Hash :
1e8f1ac6
Author :
Date :
2022-11-23T12:28:29
[subset-glyf] Micro-optimize array access
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifndef OT_GLYF_SIMPLEGLYPH_HH
#define OT_GLYF_SIMPLEGLYPH_HH
#include "../../hb-open-type.hh"
namespace OT {
namespace glyf_impl {
struct SimpleGlyph
{
enum simple_glyph_flag_t
{
FLAG_ON_CURVE = 0x01,
FLAG_X_SHORT = 0x02,
FLAG_Y_SHORT = 0x04,
FLAG_REPEAT = 0x08,
FLAG_X_SAME = 0x10,
FLAG_Y_SAME = 0x20,
FLAG_OVERLAP_SIMPLE = 0x40,
FLAG_RESERVED2 = 0x80
};
const GlyphHeader &header;
hb_bytes_t bytes;
SimpleGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) :
header (header_), bytes (bytes_) {}
unsigned int instruction_len_offset () const
{ return GlyphHeader::static_size + 2 * header.numberOfContours; }
unsigned int length (unsigned int instruction_len) const
{ return instruction_len_offset () + 2 + instruction_len; }
unsigned int instructions_length () const
{
unsigned int instruction_length_offset = instruction_len_offset ();
if (unlikely (instruction_length_offset + 2 > bytes.length)) return 0;
const HBUINT16 &instructionLength = StructAtOffset<HBUINT16> (&bytes, instruction_length_offset);
/* Out of bounds of the current glyph */
if (unlikely (length (instructionLength) > bytes.length)) return 0;
return instructionLength;
}
const hb_bytes_t trim_padding () const
{
/* based on FontTools _g_l_y_f.py::trim */
const uint8_t *glyph = (uint8_t*) bytes.arrayZ;
const uint8_t *glyph_end = glyph + bytes.length;
/* simple glyph w/contours, possibly trimmable */
glyph += instruction_len_offset ();
if (unlikely (glyph + 2 >= glyph_end)) return hb_bytes_t ();
unsigned int num_coordinates = StructAtOffset<HBUINT16> (glyph - 2, 0) + 1;
unsigned int num_instructions = StructAtOffset<HBUINT16> (glyph, 0);
glyph += 2 + num_instructions;
unsigned int coord_bytes = 0;
unsigned int coords_with_flags = 0;
while (glyph < glyph_end)
{
uint8_t flag = *glyph;
glyph++;
unsigned int repeat = 1;
if (flag & FLAG_REPEAT)
{
if (unlikely (glyph >= glyph_end)) return hb_bytes_t ();
repeat = *glyph + 1;
glyph++;
}
unsigned int xBytes, yBytes;
xBytes = yBytes = 0;
if (flag & FLAG_X_SHORT) xBytes = 1;
else if ((flag & FLAG_X_SAME) == 0) xBytes = 2;
if (flag & FLAG_Y_SHORT) yBytes = 1;
else if ((flag & FLAG_Y_SAME) == 0) yBytes = 2;
coord_bytes += (xBytes + yBytes) * repeat;
coords_with_flags += repeat;
if (coords_with_flags >= num_coordinates) break;
}
if (unlikely (coords_with_flags != num_coordinates)) return hb_bytes_t ();
return bytes.sub_array (0, bytes.length + coord_bytes - (glyph_end - glyph));
}
/* zero instruction length */
void drop_hints ()
{
GlyphHeader &glyph_header = const_cast<GlyphHeader &> (header);
(HBUINT16 &) StructAtOffset<HBUINT16> (&glyph_header, instruction_len_offset ()) = 0;
}
void drop_hints_bytes (hb_bytes_t &dest_start, hb_bytes_t &dest_end) const
{
unsigned int instructions_len = instructions_length ();
unsigned int glyph_length = length (instructions_len);
dest_start = bytes.sub_array (0, glyph_length - instructions_len);
dest_end = bytes.sub_array (glyph_length, bytes.length - glyph_length);
}
void set_overlaps_flag ()
{
if (unlikely (!header.numberOfContours)) return;
unsigned flags_offset = length (instructions_length ());
if (unlikely (flags_offset + 1 > bytes.length)) return;
HBUINT8 &first_flag = (HBUINT8 &) StructAtOffset<HBUINT16> (&bytes, flags_offset);
first_flag = (uint8_t) first_flag | FLAG_OVERLAP_SIMPLE;
}
static bool read_flags (const HBUINT8 *&p /* IN/OUT */,
contour_point_vector_t &points_ /* IN/OUT */,
const HBUINT8 *end)
{
unsigned count = points_.length;
for (unsigned int i = 0; i < count;)
{
if (unlikely (p + 1 > end)) return false;
uint8_t flag = *p++;
points_.arrayZ[i++].flag = flag;
if (flag & FLAG_REPEAT)
{
if (unlikely (p + 1 > end)) return false;
unsigned int repeat_count = *p++;
unsigned stop = hb_min (i + repeat_count, count);
for (; i < stop; i++)
points_.arrayZ[i].flag = flag;
}
}
return true;
}
static bool read_points (const HBUINT8 *&p /* IN/OUT */,
contour_point_vector_t &points_ /* IN/OUT */,
const HBUINT8 *end,
float contour_point_t::*m,
const simple_glyph_flag_t short_flag,
const simple_glyph_flag_t same_flag)
{
int v = 0;
unsigned count = points_.length;
for (unsigned i = 0; i < count; i++)
{
unsigned flag = points_[i].flag;
if (flag & short_flag)
{
if (unlikely (p + 1 > end)) return false;
if (flag & same_flag)
v += *p++;
else
v -= *p++;
}
else
{
if (!(flag & same_flag))
{
if (unlikely (p + HBINT16::static_size > end)) return false;
v += *(const HBINT16 *) p;
p += HBINT16::static_size;
}
}
points_.arrayZ[i].*m = v;
}
return true;
}
bool get_contour_points (contour_point_vector_t &points_ /* OUT */,
bool phantom_only = false) const
{
const HBUINT16 *endPtsOfContours = &StructAfter<HBUINT16> (header);
int num_contours = header.numberOfContours;
assert (num_contours);
/* One extra item at the end, for the instruction-count below. */
if (unlikely (!bytes.check_range (&endPtsOfContours[num_contours]))) return false;
unsigned int num_points = endPtsOfContours[num_contours - 1] + 1;
points_.alloc (num_points + 4); // Allocate for phantom points, to avoid a possible copy
if (!points_.resize (num_points)) return false;
if (phantom_only) return true;
for (int i = 0; i < num_contours; i++)
points_[endPtsOfContours[i]].is_end_point = true;
/* Skip instructions */
const HBUINT8 *p = &StructAtOffset<HBUINT8> (&endPtsOfContours[num_contours + 1],
endPtsOfContours[num_contours]);
if (unlikely ((const char *) p < bytes.arrayZ)) return false; /* Unlikely overflow */
const HBUINT8 *end = (const HBUINT8 *) (bytes.arrayZ + bytes.length);
if (unlikely (p >= end)) return false;
/* Read x & y coordinates */
return read_flags (p, points_, end)
&& read_points (p, points_, end, &contour_point_t::x,
FLAG_X_SHORT, FLAG_X_SAME)
&& read_points (p, points_, end, &contour_point_t::y,
FLAG_Y_SHORT, FLAG_Y_SAME);
}
static void encode_coord (int value,
uint8_t &flag,
const simple_glyph_flag_t short_flag,
const simple_glyph_flag_t same_flag,
hb_vector_t<uint8_t> &coords /* OUT */)
{
if (value == 0)
{
flag |= same_flag;
}
else if (value >= -255 && value <= 255)
{
flag |= short_flag;
if (value > 0) flag |= same_flag;
else value = -value;
coords.arrayZ[coords.length++] = (uint8_t) value;
}
else
{
int16_t val = value;
coords.arrayZ[coords.length++] = val >> 8;
coords.arrayZ[coords.length++] = val & 0xff;
}
}
static void encode_flag (uint8_t &flag,
uint8_t &repeat,
uint8_t lastflag,
hb_vector_t<uint8_t> &flags /* OUT */)
{
if (flag == lastflag && repeat != 255)
{
repeat++;
if (repeat == 1)
{
/* We know there's room. */
flags.arrayZ[flags.length++] = flag;
}
else
{
unsigned len = flags.length;
flags.arrayZ[len-2] = flag | FLAG_REPEAT;
flags.arrayZ[len-1] = repeat;
}
}
else
{
repeat = 0;
flags.push (flag);
}
}
bool compile_bytes_with_deltas (const contour_point_vector_t &all_points,
bool no_hinting,
hb_bytes_t &dest_bytes /* OUT */)
{
if (header.numberOfContours == 0 || all_points.length <= 4)
{
dest_bytes = hb_bytes_t ();
return true;
}
unsigned num_points = all_points.length - 4;
hb_vector_t<uint8_t> flags, x_coords, y_coords;
if (unlikely (!flags.alloc (num_points))) return false;
if (unlikely (!x_coords.alloc (2*num_points))) return false;
if (unlikely (!y_coords.alloc (2*num_points))) return false;
uint8_t lastflag = 255, repeat = 0;
int prev_x = 0, prev_y = 0;
for (unsigned i = 0; i < num_points; i++)
{
uint8_t flag = all_points.arrayZ[i].flag;
flag &= FLAG_ON_CURVE + FLAG_OVERLAP_SIMPLE;
int cur_x = roundf (all_points.arrayZ[i].x);
int cur_y = roundf (all_points.arrayZ[i].y);
encode_coord (cur_x - prev_x, flag, FLAG_X_SHORT, FLAG_X_SAME, x_coords);
encode_coord (cur_y - prev_y, flag, FLAG_Y_SHORT, FLAG_Y_SAME, y_coords);
encode_flag (flag, repeat, lastflag, flags);
prev_x = cur_x;
prev_y = cur_y;
lastflag = flag;
}
unsigned len_before_instrs = 2 * header.numberOfContours + 2;
unsigned len_instrs = instructions_length ();
unsigned total_len = len_before_instrs + flags.length + x_coords.length + y_coords.length;
if (!no_hinting)
total_len += len_instrs;
char *p = (char *) hb_malloc (total_len);
if (unlikely (!p)) return false;
const char *src = bytes.arrayZ + GlyphHeader::static_size;
char *cur = p;
hb_memcpy (p, src, len_before_instrs);
cur += len_before_instrs;
src += len_before_instrs;
if (!no_hinting)
{
hb_memcpy (cur, src, len_instrs);
cur += len_instrs;
}
hb_memcpy (cur, flags.arrayZ, flags.length);
cur += flags.length;
hb_memcpy (cur, x_coords.arrayZ, x_coords.length);
cur += x_coords.length;
hb_memcpy (cur, y_coords.arrayZ, y_coords.length);
dest_bytes = hb_bytes_t (p, total_len);
return true;
}
};
} /* namespace glyf_impl */
} /* namespace OT */
#endif /* OT_GLYF_SIMPLEGLYPH_HH */