent manner and zeroes all offsets.
      void normalize ()
      {
        for (auto& v : vertices_.writer ())
          v.normalize ();
      }
    
      bool in_error () const
      {
        return !successful ||
            vertices_.in_error () ||
            num_roots_for_space_.in_error ();
      }
    
      const vertex_t& root () const
      {
        return vertices_[root_idx ()];
      }
    
      unsigned root_idx () const
      {
        // Object graphs are in reverse order, the first object is at the end
        // of the vector. Since the graph is topologically sorted it's safe to
        // assume the first object has no incoming edges.
        return vertices_.length - 1;
      }
    
      const hb_serialize_context_t::object_t& object (unsigned i) const
      {
        return vertices_[i].obj;
      }
    
      bool add_buffer (char* buffer)
      {
        buffers.push (buffer);
        return !buffers.in_error ();
      }
    
      /*
       * Adds a 16 bit link from parent_id to child_id
       */
      template<typename T>
      void add_link (T* offset,
                     unsigned parent_id,
                     unsigned child_id)
      {
        auto& v = vertices_[parent_id];
        auto* link = v.obj.real_links.push ();
        link->width = 2;
        link->objidx = child_id;
        link->position = (char*) offset - (char*) v.obj.head;
        vertices_[child_id].add_parent (parent_id);
      }
    
      /*
       * Generates a new topological sorting of graph ordered by the shortest
       * distance to each node if positions are marked as invalid.
       */
      void sort_shortest_distance_if_needed ()
      {
        if (!positions_invalid) return;
        sort_shortest_distance ();
      }
    
    
      /*
       * Generates a new topological sorting of graph ordered by the shortest
       * distance to each node.
       */
      void sort_shortest_distance ()
      {
        positions_invalid = true;
    
        if (vertices_.length <= 1) {
          // Graph of 1 or less doesn't need sorting.
          return;
        }
    
        update_distances ();
    
        hb_priority_queue_t<int64_t> queue;
        queue.alloc (vertices_.length);
        hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
        if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
        hb_vector_t<unsigned> id_map;
        if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
    
        hb_vector_t<unsigned> removed_edges;
        if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
        update_parents ();
    
        queue.insert (root ().modified_distance (0), root_idx ());
        int new_id = root_idx ();
        unsigned order = 1;
        while (!queue.in_error () && !queue.is_empty ())
        {
          unsigned next_id = queue.pop_minimum().second;
    
          sorted_graph[new_id] = std::move (vertices_[next_id]);
          const vertex_t& next = sorted_graph[new_id];
    
          if (unlikely (!check_success(new_id >= 0))) {
            // We are out of ids. Which means we've visited a node more than once.
            // This graph contains a cycle which is not allowed.
            DEBUG_MSG (SUBSET_REPACK, nullptr, "Invalid graph. Contains cycle.");
            return;
          }
    
          id_map[next_id] = new_id--;
    
          for (const auto& link : next.obj.all_links ()) {
            removed_edges[link.objidx]++;
            if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
              // Add the order that the links were encountered to the priority.
              // This ensures that ties between priorities objects are broken in a consistent
              // way. More specifically this is set up so that if a set of objects have the same
              // distance they'll be added to the topological order in the order that they are
              // referenced from the parent object.
              queue.insert (vertices_[link.objidx].modified_distance (order++),
                            link.objidx);
          }
        }
    
        check_success (!queue.in_error ());
        check_success (!sorted_graph.in_error ());
    
        check_success (remap_all_obj_indices (id_map, &sorted_graph));
        vertices_ = std::move (sorted_graph);
    
        if (!check_success (new_id == -1))
          print_orphaned_nodes ();
      }
    
      /*
       * Finds the set of nodes (placed into roots) that should be assigned unique spaces.
       * More specifically this looks for the top most 24 bit or 32 bit links in the graph.
       * Some special casing is done that is specific to the layout of GSUB/GPOS tables.
       */
      void find_space_roots (hb_set_t& visited, hb_set_t& roots)
      {
        int root_index = (int) root_idx ();
        for (int i = root_index; i >= 0; i--)
        {
          if (visited.has (i)) continue;
    
          // Only real links can form 32 bit spaces
          for (auto& l : vertices_[i].obj.real_links)
          {
            if (l.is_signed || l.width < 3)
              continue;
    
            if (i == root_index && l.width == 3)
              // Ignore 24bit links from the root node, this skips past the single 24bit
              // pointer to the lookup list.
              continue;
    
            if (l.width == 3)
            {
              // A 24bit offset forms a root, unless there is 32bit offsets somewhere
              // in it's subgraph, then those become the roots instead. This is to make sure
              // that extension subtables beneath a 24bit lookup become the spaces instead
              // of the offset to the lookup.
              hb_set_t sub_roots;
              find_32bit_roots (l.objidx, sub_roots);
              if (sub_roots) {
                for (unsigned sub_root_idx : sub_roots) {
                  roots.add (sub_root_idx);
                  find_subgraph (sub_root_idx, visited);
                }
                continue;
              }
            }
    
            roots.add (l.objidx);
            find_subgraph (l.objidx, visited);
          }
        }
      }
    
      template <typename T, typename ...Ts>
      vertex_and_table_t<T> as_table (unsigned parent, const void* offset, Ts... ds)
      {
        return as_table_from_index<T> (index_for_offset (parent, offset), std::forward<Ts>(ds)...);
      }
    
      template <typename T, typename ...Ts>
      vertex_and_table_t<T> as_mutable_table (unsigned parent, const void* offset, Ts... ds)
      {
        return as_table_from_index<T> (mutable_index_for_offset (parent, offset), std::forward<Ts>(ds)...);
      }
    
      template <typename T, typename ...Ts>
      vertex_and_table_t<T> as_table_from_index (unsigned index, Ts... ds)
      {
        if (index >= vertices_.length)
          return vertex_and_table_t<T> ();
    
        vertex_and_table_t<T> r;
        r.vertex = &vertices_[index];
        r.table = (T*) r.vertex->obj.head;
        r.index = index;
        if (!r.table)
          return vertex_and_table_t<T> ();
    
        if (!r.table->sanitize (*(r.vertex), std::forward<Ts>(ds)...))
          return vertex_and_table_t<T> ();
    
        return r;
      }
    
      // Finds the object id of the object pointed to by the offset at 'offset'
      // within object[node_idx].
      unsigned index_for_offset (unsigned node_idx, const void* offset) const
      {
        const auto& node = object (node_idx);
        if (offset < node.head || offset >= node.tail) return -1;
    
        unsigned count = node.real_links.length;
        for (unsigned i = 0; i < count; i++)
        {
          // Use direct access for increased performance, this is a hot method.
          const auto& link = node.real_links.arrayZ[i];
          if (offset != node.head + link.position)
            continue;
          return link.objidx;
        }
    
        return -1;
      }
    
      // Finds the object id of the object pointed to by the offset at 'offset'
      // within object[node_idx]. Ensures that the returned object is safe to mutate.
      // That is, if the original child object is shared by parents other than node_idx
      // it will be duplicated and the duplicate will be returned instead.
      unsigned mutable_index_for_offset (unsigned node_idx, const void* offset)
      {
        unsigned child_idx = index_for_offset (node_idx, offset);
        auto& child = vertices_[child_idx];
        for (unsigned p : child.parents_iter ())
        {
          if (p != node_idx) {
            return duplicate (node_idx, child_idx);
          }
        }
    
        return child_idx;
      }
    
    
      /*
       * Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s).
       * Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB
       * (including with 24bit offsets) table.
       */
      bool assign_spaces ()
      {
        update_parents ();
    
        hb_set_t visited;
        hb_set_t roots;
        find_space_roots (visited, roots);
    
        // Mark everything not in the subgraphs of the roots as visited. This prevents
        // subgraphs from being connected via nodes not in those subgraphs.
        visited.invert ();
    
        if (!roots) return false;
    
        while (roots)
        {
          uint32_t next = HB_SET_VALUE_INVALID;
          if (unlikely (!check_success (!roots.in_error ()))) break;
          if (!roots.next (&next)) break;
    
          hb_set_t connected_roots;
          find_connected_nodes (next, roots, visited, connected_roots);
          if (unlikely (!check_success (!connected_roots.in_error ()))) break;
    
          isolate_subgraph (connected_roots);
          if (unlikely (!check_success (!connected_roots.in_error ()))) break;
    
          unsigned next_space = this->next_space ();
          num_roots_for_space_.push (0);
          for (unsigned root : connected_roots)
          {
            DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
            vertices_[root].space = next_space;
            num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
            distance_invalid = true;
            positions_invalid = true;
          }
    
          // TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
          //                into the 32 bit space as needed, instead of using isolation.
        }
    
    
    
        return true;
      }
    
      /*
       * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
       * that originate from outside of the subgraph will be removed by duplicating the linked to
       * object.
       *
       * Indices stored in roots will be updated if any of the roots are duplicated to new indices.
       */
      bool isolate_subgraph (hb_set_t& roots)
      {
        update_parents ();
        hb_map_t subgraph;
    
        // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
        // set the subgraph incoming edge count to match all of root_idx's incoming edges
        hb_set_t parents;
        for (unsigned root_idx : roots)
        {
          subgraph.set (root_idx, wide_parents (root_idx, parents));
          find_subgraph (root_idx, subgraph);
        }
        if (subgraph.in_error ())
          return false;
    
        unsigned original_root_idx = root_idx ();
        hb_map_t index_map;
        bool made_changes = false;
        for (auto entry : subgraph.iter ())
        {
          assert (entry.first < vertices_.length);
          const auto& node = vertices_[entry.first];
          unsigned subgraph_incoming_edges = entry.second;
    
          if (subgraph_incoming_edges < node.incoming_edges ())
          {
            // Only  de-dup objects with incoming links from outside the subgraph.
            made_changes = true;
            duplicate_subgraph (entry.first, index_map);
          }
        }
    
        if (in_error ())
          return false;
    
        if (!made_changes)
          return false;
    
        if (original_root_idx != root_idx ()
            && parents.has (original_root_idx))
        {
          // If the root idx has changed since parents was determined, update root idx in parents
          parents.add (root_idx ());
          parents.del (original_root_idx);
        }
    
        auto new_subgraph =
            + subgraph.keys ()
            | hb_map([&] (uint32_t node_idx) {
              const uint32_t *v;
              if (index_map.has (node_idx, &v)) return *v;
              return node_idx;
            })
            ;
    
        remap_obj_indices (index_map, new_subgraph);
        remap_obj_indices (index_map, parents.iter (), true);
    
        // Update roots set with new indices as needed.
        for (auto next : roots)
        {
          const uint32_t *v;
          if (index_map.has (next, &v))
          {
            roots.del (next);
            roots.add (*v);
          }
        }
    
        return true;
      }
    
      void find_subgraph (unsigned node_idx, hb_map_t& subgraph)
      {
        for (const auto& link : vertices_[node_idx].obj.all_links ())
        {
          hb_codepoint_t *v;
          if (subgraph.has (link.objidx, &v))
          {
            (*v)++;
            continue;
          }
          subgraph.set (link.objidx, 1);
          find_subgraph (link.objidx, subgraph);
        }
      }
    
      void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
      {
        if (subgraph.has (node_idx)) return;
        subgraph.add (node_idx);
        for (const auto& link : vertices_[node_idx].obj.all_links ())
          find_subgraph (link.objidx, subgraph);
      }
    
      size_t find_subgraph_size (unsigned node_idx, hb_set_t& subgraph, unsigned max_depth = -1)
      {
        if (subgraph.has (node_idx)) return 0;
        subgraph.add (node_idx);
    
        const auto& o = vertices_[node_idx].obj;
        size_t size = o.tail - o.head;
        if (max_depth == 0)
          return size;
    
        for (const auto& link : o.all_links ())
          size += find_subgraph_size (link.objidx, subgraph, max_depth - 1);
        return size;
      }
    
      /*
       * Finds the topmost children of 32bit offsets in the subgraph starting
       * at node_idx. Found indices are placed into 'found'.
       */
      void find_32bit_roots (unsigned node_idx, hb_set_t& found)
      {
        for (const auto& link : vertices_[node_idx].obj.all_links ())
        {
          if (!link.is_signed && link.width == 4) {
            found.add (link.objidx);
            continue;
          }
          find_32bit_roots (link.objidx, found);
        }
      }
    
      /*
       * Moves the child of old_parent_idx pointed to by old_offset to a new
       * vertex at the new_offset.
       */
      template<typename O>
      void move_child (unsigned old_parent_idx,
                       const O* old_offset,
                       unsigned new_parent_idx,
                       const O* new_offset)
      {
        distance_invalid = true;
        positions_invalid = true;
    
        auto& old_v = vertices_[old_parent_idx];
        auto& new_v = vertices_[new_parent_idx];
    
        unsigned child_id = index_for_offset (old_parent_idx,
                                              old_offset);
    
        auto* new_link = new_v.obj.real_links.push ();
        new_link->width = O::static_size;
        new_link->objidx = child_id;
        new_link->position = (const char*) new_offset - (const char*) new_v.obj.head;
    
        auto& child = vertices_[child_id];
        child.add_parent (new_parent_idx);
    
        old_v.remove_real_link (child_id, old_offset);
        child.remove_parent (old_parent_idx);
      }
    
      /*
       * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
       * links. index_map is updated with mappings from old id to new id. If a duplication has already
       * been performed for a given index, then it will be skipped.
       */
      void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map)
      {
        if (index_map.has (node_idx))
          return;
    
        unsigned clone_idx = duplicate (node_idx);
        if (!check_success (clone_idx != (unsigned) -1))
          return;
    
        index_map.set (node_idx, clone_idx);
        for (const auto& l : object (node_idx).all_links ()) {
          duplicate_subgraph (l.objidx, index_map);
        }
      }
    
      /*
       * Creates a copy of node_idx and returns it's new index.
       */
      unsigned duplicate (unsigned node_idx)
      {
        positions_invalid = true;
        distance_invalid = true;
    
        auto* clone = vertices_.push ();
        auto& child = vertices_[node_idx];
        if (vertices_.in_error ()) {
          return -1;
        }
    
        clone->obj.head = child.obj.head;
        clone->obj.tail = child.obj.tail;
        clone->distance = child.distance;
        clone->space = child.space;
        clone->reset_parents ();
    
        unsigned clone_idx = vertices_.length - 2;
        for (const auto& l : child.obj.real_links)
        {
          clone->obj.real_links.push (l);
          vertices_[l.objidx].add_parent (clone_idx);
        }
        for (const auto& l : child.obj.virtual_links)
        {
          clone->obj.virtual_links.push (l);
          vertices_[l.objidx].add_parent (clone_idx);
        }
    
        check_success (!clone->obj.real_links.in_error ());
        check_success (!clone->obj.virtual_links.in_error ());
    
        // The last object is the root of the graph, so swap back the root to the end.
        // The root's obj idx does change, however since it's root nothing else refers to it.
        // all other obj idx's will be unaffected.
        hb_swap (vertices_[vertices_.length - 2], *clone);
    
        // Since the root moved, update the parents arrays of all children on the root.
        for (const auto& l : root ().obj.all_links ())
          vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
    
        return clone_idx;
      }
    
      /*
       * Creates a copy of child and re-assigns the link from
       * parent to the clone. The copy is a shallow copy, objects
       * linked from child are not duplicated.
       *
       * Returns the index of the newly created duplicate.
       *
       * If the child_idx only has incoming edges from parent_idx, this
       * will do nothing and return the original child_idx.
       */
      unsigned duplicate_if_shared (unsigned parent_idx, unsigned child_idx)
      {
        unsigned new_idx = duplicate (parent_idx, child_idx);
        if (new_idx == (unsigned) -1) return child_idx;
        return new_idx;
      }
    
    
      /*
       * Creates a copy of child and re-assigns the link from
       * parent to the clone. The copy is a shallow copy, objects
       * linked from child are not duplicated.
       *
       * Returns the index of the newly created duplicate.
       *
       * If the child_idx only has incoming edges from parent_idx,
       * duplication isn't possible and this will return -1.
       */
      unsigned duplicate (unsigned parent_idx, unsigned child_idx)
      {
        update_parents ();
    
        const auto& child = vertices_[child_idx];
        unsigned links_to_child = child.incoming_edges_from_parent(parent_idx);
    
        if (child.incoming_edges () <= links_to_child)
        {
          // Can't duplicate this node, doing so would orphan the original one as all remaining links
          // to child are from parent.
          DEBUG_MSG (SUBSET_REPACK, nullptr, "  Not duplicating %u => %u",
                     parent_idx, child_idx);
          return -1;
        }
    
        DEBUG_MSG (SUBSET_REPACK, nullptr, "  Duplicating %u => %u",
                   parent_idx, child_idx);
    
        unsigned clone_idx = duplicate (child_idx);
        if (clone_idx == (unsigned) -1) return -1;
        // duplicate shifts the root node idx, so if parent_idx was root update it.
        if (parent_idx == clone_idx) parent_idx++;
    
        auto& parent = vertices_[parent_idx];
        for (auto& l : parent.obj.all_links_writer ())
        {
          if (l.objidx != child_idx)
            continue;
    
          reassign_link (l, parent_idx, clone_idx);
        }
    
        return clone_idx;
      }
    
      /*
       * Creates a copy of child and re-assigns the links from
       * parents to the clone. The copy is a shallow copy, objects
       * linked from child are not duplicated.
       *
       * Returns the index of the newly created duplicate.
       *
       * If the child_idx only has incoming edges from parents,
       * duplication isn't possible or duplication fails and this will
       * return -1.
       */
      unsigned duplicate (const hb_set_t* parents, unsigned child_idx)
      {
        if (parents->is_empty()) {
          return -1;
        }
    
        update_parents ();
    
        const auto& child = vertices_[child_idx];
        unsigned links_to_child = 0;
        unsigned last_parent = parents->get_max();
        unsigned first_parent = parents->get_min();
        for (unsigned parent_idx : *parents) {
          links_to_child += child.incoming_edges_from_parent(parent_idx);
        }
    
        if (child.incoming_edges () <= links_to_child)
        {
          // Can't duplicate this node, doing so would orphan the original one as all remaining links
          // to child are from parent.
          DEBUG_MSG (SUBSET_REPACK, nullptr, "  Not duplicating %u, ..., %u => %u", first_parent, last_parent, child_idx);
          return -1;
        }
    
        DEBUG_MSG (SUBSET_REPACK, nullptr, "  Duplicating %u, ..., %u => %u", first_parent, last_parent, child_idx);
    
        unsigned clone_idx = duplicate (child_idx);
        if (clone_idx == (unsigned) -1) return false;
    
        for (unsigned parent_idx : *parents) {
          // duplicate shifts the root node idx, so if parent_idx was root update it.
          if (parent_idx == clone_idx) parent_idx++;
          auto& parent = vertices_[parent_idx];
          for (auto& l : parent.obj.all_links_writer ())
          {
            if (l.objidx != child_idx)
              continue;
    
            reassign_link (l, parent_idx, clone_idx);
          }
        }
    
        return clone_idx;
      }
    
    
      /*
       * Adds a new node to the graph, not connected to anything.
       */
      unsigned new_node (char* head, char* tail)
      {
        positions_invalid = true;
        distance_invalid = true;
    
        auto* clone = vertices_.push ();
        if (vertices_.in_error ()) {
          return -1;
        }
    
        clone->obj.head = head;
        clone->obj.tail = tail;
        clone->distance = 0;
        clone->space = 0;
    
        unsigned clone_idx = vertices_.length - 2;
    
        // The last object is the root of the graph, so swap back the root to the end.
        // The root's obj idx does change, however since it's root nothing else refers to it.
        // all other obj idx's will be unaffected.
        hb_swap (vertices_[vertices_.length - 2], *clone);
    
        // Since the root moved, update the parents arrays of all children on the root.
        for (const auto& l : root ().obj.all_links ())
          vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
    
        return clone_idx;
      }
    
      /*
       * Raises the sorting priority of all children.
       */
      bool raise_childrens_priority (unsigned parent_idx)
      {
        DEBUG_MSG (SUBSET_REPACK, nullptr, "  Raising priority of all children of %u",
                   parent_idx);
        // This operation doesn't change ordering until a sort is run, so no need
        // to invalidate positions. It does not change graph structure so no need
        // to update distances or edge counts.
        auto& parent = vertices_[parent_idx].obj;
        bool made_change = false;
        for (auto& l : parent.all_links_writer ())
          made_change |= vertices_[l.objidx].raise_priority ();
        return made_change;
      }
    
      bool is_fully_connected ()
      {
        update_parents();
    
        if (root().incoming_edges ())
          // Root cannot have parents.
          return false;
    
        for (unsigned i = 0; i < root_idx (); i++)
        {
          if (!vertices_[i].incoming_edges ())
            return false;
        }
        return true;
      }
    
    #if 0
      /*
       * Saves the current graph to a packed binary format which the repacker fuzzer takes
       * as a seed.
       */
      void save_fuzzer_seed (hb_tag_t tag) const
      {
        FILE* f = fopen ("./repacker_fuzzer_seed", "w");
        fwrite ((void*) &tag, sizeof (tag), 1, f);
    
        uint16_t num_objects = vertices_.length;
        fwrite ((void*) &num_objects, sizeof (num_objects), 1, f);
    
        for (const auto& v : vertices_)
        {
          uint16_t blob_size = v.table_size ();
          fwrite ((void*) &blob_size, sizeof (blob_size), 1, f);
          fwrite ((const void*) v.obj.head, blob_size, 1, f);
        }
    
        uint16_t link_count = 0;
        for (const auto& v : vertices_)
          link_count += v.obj.real_links.length;
    
        fwrite ((void*) &link_count, sizeof (link_count), 1, f);
    
        typedef struct
        {
          uint16_t parent;
          uint16_t child;
          uint16_t position;
          uint8_t width;
        } link_t;
    
        for (unsigned i = 0; i < vertices_.length; i++)
        {
          for (const auto& l : vertices_[i].obj.real_links)
          {
            link_t link {
              (uint16_t) i, (uint16_t) l.objidx,
              (uint16_t) l.position, (uint8_t) l.width
            };
            fwrite ((void*) &link, sizeof (link), 1, f);
          }
        }
    
        fclose (f);
      }
    #endif
    
      void print_orphaned_nodes ()
      {
        if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
    
        DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
        parents_invalid = true;
        update_parents();
    
        if (root().incoming_edges ()) {
          DEBUG_MSG (SUBSET_REPACK, nullptr, "Root node has incoming edges.");
        }
    
        for (unsigned i = 0; i < root_idx (); i++)
        {
          const auto& v = vertices_[i];
          if (!v.incoming_edges ())
            DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
        }
      }
    
      unsigned num_roots_for_space (unsigned space) const
      {
        return num_roots_for_space_[space];
      }
    
      unsigned next_space () const
      {
        return num_roots_for_space_.length;
      }
    
      void move_to_new_space (const hb_set_t& indices)
      {
        num_roots_for_space_.push (0);
        unsigned new_space = num_roots_for_space_.length - 1;
    
        for (unsigned index : indices) {
          auto& node = vertices_[index];
          num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
          num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
          node.space = new_space;
          distance_invalid = true;
          positions_invalid = true;
        }
      }
    
      unsigned space_for (unsigned index, unsigned* root = nullptr) const
      {
      loop:
        assert (index < vertices_.length);
        const auto& node = vertices_[index];
        if (node.space)
        {
          if (root != nullptr)
            *root = index;
          return node.space;
        }
    
        if (!node.incoming_edges ())
        {
          if (root)
            *root = index;
          return 0;
        }
    
        index = *node.parents_iter ();
        goto loop;
      }
    
      void err_other_error () { this->successful = false; }
    
      size_t total_size_in_bytes () const {
        size_t total_size = 0;
        unsigned count = vertices_.length;
        for (unsigned i = 0; i < count; i++) {
          size_t size = vertices_.arrayZ[i].obj.tail - vertices_.arrayZ[i].obj.head;
          total_size += size;
        }
        return total_size;
      }
    
    
     private:
    
      /*
       * Returns the numbers of incoming edges that are 24 or 32 bits wide.
       */
      unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
      {
        unsigned count = 0;
        for (unsigned p : vertices_[node_idx].parents_iter ())
        {
          // Only real links can be wide
          for (const auto& l : vertices_[p].obj.real_links)
          {
            if (l.objidx == node_idx
                && (l.width == 3 || l.width == 4)
                && !l.is_signed)
            {
              count++;
              parents.add (p);
            }
          }
        }
        return count;
      }
    
      bool check_success (bool success)
      { return this->successful && (success || ((void) err_other_error (), false)); }
    
     public:
      /*
       * Creates a map from objid to # of incoming edges.
       */
      void update_parents ()
      {
        if (!parents_invalid) return;
    
        unsigned count = vertices_.length;
    
        for (unsigned i = 0; i < count; i++)
          vertices_.arrayZ[i].reset_parents ();
    
        for (unsigned p = 0; p < count; p++)
        {
          for (auto& l : vertices_.arrayZ[p].obj.all_links ())
            vertices_[l.objidx].add_parent (p);
        }
    
        for (unsigned i = 0; i < count; i++)
          // parents arrays must be accurate or downstream operations like cycle detection
          // and sorting won't work correctly.
          check_success (!vertices_.arrayZ[i].in_error ());
    
        parents_invalid = false;
      }
    
      /*
       * compute the serialized start and end positions for each vertex.
       */
      void update_positions ()
      {
        if (!positions_invalid) return;
    
        unsigned current_pos = 0;
        for (int i = root_idx (); i >= 0; i--)
        {
          auto& v = vertices_[i];
          v.start = current_pos;
          current_pos += v.obj.tail - v.obj.head;
          v.end = current_pos;
        }
    
        positions_invalid = false;
      }
    
      /*
       * Finds the distance to each object in the graph
       * from the initial node.
       */
      void update_distances ()
      {
        if (!distance_invalid) return;
    
        // Uses Dijkstra's algorithm to find all of the shortest distances.
        // https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
        //
        // Implementation Note:
        // Since our priority queue doesn't support fast priority decreases
        // we instead just add new entries into the queue when a priority changes.
        // Redundant ones are filtered out later on by the visited set.
        // According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
        // for practical performance this is faster then using a more advanced queue
        // (such as a fibonacci queue) with a fast decrease priority.
        unsigned count = vertices_.length;
        for (unsigned i = 0; i < count; i++)
          vertices_.arrayZ[i].distance = hb_int_max (int64_t);
        vertices_.tail ().distance = 0;
    
        hb_priority_queue_t<int64_t> queue;
        queue.alloc (count);
        queue.insert (0, vertices_.length - 1);
    
        hb_vector_t<bool> visited;
        visited.resize (vertices_.length);
    
        while (!queue.in_error () && !queue.is_empty ())
        {
          unsigned next_idx = queue.pop_minimum ().second;
          if (visited[next_idx]) continue;
          const auto& next = vertices_[next_idx];
          int64_t next_distance = vertices_[next_idx].distance;
          visited[next_idx] = true;
    
          for (const auto& link : next.obj.all_links ())
          {
            if (visited[link.objidx]) continue;
    
            const auto& child = vertices_.arrayZ[link.objidx].obj;
            unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
            int64_t child_weight = (child.tail - child.head) +
                                   ((int64_t) 1 << (link_width * 8)) * (vertices_.arrayZ[link.objidx].space + 1);
            int64_t child_distance = next_distance + child_weight;
    
            if (child_distance < vertices_.arrayZ[link.objidx].distance)
            {
              vertices_.arrayZ[link.objidx].distance = child_distance;
              queue.insert (child_distance, link.objidx);
            }
          }
        }
    
        check_success (!queue.in_error ());
        if (!check_success (queue.is_empty ()))
        {
          print_orphaned_nodes ();
          return;
        }
    
        distance_invalid = false;
      }
    
     private:
      /*
       * Updates a link in the graph to point to a different object. Corrects the
       * parents vector on the previous and new child nodes.
       */
      void reassign_link (hb_serialize_context_t::object_t::link_t& link,
                          unsigned parent_idx,
                          unsigned new_idx)
      {
        unsigned old_idx = link.objidx;
        link.objidx = new_idx;
        vertices_[old_idx].remove_parent (parent_idx);
        vertices_[new_idx].add_parent (parent_idx);
      }
    
      /*
       * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
       */
      template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
      void remap_obj_indices (const hb_map_t& id_map,
                              Iterator subgraph,
                              bool only_wide = false)
      {
        if (!id_map) return;
        for (unsigned i : subgraph)
        {
          for (auto& link : vertices_[i].obj.all_links_writer ())
          {
            const uint32_t *v;
            if (!id_map.has (link.objidx, &v)) continue;
            if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
    
            reassign_link (link, i, *v);
          }
        }
      }
    
      /*
       * Updates all objidx's in all links using the provided mapping.
       */
      bool remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
                                  hb_vector_t<vertex_t>* sorted_graph) const
      {
        unsigned count = sorted_graph->length;
        for (unsigned i = 0; i < count; i++)
        {
          if (!(*sorted_graph)[i].remap_parents (id_map))
            return false;
          for (auto& link : sorted_graph->arrayZ[i].obj.all_links_writer ())
          {
            link.objidx = id_map[link.objidx];
          }
        }
        return true;
      }
    
      /*
       * Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
       * For this search the graph is treated as being undirected.
       *
       * Connected targets will be added to connected and removed from targets. All visited nodes
       * will be added to visited.
       */
      void find_connected_nodes (unsigned start_idx,
                                 hb_set_t& targets,
                                 hb_set_t& visited,
                                 hb_set_t& connected)
      {
        if (unlikely (!check_success (!visited.in_error ()))) return;
        if (visited.has (start_idx)) return;
        visited.add (start_idx);
    
        if (targets.has (start_idx))
        {
          targets.del (start_idx);
          connected.add (start_idx);
        }
    
        const auto& v = vertices_[start_idx];
    
        // Graph is treated as undirected so search children and parents of start_idx
        for (const auto& l : v.obj.all_links ())
          find_connected_nodes (l.objidx, targets, visited, connected);
    
        for (unsigned p : v.parents_iter ())
          find_connected_nodes (p, targets, visited, connected);
      }
    
     public:
      // TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
      hb_vector_t<vertex_t> vertices_;
      hb_vector_t<vertex_t> vertices_scratch_;
     private:
      bool parents_invalid;
      bool distance_invalid;
      bool positions_invalid;
      bool successful;
      hb_vector_t<unsigned> num_roots_for_space_;
      hb_vector_t<char*> buffers;
    };
    
    }
    
    #endif  // GRAPH_GRAPH_HH