Branch
Hash :
e1fd2bee
Author :
Date :
2025-09-18T11:18:09
[alloc-pool] Reduce memory usage by reclaiming some discards
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
/*
* Copyright © 2021 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*/
#ifndef HB_OT_VAR_COMMON_HH
#define HB_OT_VAR_COMMON_HH
#include "hb-ot-layout-common.hh"
#include "hb-alloc-pool.hh"
#include "hb-priority-queue.hh"
#include "hb-subset-instancer-iup.hh"
namespace OT {
using rebase_tent_result_scratch_t = hb_pair_t<rebase_tent_result_t, rebase_tent_result_t>;
/* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */
struct TupleVariationHeader
{
friend struct tuple_delta_t;
unsigned get_size (unsigned axis_count) const
{ return min_size + get_all_tuples (axis_count).get_size (); }
unsigned get_data_size () const { return varDataSize; }
const TupleVariationHeader &get_next (unsigned axis_count) const
{ return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); }
bool unpack_axis_tuples (unsigned axis_count,
const hb_array_t<const F2DOT14> shared_tuples,
const hb_map_t *axes_old_index_tag_map,
hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const
{
const F2DOT14 *peak_tuple = nullptr;
if (has_peak ())
peak_tuple = get_peak_tuple (axis_count);
else
{
unsigned int index = get_index ();
if (unlikely ((index + 1) * axis_count > shared_tuples.length))
return false;
peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ;
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
bool has_interm = has_intermediate ();
if (has_interm)
{
start_tuple = get_start_tuple (axis_count);
end_tuple = get_end_tuple (axis_count);
}
for (unsigned i = 0; i < axis_count; i++)
{
float peak = peak_tuple[i].to_float ();
if (peak == 0.f) continue;
hb_tag_t *axis_tag;
if (!axes_old_index_tag_map->has (i, &axis_tag))
return false;
float start, end;
if (has_interm)
{
start = start_tuple[i].to_float ();
end = end_tuple[i].to_float ();
}
else
{
start = hb_min (peak, 0.f);
end = hb_max (peak, 0.f);
}
axis_tuples.set (*axis_tag, Triple ((double) start, (double) peak, (double) end));
}
return true;
}
HB_ALWAYS_INLINE
double calculate_scalar (hb_array_t<const int> coords, unsigned int coord_count,
const hb_array_t<const F2DOT14> shared_tuples,
hb_scalar_cache_t *shared_tuple_scalar_cache = nullptr) const
{
unsigned tuple_index = tupleIndex;
const F2DOT14 *peak_tuple;
bool has_interm = tuple_index & TuppleIndex::IntermediateRegion; // Inlined for performance
if (unlikely (has_interm))
shared_tuple_scalar_cache = nullptr;
if (unlikely (tuple_index & TuppleIndex::EmbeddedPeakTuple)) // Inlined for performance
{
peak_tuple = get_peak_tuple (coord_count);
shared_tuple_scalar_cache = nullptr;
}
else
{
unsigned int index = tuple_index & TuppleIndex::TupleIndexMask; // Inlined for performance
float scalar;
if (shared_tuple_scalar_cache &&
shared_tuple_scalar_cache->get (index, &scalar))
return (double) scalar;
if (unlikely ((index + 1) * coord_count > shared_tuples.length))
return 0.0;
peak_tuple = shared_tuples.arrayZ + (coord_count * index);
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
if (has_interm)
{
start_tuple = get_start_tuple (coord_count);
end_tuple = get_end_tuple (coord_count);
}
double scalar = 1.0;
for (unsigned int i = 0; i < coord_count; i++)
{
int peak = peak_tuple[i].to_int ();
if (!peak) continue;
int v = coords[i];
if (!v) { scalar = 0.0; break; }
if (v == peak) continue;
if (has_interm)
{
int start = start_tuple[i].to_int ();
int end = end_tuple[i].to_int ();
if (unlikely (start > peak || peak > end ||
(start < 0 && end > 0 && peak))) continue;
if (v < start || v > end) { scalar = 0.0; break; }
if (v < peak)
{ if (peak != start) scalar *= (double) (v - start) / (peak - start); }
else
{ if (peak != end) scalar *= (double) (end - v) / (end - peak); }
}
else if (v < hb_min (0, peak) || v > hb_max (0, peak)) { scalar = 0.0; break; }
else
scalar *= (double) v / peak;
}
if (shared_tuple_scalar_cache)
shared_tuple_scalar_cache->set (get_index (), scalar);
return scalar;
}
bool has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; }
bool has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; }
bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; }
unsigned get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; }
protected:
struct TuppleIndex : HBUINT16
{
enum Flags {
EmbeddedPeakTuple = 0x8000u,
IntermediateRegion = 0x4000u,
PrivatePointNumbers = 0x2000u,
TupleIndexMask = 0x0FFFu
};
TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
DEFINE_SIZE_STATIC (2);
};
hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const
{ return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); }
const F2DOT14* get_all_tuples_base (unsigned axis_count) const
{ return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).arrayZ; }
const F2DOT14* get_peak_tuple (unsigned axis_count) const
{ return get_all_tuples_base (axis_count); }
const F2DOT14* get_start_tuple (unsigned axis_count) const
{ return get_all_tuples_base (axis_count) + has_peak () * axis_count; }
const F2DOT14* get_end_tuple (unsigned axis_count) const
{ return get_all_tuples_base (axis_count) + has_peak () * axis_count + axis_count; }
HBUINT16 varDataSize; /* The size in bytes of the serialized
* data for this tuple variation table. */
TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below).
The low 12 bits are an index into a shared tuple
records array. */
/* UnsizedArrayOf<F2DOT14> peakTuple - optional */
/* Peak tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value.
*
* Note that this must always be included in the 'cvar' table. */
/* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */
/* Intermediate start tuple record for this tuple variation table — optional,
determined by flags in the tupleIndex value. */
/* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */
/* Intermediate end tuple record for this tuple variation table — optional,
* determined by flags in the tupleIndex value. */
public:
DEFINE_SIZE_MIN (4);
};
struct optimize_scratch_t
{
iup_scratch_t iup;
hb_vector_t<bool> opt_indices;
hb_vector_t<int> rounded_x_deltas;
hb_vector_t<int> rounded_y_deltas;
hb_vector_t<float> opt_deltas_x;
hb_vector_t<float> opt_deltas_y;
hb_vector_t<unsigned char> opt_point_data;
hb_vector_t<unsigned char> opt_deltas_data;
hb_vector_t<unsigned char> point_data;
hb_vector_t<unsigned char> deltas_data;
hb_vector_t<int> rounded_deltas;
};
struct tuple_delta_t
{
static constexpr bool realloc_move = true; // Watch out when adding new members!
public:
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
/* indices_length = point_count, indice[i] = 1 means point i is referenced */
hb_vector_t<bool> indices;
hb_vector_t<float> deltas_x;
/* empty for cvar tuples */
hb_vector_t<float> deltas_y;
/* compiled data: header and deltas
* compiled point data is saved in a hashmap within tuple_variations_t cause
* some point sets might be reused by different tuple variations */
hb_vector_t<unsigned char> compiled_tuple_header;
hb_vector_t<unsigned char> compiled_deltas;
hb_vector_t<F2DOT14> compiled_peak_coords;
hb_vector_t<F2DOT14> compiled_interm_coords;
tuple_delta_t (hb_alloc_pool_t *pool = nullptr) {}
tuple_delta_t (const tuple_delta_t& o) = default;
tuple_delta_t& operator = (const tuple_delta_t& o) = default;
friend void swap (tuple_delta_t& a, tuple_delta_t& b) noexcept
{
hb_swap (a.axis_tuples, b.axis_tuples);
hb_swap (a.indices, b.indices);
hb_swap (a.deltas_x, b.deltas_x);
hb_swap (a.deltas_y, b.deltas_y);
hb_swap (a.compiled_tuple_header, b.compiled_tuple_header);
hb_swap (a.compiled_deltas, b.compiled_deltas);
hb_swap (a.compiled_peak_coords, b.compiled_peak_coords);
}
tuple_delta_t (tuple_delta_t&& o) noexcept : tuple_delta_t ()
{ hb_swap (*this, o); }
tuple_delta_t& operator = (tuple_delta_t&& o) noexcept
{
hb_swap (*this, o);
return *this;
}
void copy_from (const tuple_delta_t& o, hb_alloc_pool_t *pool = nullptr)
{
axis_tuples = o.axis_tuples;
indices.allocate_from_pool (pool, o.indices);
deltas_x.allocate_from_pool (pool, o.deltas_x);
deltas_y.allocate_from_pool (pool, o.deltas_y);
compiled_tuple_header.allocate_from_pool (pool, o.compiled_tuple_header);
compiled_deltas.allocate_from_pool (pool, o.compiled_deltas);
compiled_peak_coords.allocate_from_pool (pool, o.compiled_peak_coords);
compiled_interm_coords.allocate_from_pool (pool, o.compiled_interm_coords);
}
void remove_axis (hb_tag_t axis_tag)
{ axis_tuples.del (axis_tag); }
bool set_tent (hb_tag_t axis_tag, Triple tent)
{ return axis_tuples.set (axis_tag, tent); }
tuple_delta_t& operator += (const tuple_delta_t& o)
{
unsigned num = indices.length;
for (unsigned i = 0; i < num; i++)
{
if (indices.arrayZ[i])
{
if (o.indices.arrayZ[i])
{
deltas_x[i] += o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] += o.deltas_y[i];
}
}
else
{
if (!o.indices.arrayZ[i]) continue;
indices.arrayZ[i] = true;
deltas_x[i] = o.deltas_x[i];
if (deltas_y && o.deltas_y)
deltas_y[i] = o.deltas_y[i];
}
}
return *this;
}
tuple_delta_t& operator *= (float scalar)
{
if (scalar == 1.0f)
return *this;
unsigned num = indices.length;
if (deltas_y)
for (unsigned i = 0; i < num; i++)
{
if (!indices.arrayZ[i]) continue;
deltas_x[i] *= scalar;
deltas_y[i] *= scalar;
}
else
for (unsigned i = 0; i < num; i++)
{
if (!indices.arrayZ[i]) continue;
deltas_x[i] *= scalar;
}
return *this;
}
void change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit,
TripleDistances axis_triple_distances,
hb_vector_t<tuple_delta_t>& out,
rebase_tent_result_scratch_t &scratch,
hb_alloc_pool_t *pool = nullptr)
{
// May move *this out.
out.reset ();
Triple *tent;
if (!axis_tuples.has (axis_tag, &tent))
{
out.push (std::move (*this));
return;
}
if ((tent->minimum < 0.0 && tent->maximum > 0.0) ||
!(tent->minimum <= tent->middle && tent->middle <= tent->maximum))
return;
if (tent->middle == 0.0)
{
out.push (std::move (*this));
return;
}
rebase_tent_result_t &solutions = scratch.first;
rebase_tent (*tent, axis_limit, axis_triple_distances, solutions, scratch.second);
for (unsigned i = 0; i < solutions.length; i++)
{
auto &t = solutions.arrayZ[i];
tuple_delta_t new_var;
if (i < solutions.length - 1)
new_var.copy_from (*this, pool);
else
new_var = std::move (*this);
if (t.second == Triple ())
new_var.remove_axis (axis_tag);
else
new_var.set_tent (axis_tag, t.second);
new_var *= t.first;
out.push (std::move (new_var));
}
}
bool compile_coords (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map,
hb_alloc_pool_t *pool= nullptr)
{
unsigned cur_axis_count = axes_index_map.get_population ();
if (pool)
{
if (unlikely (!compiled_peak_coords.allocate_from_pool (pool, cur_axis_count)))
return false;
}
else if (unlikely (!compiled_peak_coords.resize (cur_axis_count)))
return false;
hb_array_t<F2DOT14> start_coords, end_coords;
unsigned orig_axis_count = axes_old_index_tag_map.get_population ();
unsigned j = 0;
for (unsigned i = 0; i < orig_axis_count; i++)
{
if (!axes_index_map.has (i))
continue;
hb_tag_t axis_tag = axes_old_index_tag_map.get (i);
Triple *coords = nullptr;
if (axis_tuples.has (axis_tag, &coords))
{
float min_val = coords->minimum;
float val = coords->middle;
float max_val = coords->maximum;
compiled_peak_coords.arrayZ[j].set_float (val);
if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f))
{
if (!compiled_interm_coords)
{
if (pool)
{
if (unlikely (!compiled_interm_coords.allocate_from_pool (pool, 2 * cur_axis_count)))
return false;
}
else if (unlikely (!compiled_interm_coords.resize (2 * cur_axis_count)))
return false;
start_coords = compiled_interm_coords.as_array ().sub_array (0, cur_axis_count);
end_coords = compiled_interm_coords.as_array ().sub_array (cur_axis_count);
for (unsigned k = 0; k < j; k++)
{
signed peak = compiled_peak_coords.arrayZ[k].to_int ();
if (!peak) continue;
start_coords.arrayZ[k].set_int (hb_min (peak, 0));
end_coords.arrayZ[k].set_int (hb_max (peak, 0));
}
}
}
if (compiled_interm_coords)
{
start_coords.arrayZ[j].set_float (min_val);
end_coords.arrayZ[j].set_float (max_val);
}
}
j++;
}
return !compiled_peak_coords.in_error () && !compiled_interm_coords.in_error ();
}
/* deltas should be compiled already before we compile tuple
* variation header cause we need to fill in the size of the
* serialized data for this tuple variation */
bool compile_tuple_var_header (const hb_map_t& axes_index_map,
unsigned points_data_length,
const hb_map_t& axes_old_index_tag_map,
const hb_hashmap_t<const hb_vector_t<F2DOT14>*, unsigned>* shared_tuples_idx_map,
hb_alloc_pool_t *pool = nullptr)
{
/* compiled_deltas could be empty after iup delta optimization, we can skip
* compiling this tuple and return true */
if (!compiled_deltas) return true;
unsigned cur_axis_count = axes_index_map.get_population ();
/* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */
unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4;
if (unlikely (!compiled_tuple_header.allocate_from_pool (pool, alloc_len, false))) return false;
unsigned flag = 0;
/* skip the first 4 header bytes: variationDataSize+tupleIndex */
F2DOT14* p = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.begin () + 4);
F2DOT14* end = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.end ());
hb_array_t<F2DOT14> coords (p, end - p);
if (!shared_tuples_idx_map)
compile_coords (axes_index_map, axes_old_index_tag_map); // non-gvar tuples do not have compiled coords yet
/* encode peak coords */
unsigned peak_count = 0;
unsigned *shared_tuple_idx;
if (shared_tuples_idx_map &&
shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx))
{
flag = *shared_tuple_idx;
}
else
{
peak_count = encode_peak_coords(coords, flag);
if (!peak_count) return false;
}
/* encode interim coords, it's optional so returned num could be 0 */
unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag);
/* pointdata length = 0 implies "use shared points" */
if (points_data_length)
flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers;
unsigned serialized_data_size = points_data_length + compiled_deltas.length;
TupleVariationHeader *o = reinterpret_cast<TupleVariationHeader *> (compiled_tuple_header.begin ());
o->varDataSize = serialized_data_size;
o->tupleIndex = flag;
unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size);
compiled_tuple_header.shrink_back_to_pool (pool, total_header_len);
return true;
}
unsigned encode_peak_coords (hb_array_t<F2DOT14> peak_coords,
unsigned& flag) const
{
hb_memcpy (&peak_coords[0], &compiled_peak_coords[0], compiled_peak_coords.length * sizeof (compiled_peak_coords[0]));
flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple;
return compiled_peak_coords.length;
}
/* if no need to encode intermediate coords, then just return p */
unsigned encode_interm_coords (hb_array_t<F2DOT14> coords,
unsigned& flag) const
{
if (compiled_interm_coords)
{
hb_memcpy (&coords[0], &compiled_interm_coords[0], compiled_interm_coords.length * sizeof (compiled_interm_coords[0]));
flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion;
}
return compiled_interm_coords.length;
}
bool compile_deltas (hb_vector_t<int> &rounded_deltas_scratch,
hb_alloc_pool_t *pool = nullptr)
{ return compile_deltas (indices, deltas_x, deltas_y, compiled_deltas, rounded_deltas_scratch, pool); }
static bool compile_deltas (hb_array_t<const bool> point_indices,
hb_array_t<const float> x_deltas,
hb_array_t<const float> y_deltas,
hb_vector_t<unsigned char> &compiled_deltas, /* OUT */
hb_vector_t<int> &rounded_deltas, /* scratch */
hb_alloc_pool_t *pool = nullptr)
{
if (unlikely (!rounded_deltas.resize_dirty (point_indices.length)))
return false;
unsigned j = 0;
for (unsigned i = 0; i < point_indices.length; i++)
{
if (!point_indices[i]) continue;
rounded_deltas.arrayZ[j++] = (int) roundf (x_deltas.arrayZ[i]);
}
rounded_deltas.resize (j);
if (!rounded_deltas) return true;
/* Allocate enough memory: this is the correct bound:
* Worst case scenario is that each delta has to be encoded in 4 bytes, and there
* are runs of 64 items each. Any delta encoded in less than 4 bytes (2, 1, or 0)
* is still smaller than the 4-byte encoding even with their control byte.
* The initial 2 is to handle length==0, for both x and y deltas. */
unsigned alloc_len = 2 + 4 * rounded_deltas.length + (rounded_deltas.length + 63) / 64;
if (y_deltas)
alloc_len *= 2;
if (unlikely (!compiled_deltas.allocate_from_pool (pool, alloc_len, false))) return false;
unsigned encoded_len = compile_deltas (compiled_deltas, rounded_deltas);
if (y_deltas)
{
/* reuse the rounded_deltas vector, check that y_deltas have the same num of deltas as x_deltas */
unsigned j = 0;
for (unsigned idx = 0; idx < point_indices.length; idx++)
{
if (!point_indices[idx]) continue;
int rounded_delta = (int) roundf (y_deltas.arrayZ[idx]);
if (j >= rounded_deltas.length) return false;
rounded_deltas[j++] = rounded_delta;
}
if (j != rounded_deltas.length) return false;
encoded_len += compile_deltas (compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas);
}
compiled_deltas.shrink_back_to_pool (pool, encoded_len);
return true;
}
static unsigned compile_deltas (hb_array_t<unsigned char> encoded_bytes,
hb_array_t<const int> deltas)
{
return TupleValues::compile_unsafe (deltas, encoded_bytes);
}
bool calc_inferred_deltas (const contour_point_vector_t& orig_points,
hb_vector_t<unsigned> &scratch)
{
unsigned point_count = orig_points.length;
if (point_count != indices.length)
return false;
unsigned ref_count = 0;
hb_vector_t<unsigned> &end_points = scratch.reset ();
for (unsigned i = 0; i < point_count; i++)
{
ref_count += indices.arrayZ[i];
if (orig_points.arrayZ[i].is_end_point)
end_points.push (i);
}
/* all points are referenced, nothing to do */
if (ref_count == point_count)
return true;
if (unlikely (end_points.in_error ())) return false;
hb_bit_set_t inferred_idxes;
unsigned start_point = 0;
for (unsigned end_point : end_points)
{
/* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
unsigned unref_count = 0;
for (unsigned i = start_point; i < end_point + 1; i++)
unref_count += indices.arrayZ[i];
unref_count = (end_point - start_point + 1) - unref_count;
unsigned j = start_point;
if (unref_count == 0 || unref_count > end_point - start_point)
goto no_more_gaps;
for (;;)
{
/* Locate the next gap of unreferenced points between two referenced points prev and next.
* Note that a gap may wrap around at left (start_point) and/or at right (end_point).
*/
unsigned int prev, next, i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (indices.arrayZ[i] && !indices.arrayZ[j]) break;
}
prev = j = i;
for (;;)
{
i = j;
j = next_index (i, start_point, end_point);
if (!indices.arrayZ[i] && indices.arrayZ[j]) break;
}
next = j;
/* Infer deltas for all unref points in the gap between prev and next */
i = prev;
for (;;)
{
i = next_index (i, start_point, end_point);
if (i == next) break;
deltas_x.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].x,
(double) orig_points.arrayZ[prev].x,
(double) orig_points.arrayZ[next].x,
(double) deltas_x.arrayZ[prev], (double) deltas_x.arrayZ[next]);
deltas_y.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].y,
(double) orig_points.arrayZ[prev].y,
(double) orig_points.arrayZ[next].y,
(double) deltas_y.arrayZ[prev], (double) deltas_y.arrayZ[next]);
inferred_idxes.add (i);
if (--unref_count == 0) goto no_more_gaps;
}
}
no_more_gaps:
start_point = end_point + 1;
}
for (unsigned i = 0; i < point_count; i++)
{
/* if points are not referenced and deltas are not inferred, set to 0.
* reference all points for gvar */
if ( !indices[i])
{
if (!inferred_idxes.has (i))
{
deltas_x.arrayZ[i] = 0.0;
deltas_y.arrayZ[i] = 0.0;
}
indices[i] = true;
}
}
return true;
}
bool optimize (const contour_point_vector_t& contour_points,
bool is_composite,
optimize_scratch_t &scratch,
double tolerance = 0.5 + 1e-10)
{
unsigned count = contour_points.length;
if (deltas_x.length != count ||
deltas_y.length != count)
return false;
hb_vector_t<bool> &opt_indices = scratch.opt_indices.reset ();
hb_vector_t<int> &rounded_x_deltas = scratch.rounded_x_deltas;
hb_vector_t<int> &rounded_y_deltas = scratch.rounded_y_deltas;
if (unlikely (!rounded_x_deltas.resize_dirty (count) ||
!rounded_y_deltas.resize_dirty (count)))
return false;
for (unsigned i = 0; i < count; i++)
{
rounded_x_deltas.arrayZ[i] = (int) roundf (deltas_x.arrayZ[i]);
rounded_y_deltas.arrayZ[i] = (int) roundf (deltas_y.arrayZ[i]);
}
if (!iup_delta_optimize (contour_points, rounded_x_deltas, rounded_y_deltas, opt_indices, scratch.iup, tolerance))
return false;
unsigned ref_count = 0;
for (bool ref_flag : opt_indices)
ref_count += ref_flag;
if (ref_count == count) return true;
hb_vector_t<float> &opt_deltas_x = scratch.opt_deltas_x.reset ();
hb_vector_t<float> &opt_deltas_y = scratch.opt_deltas_y.reset ();
bool is_comp_glyph_wo_deltas = (is_composite && ref_count == 0);
if (is_comp_glyph_wo_deltas)
{
if (unlikely (!opt_deltas_x.resize (count) ||
!opt_deltas_y.resize (count)))
return false;
opt_indices.arrayZ[0] = true;
for (unsigned i = 1; i < count; i++)
opt_indices.arrayZ[i] = false;
}
hb_vector_t<unsigned char> &opt_point_data = scratch.opt_point_data.reset ();
if (!compile_point_set (opt_indices, opt_point_data))
return false;
hb_vector_t<unsigned char> &opt_deltas_data = scratch.opt_deltas_data.reset ();
if (!compile_deltas (opt_indices,
is_comp_glyph_wo_deltas ? opt_deltas_x : deltas_x,
is_comp_glyph_wo_deltas ? opt_deltas_y : deltas_y,
opt_deltas_data,
scratch.rounded_deltas))
return false;
hb_vector_t<unsigned char> &point_data = scratch.point_data.reset ();
if (!compile_point_set (indices, point_data))
return false;
hb_vector_t<unsigned char> &deltas_data = scratch.deltas_data.reset ();
if (!compile_deltas (indices, deltas_x, deltas_y, deltas_data, scratch.rounded_deltas))
return false;
if (opt_point_data.length + opt_deltas_data.length < point_data.length + deltas_data.length)
{
indices = std::move (opt_indices);
if (is_comp_glyph_wo_deltas)
{
deltas_x = std::move (opt_deltas_x);
deltas_y = std::move (opt_deltas_y);
}
}
return !indices.in_error () && !deltas_x.in_error () && !deltas_y.in_error ();
}
static bool compile_point_set (const hb_vector_t<bool> &point_indices,
hb_vector_t<unsigned char>& compiled_points /* OUT */)
{
unsigned num_points = 0;
for (bool i : point_indices)
if (i) num_points++;
/* when iup optimization is enabled, num of referenced points could be 0 */
if (!num_points) return true;
unsigned indices_length = point_indices.length;
/* If the points set consists of all points in the glyph, it's encoded with a
* single zero byte */
if (num_points == indices_length)
return compiled_points.resize (1);
/* allocate enough memories: 2 bytes for count + 3 bytes for each point */
unsigned num_bytes = 2 + 3 *num_points;
if (unlikely (!compiled_points.resize_dirty (num_bytes)))
return false;
unsigned pos = 0;
/* binary data starts with the total number of reference points */
if (num_points < 0x80)
compiled_points.arrayZ[pos++] = num_points;
else
{
compiled_points.arrayZ[pos++] = ((num_points >> 8) | 0x80);
compiled_points.arrayZ[pos++] = num_points & 0xFF;
}
const unsigned max_run_length = 0x7F;
unsigned i = 0;
unsigned last_value = 0;
unsigned num_encoded = 0;
while (i < indices_length && num_encoded < num_points)
{
unsigned run_length = 0;
unsigned header_pos = pos;
compiled_points.arrayZ[pos++] = 0;
bool use_byte_encoding = false;
bool new_run = true;
while (i < indices_length && num_encoded < num_points &&
run_length <= max_run_length)
{
// find out next referenced point index
while (i < indices_length && !point_indices[i])
i++;
if (i >= indices_length) break;
unsigned cur_value = i;
unsigned delta = cur_value - last_value;
if (new_run)
{
use_byte_encoding = (delta <= 0xFF);
new_run = false;
}
if (use_byte_encoding && delta > 0xFF)
break;
if (use_byte_encoding)
compiled_points.arrayZ[pos++] = delta;
else
{
compiled_points.arrayZ[pos++] = delta >> 8;
compiled_points.arrayZ[pos++] = delta & 0xFF;
}
i++;
last_value = cur_value;
run_length++;
num_encoded++;
}
if (use_byte_encoding)
compiled_points.arrayZ[header_pos] = run_length - 1;
else
compiled_points.arrayZ[header_pos] = (run_length - 1) | 0x80;
}
return compiled_points.resize_dirty (pos);
}
static double infer_delta (double target_val, double prev_val, double next_val, double prev_delta, double next_delta)
{
if (prev_val == next_val)
return (prev_delta == next_delta) ? prev_delta : 0.0;
else if (target_val <= hb_min (prev_val, next_val))
return (prev_val < next_val) ? prev_delta : next_delta;
else if (target_val >= hb_max (prev_val, next_val))
return (prev_val > next_val) ? prev_delta : next_delta;
double r = (target_val - prev_val) / (next_val - prev_val);
return prev_delta + r * (next_delta - prev_delta);
}
static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
{ return (i >= end) ? start : (i + 1); }
};
template <typename OffType = HBUINT16>
struct TupleVariationData
{
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
// here check on min_size only, TupleVariationHeader and var data will be
// checked while accessing through iterator.
return_trace (c->check_struct (this));
}
unsigned get_size (unsigned axis_count) const
{
unsigned total_size = min_size;
unsigned count = tupleVarCount.get_count ();
const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header());
for (unsigned i = 0; i < count; i++)
{
total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size ();
tuple_var_header = &tuple_var_header->get_next (axis_count);
}
return total_size;
}
const TupleVariationHeader &get_tuple_var_header (void) const
{ return StructAfter<TupleVariationHeader> (data); }
struct tuple_iterator_t;
struct tuple_variations_t
{
hb_vector_t<tuple_delta_t> tuple_vars;
private:
/* referenced point set->compiled point data map */
hb_hashmap_t<const hb_vector_t<bool>*, hb_vector_t<unsigned char>> point_data_map;
/* referenced point set-> count map, used in finding shared points */
hb_hashmap_t<const hb_vector_t<bool>*, unsigned> point_set_count_map;
/* empty for non-gvar tuples.
* shared_points_bytes is a pointer to some value in the point_data_map,
* which will be freed during map destruction. Save it for serialization, so
* no need to do find_shared_points () again */
hb_vector_t<unsigned char> *shared_points_bytes = nullptr;
/* total compiled byte size as TupleVariationData format, initialized to 0 */
unsigned compiled_byte_size = 0;
bool needs_padding = false;
/* for gvar iup delta optimization: whether this is a composite glyph */
bool is_composite = false;
public:
tuple_variations_t () = default;
tuple_variations_t (const tuple_variations_t&) = delete;
tuple_variations_t& operator=(const tuple_variations_t&) = delete;
tuple_variations_t (tuple_variations_t&&) = default;
tuple_variations_t& operator=(tuple_variations_t&&) = default;
~tuple_variations_t () = default;
explicit operator bool () const { return bool (tuple_vars); }
unsigned get_var_count () const
{
unsigned count = 0;
/* when iup delta opt is enabled, compiled_deltas could be empty and we
* should skip this tuple */
for (auto& tuple: tuple_vars)
if (tuple.compiled_deltas) count++;
if (shared_points_bytes && shared_points_bytes->length)
count |= TupleVarCount::SharedPointNumbers;
return count;
}
unsigned get_compiled_byte_size () const
{ return compiled_byte_size; }
bool create_from_tuple_var_data (tuple_iterator_t iterator,
unsigned tuple_var_count,
unsigned point_count,
bool is_gvar,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples,
hb_alloc_pool_t *pool = nullptr,
bool is_composite_glyph = false)
{
hb_vector_t<unsigned> private_indices;
hb_vector_t<int> deltas_x;
hb_vector_t<int> deltas_y;
do
{
const HBUINT8 *p = iterator.get_serialized_data ();
unsigned int length = iterator.current_tuple->get_data_size ();
if (unlikely (!iterator.var_data_bytes.check_range (p, length)))
return false;
hb_hashmap_t<hb_tag_t, Triple> axis_tuples;
if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples)
|| axis_tuples.is_empty ())
return false;
private_indices.reset ();
bool has_private_points = iterator.current_tuple->has_private_points ();
const HBUINT8 *end = p + length;
if (has_private_points &&
!TupleVariationData::decompile_points (p, private_indices, end))
return false;
const hb_vector_t<unsigned> &indices = has_private_points ? private_indices : shared_indices;
bool apply_to_all = (indices.length == 0);
unsigned num_deltas = apply_to_all ? point_count : indices.length;
if (unlikely (!deltas_x.resize_dirty (num_deltas) ||
!TupleVariationData::decompile_deltas (p, deltas_x, end)))
return false;
if (is_gvar)
{
if (unlikely (!deltas_y.resize_dirty (num_deltas) ||
!TupleVariationData::decompile_deltas (p, deltas_y, end)))
return false;
}
tuple_delta_t var;
var.axis_tuples = std::move (axis_tuples);
if (unlikely (!var.indices.allocate_from_pool (pool, point_count) ||
!var.deltas_x.allocate_from_pool (pool, point_count, false)))
return false;
if (is_gvar && unlikely (!var.deltas_y.allocate_from_pool (pool, point_count, false)))
return false;
for (unsigned i = 0; i < num_deltas; i++)
{
unsigned idx = apply_to_all ? i : indices[i];
if (idx >= point_count) continue;
var.indices[idx] = true;
var.deltas_x[idx] = deltas_x[i];
if (is_gvar)
var.deltas_y[idx] = deltas_y[i];
}
tuple_vars.push (std::move (var));
} while (iterator.move_to_next ());
is_composite = is_composite_glyph;
return true;
}
bool create_from_item_var_data (const VarData &var_data,
const hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>>& regions,
const hb_map_t& axes_old_index_tag_map,
unsigned& item_count,
const hb_inc_bimap_t* inner_map = nullptr)
{
/* NULL offset, to keep original varidx valid, just return */
if (&var_data == &Null (VarData))
return true;
unsigned num_regions = var_data.get_region_index_count ();
if (!tuple_vars.alloc (num_regions)) return false;
item_count = inner_map ? inner_map->get_population () : var_data.get_item_count ();
if (!item_count) return true;
unsigned row_size = var_data.get_row_size ();
const HBUINT8 *delta_bytes = var_data.get_delta_bytes ();
for (unsigned r = 0; r < num_regions; r++)
{
/* In VarData, deltas are organized in rows, convert them into
* column(region) based tuples, resize deltas_x first */
tuple_delta_t tuple;
if (!tuple.deltas_x.resize_dirty (item_count) ||
!tuple.indices.resize_dirty (item_count))
return false;
for (unsigned i = 0; i < item_count; i++)
{
tuple.indices.arrayZ[i] = true;
tuple.deltas_x.arrayZ[i] = var_data.get_item_delta_fast (inner_map ? inner_map->backward (i) : i,
r, delta_bytes, row_size);
}
unsigned region_index = var_data.get_region_index (r);
if (region_index >= regions.length) return false;
tuple.axis_tuples = regions.arrayZ[region_index];
tuple_vars.push (std::move (tuple));
}
return !tuple_vars.in_error ();
}
private:
static int _cmp_axis_tag (const void *pa, const void *pb)
{
const hb_tag_t *a = (const hb_tag_t*) pa;
const hb_tag_t *b = (const hb_tag_t*) pb;
return (int)(*a) - (int)(*b);
}
bool change_tuple_variations_axis_limits (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances,
hb_alloc_pool_t *pool = nullptr)
{
/* sort axis_tag/axis_limits, make result deterministic */
hb_vector_t<hb_tag_t> axis_tags;
if (!axis_tags.alloc (normalized_axes_location.get_population ()))
return false;
for (auto t : normalized_axes_location.keys ())
axis_tags.push (t);
// Reused vectors for reduced malloc pressure.
rebase_tent_result_scratch_t scratch;
hb_vector_t<tuple_delta_t> out;
axis_tags.qsort (_cmp_axis_tag);
for (auto axis_tag : axis_tags)
{
Triple *axis_limit;
if (!normalized_axes_location.has (axis_tag, &axis_limit))
return false;
TripleDistances axis_triple_distances{1.0, 1.0};
if (axes_triple_distances.has (axis_tag))
axis_triple_distances = axes_triple_distances.get (axis_tag);
hb_vector_t<tuple_delta_t> new_vars;
for (tuple_delta_t& var : tuple_vars)
{
// This may move var out.
var.change_tuple_var_axis_limit (axis_tag, *axis_limit, axis_triple_distances, out, scratch, pool);
if (!out) continue;
unsigned new_len = new_vars.length + out.length;
if (unlikely (!new_vars.alloc (new_len, false)))
return false;
for (unsigned i = 0; i < out.length; i++)
new_vars.push (std::move (out[i]));
}
tuple_vars = std::move (new_vars);
}
return true;
}
/* merge tuple variations with overlapping tents, if iup delta optimization
* is enabled, add default deltas to contour_points */
bool merge_tuple_variations (contour_point_vector_t* contour_points = nullptr)
{
hb_vector_t<tuple_delta_t> new_vars;
// The pre-allocation is essential for address stability of pointers
// we store in the hashmap.
if (unlikely (!new_vars.alloc (tuple_vars.length)))
return false;
hb_hashmap_t<const hb_hashmap_t<hb_tag_t, Triple>*, unsigned> m;
for (tuple_delta_t& var : tuple_vars)
{
/* if all axes are pinned, drop the tuple variation */
if (var.axis_tuples.is_empty ())
{
/* if iup_delta_optimize is enabled, add deltas to contour coords */
if (contour_points && !contour_points->add_deltas (var.deltas_x,
var.deltas_y,
var.indices))
return false;
continue;
}
unsigned *idx;
if (m.has (&(var.axis_tuples), &idx))
{
new_vars[*idx] += var;
}
else
{
auto *new_var = new_vars.push ();
if (unlikely (new_vars.in_error ()))
return false;
hb_swap (*new_var, var);
if (unlikely (!m.set (&(new_var->axis_tuples), new_vars.length - 1)))
return false;
}
}
m.fini (); // Just in case, since it points into new_vars data.
// Shouldn't be necessary though, since we only move new_vars, not its
// contents.
tuple_vars = std::move (new_vars);
return true;
}
/* compile all point set and store byte data in a point_set->hb_bytes_t hashmap,
* also update point_set->count map, which will be used in finding shared
* point set*/
bool compile_all_point_sets ()
{
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
if (point_data_map.has (points_set))
{
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
!point_set_count_map.set (points_set, (*count) + 1)))
return false;
continue;
}
hb_vector_t<unsigned char> compiled_point_data;
if (!tuple_delta_t::compile_point_set (*points_set, compiled_point_data))
return false;
if (!point_data_map.set (points_set, std::move (compiled_point_data)) ||
!point_set_count_map.set (points_set, 1))
return false;
}
return true;
}
/* find shared points set which saves most bytes */
void find_shared_points ()
{
unsigned max_saved_bytes = 0;
for (const auto& _ : point_data_map.iter_ref ())
{
const hb_vector_t<bool>* points_set = _.first;
unsigned data_length = _.second.length;
if (!data_length) continue;
unsigned *count;
if (unlikely (!point_set_count_map.has (points_set, &count) ||
*count <= 1))
{
shared_points_bytes = nullptr;
return;
}
unsigned saved_bytes = data_length * ((*count) -1);
if (saved_bytes > max_saved_bytes)
{
max_saved_bytes = saved_bytes;
shared_points_bytes = &(_.second);
}
}
}
bool calc_inferred_deltas (const contour_point_vector_t& contour_points,
hb_vector_t<unsigned> &scratch)
{
for (tuple_delta_t& var : tuple_vars)
if (!var.calc_inferred_deltas (contour_points, scratch))
return false;
return true;
}
bool iup_optimize (const contour_point_vector_t& contour_points,
optimize_scratch_t &scratch)
{
for (tuple_delta_t& var : tuple_vars)
{
if (!var.optimize (contour_points, is_composite, scratch))
return false;
}
return true;
}
public:
bool instantiate (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances,
optimize_scratch_t &scratch,
hb_alloc_pool_t *pool = nullptr,
contour_point_vector_t* contour_points = nullptr,
bool optimize = false)
{
if (!tuple_vars) return true;
if (!change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances, pool))
return false;
/* compute inferred deltas only for gvar */
if (contour_points)
{
hb_vector_t<unsigned> scratch;
if (!calc_inferred_deltas (*contour_points, scratch))
return false;
}
/* if iup delta opt is on, contour_points can't be null */
if (optimize && !contour_points)
return false;
if (!merge_tuple_variations (optimize ? contour_points : nullptr))
return false;
if (optimize && !iup_optimize (*contour_points, scratch)) return false;
return !tuple_vars.in_error ();
}
bool compile_bytes (const hb_map_t& axes_index_map,
const hb_map_t& axes_old_index_tag_map,
bool use_shared_points,
bool is_gvar = false,
const hb_hashmap_t<const hb_vector_t<F2DOT14>*, unsigned>* shared_tuples_idx_map = nullptr,
hb_alloc_pool_t *pool = nullptr)
{
// return true for empty glyph
if (!tuple_vars)
return true;
// compile points set and store data in hashmap
if (!compile_all_point_sets ())
return false;
/* total compiled byte size as TupleVariationData format, initialized to its
* min_size: 4 */
compiled_byte_size += 4;
if (use_shared_points)
{
find_shared_points ();
if (shared_points_bytes)
compiled_byte_size += shared_points_bytes->length;
}
hb_vector_t<int> rounded_deltas_scratch;
// compile delta and tuple var header for each tuple variation
for (auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_vector_t<unsigned char> *points_data;
if (unlikely (!point_data_map.has (points_set, &points_data)))
return false;
/* when iup optimization is enabled, num of referenced points could be 0
* and thus the compiled points bytes is empty, we should skip compiling
* this tuple */
if (!points_data->length)
continue;
if (!tuple.compile_deltas (rounded_deltas_scratch, pool))
return false;
unsigned points_data_length = (points_data != shared_points_bytes) ? points_data->length : 0;
if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map,
shared_tuples_idx_map,
pool))
return false;
compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length;
}
if (is_gvar && (compiled_byte_size % 2))
{
needs_padding = true;
compiled_byte_size += 1;
}
return true;
}
bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const
{
TRACE_SERIALIZE (this);
for (const auto& tuple: tuple_vars)
{
tuple.compiled_tuple_header.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
total_header_len += tuple.compiled_tuple_header.length;
}
return_trace (true);
}
bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const
{
TRACE_SERIALIZE (this);
if (is_gvar && shared_points_bytes)
{
hb_ubytes_t s (shared_points_bytes->arrayZ, shared_points_bytes->length);
s.copy (c);
}
for (const auto& tuple: tuple_vars)
{
const hb_vector_t<bool>* points_set = &(tuple.indices);
hb_vector_t<unsigned char> *point_data;
if (!point_data_map.has (points_set, &point_data))
return_trace (false);
if (!is_gvar || point_data != shared_points_bytes)
{
hb_ubytes_t s (point_data->arrayZ, point_data->length);
s.copy (c);
}
tuple.compiled_deltas.as_array ().copy (c);
if (c->in_error ()) return_trace (false);
}
/* padding for gvar */
if (is_gvar && needs_padding)
{
HBUINT8 pad;
pad = 0;
if (!c->embed (pad)) return_trace (false);
}
return_trace (true);
}
};
struct tuple_iterator_t
{
unsigned get_axis_count () const { return axis_count; }
void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_)
{
var_data_bytes = var_data_bytes_;
var_data = var_data_bytes_.as<TupleVariationData> ();
tuples_left = var_data->tupleVarCount.get_count ();
axis_count = axis_count_;
current_tuple = &var_data->get_tuple_var_header ();
data_offset = 0;
table_base = table_base_;
}
bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */)
{
if (var_data->has_shared_point_numbers ())
{
const HBUINT8 *base = &(table_base+var_data->data);
const HBUINT8 *p = base;
if (!decompile_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false;
data_offset = p - base;
}
return true;
}
bool is_valid ()
{
if (unlikely (tuples_left <= 0))
return false;
current_tuple_size = TupleVariationHeader::min_size;
if (unlikely (!var_data_bytes.check_range (current_tuple, current_tuple_size)))
return false;
current_tuple_size = current_tuple->get_size (axis_count);
if (unlikely (!var_data_bytes.check_range (current_tuple, current_tuple_size)))
return false;
return true;
}
HB_ALWAYS_INLINE
bool move_to_next ()
{
data_offset += current_tuple->get_data_size ();
current_tuple = &StructAtOffset<TupleVariationHeader> (current_tuple, current_tuple_size);
tuples_left--;
return is_valid ();
}
// TODO: Make it return (sanitized) hb_bytes_t
const HBUINT8 *get_serialized_data () const
{ return &(table_base+var_data->data) + data_offset; }
private:
signed tuples_left;
const TupleVariationData *var_data;
unsigned int axis_count;
unsigned int data_offset;
unsigned int current_tuple_size;
const void *table_base;
public:
hb_bytes_t var_data_bytes;
const TupleVariationHeader *current_tuple;
};
static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count,
const void *table_base,
hb_vector_t<unsigned int> &shared_indices /* OUT */,
tuple_iterator_t *iterator /* OUT */)
{
iterator->init (var_data_bytes, axis_count, table_base);
if (!iterator->get_shared_indices (shared_indices))
return false;
return iterator->is_valid ();
}
bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); }
static bool decompile_points (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<unsigned int> &points /* OUT */,
const HBUINT8 *end)
{
enum packed_point_flag_t
{
POINTS_ARE_WORDS = 0x80,
POINT_RUN_COUNT_MASK = 0x7F
};
if (unlikely (p + 1 > end)) return false;
unsigned count = *p++;
if (count & POINTS_ARE_WORDS)
{
if (unlikely (p + 1 > end)) return false;
count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++;
}
if (unlikely (!points.resize_dirty (count))) return false;
unsigned n = 0;
unsigned i = 0;
while (i < count)
{
if (unlikely (p + 1 > end)) return false;
unsigned control = *p++;
unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1;
unsigned stop = i + run_count;
if (unlikely (stop > count)) return false;
if (control & POINTS_ARE_WORDS)
{
if (unlikely (p + run_count * HBUINT16::static_size > end)) return false;
for (; i < stop; i++)
{
n += *(const HBUINT16 *)p;
points.arrayZ[i] = n;
p += HBUINT16::static_size;
}
}
else
{
if (unlikely (p + run_count > end)) return false;
for (; i < stop; i++)
{
n += *p++;
points.arrayZ[i] = n;
}
}
}
return true;
}
template <typename T>
static bool decompile_deltas (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<T> &deltas /* IN/OUT */,
const HBUINT8 *end,
bool consume_all = false,
unsigned start = 0)
{
return TupleValues::decompile (p, deltas, end, consume_all, start);
}
bool has_data () const { return tupleVarCount; }
bool decompile_tuple_variations (unsigned point_count,
bool is_gvar,
tuple_iterator_t iterator,
const hb_map_t *axes_old_index_tag_map,
const hb_vector_t<unsigned> &shared_indices,
const hb_array_t<const F2DOT14> shared_tuples,
tuple_variations_t& tuple_variations, /* OUT */
hb_alloc_pool_t *pool = nullptr,
bool is_composite_glyph = false) const
{
return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount,
point_count, is_gvar,
axes_old_index_tag_map,
shared_indices,
shared_tuples,
pool,
is_composite_glyph);
}
bool serialize (hb_serialize_context_t *c,
bool is_gvar,
const tuple_variations_t& tuple_variations) const
{
TRACE_SERIALIZE (this);
/* empty tuple variations, just return and skip serialization. */
if (!tuple_variations) return_trace (true);
auto *out = c->start_embed (this);
if (unlikely (!c->extend_min (out))) return_trace (false);
if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (),
HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
unsigned total_header_len = 0;
if (!tuple_variations.serialize_var_headers (c, total_header_len))
return_trace (false);
unsigned data_offset = min_size + total_header_len;
if (!is_gvar) data_offset += 4;
if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false);
return tuple_variations.serialize_var_data (c, is_gvar);
}
protected:
struct TupleVarCount : HBUINT16
{
friend struct tuple_variations_t;
bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); }
unsigned int get_count () const { return (*this) & CountMask; }
TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; }
explicit operator bool () const { return get_count (); }
protected:
enum Flags
{
SharedPointNumbers= 0x8000u,
CountMask = 0x0FFFu
};
public:
DEFINE_SIZE_STATIC (2);
};
TupleVarCount tupleVarCount; /* A packed field. The high 4 bits are flags, and the
* low 12 bits are the number of tuple variation tables
* for this glyph. The number of tuple variation tables
* can be any number between 1 and 4095. */
OffsetTo<HBUINT8, OffType>
data; /* Offset from the start of the base table
* to the serialized data. */
/* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */
public:
DEFINE_SIZE_MIN (2 + OffType::static_size);
};
// TODO: Move tuple_variations_t to outside of TupleVariationData
using tuple_variations_t = TupleVariationData<HBUINT16>::tuple_variations_t;
struct item_variations_t
{
using region_t = const hb_hashmap_t<hb_tag_t, Triple>*;
private:
/* each subtable is decompiled into a tuple_variations_t, in which all tuples
* have the same num of deltas (rows) */
hb_vector_t<tuple_variations_t> vars;
/* num of retained rows for each subtable, there're 2 cases when var_data is empty:
* 1. retained item_count is zero
* 2. regions is empty and item_count is non-zero.
* when converting to tuples, both will be dropped because the tuple is empty,
* however, we need to retain 2. as all-zero rows to keep original varidx
* valid, so we need a way to remember the num of rows for each subtable */
hb_vector_t<unsigned> var_data_num_rows;
/* original region list, decompiled from item varstore, used when rebuilding
* region list after instantiation */
hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>> orig_region_list;
/* region list: vector of Regions, maintain the original order for the regions
* that existed before instantiate (), append the new regions at the end.
* Regions are stored in each tuple already, save pointers only.
* When converting back to item varstore, unused regions will be pruned */
hb_vector_t<region_t> region_list;
/* region -> idx map after instantiation and pruning unused regions */
hb_hashmap_t<region_t, unsigned> region_map;
/* all delta rows after instantiation */
hb_vector_t<hb_vector_t<int>> delta_rows;
/* final optimized vector of encoding objects used to assemble the varstore */
hb_vector_t<delta_row_encoding_t> encodings;
/* old varidxes -> new var_idxes map */
hb_map_t varidx_map;
/* has long words */
bool has_long = false;
public:
bool has_long_word () const
{ return has_long; }
const hb_vector_t<region_t>& get_region_list () const
{ return region_list; }
const hb_vector_t<delta_row_encoding_t>& get_vardata_encodings () const
{ return encodings; }
const hb_map_t& get_varidx_map () const
{ return varidx_map; }
bool instantiate (const ItemVariationStore& varStore,
const hb_subset_plan_t *plan,
bool optimize=true,
bool use_no_variation_idx=true,
const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ())
{
if (!create_from_item_varstore (varStore, plan->axes_old_index_tag_map, inner_maps))
return false;
if (!instantiate_tuple_vars (plan->axes_location, plan->axes_triple_distances))
return false;
return as_item_varstore (optimize, use_no_variation_idx);
}
/* keep below APIs public only for unit test: test-item-varstore */
bool create_from_item_varstore (const ItemVariationStore& varStore,
const hb_map_t& axes_old_index_tag_map,
const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ())
{
const VarRegionList& regionList = varStore.get_region_list ();
if (!regionList.get_var_regions (axes_old_index_tag_map, orig_region_list))
return false;
unsigned num_var_data = varStore.get_sub_table_count ();
if (inner_maps && inner_maps.length != num_var_data) return false;
if (!vars.alloc (num_var_data) ||
!var_data_num_rows.alloc (num_var_data)) return false;
for (unsigned i = 0; i < num_var_data; i++)
{
if (inner_maps && !inner_maps.arrayZ[i].get_population ())
continue;
tuple_variations_t var_data_tuples;
unsigned item_count = 0;
if (!var_data_tuples.create_from_item_var_data (varStore.get_sub_table (i),
orig_region_list,
axes_old_index_tag_map,
item_count,
inner_maps ? &(inner_maps.arrayZ[i]) : nullptr))
return false;
var_data_num_rows.push (item_count);
vars.push (std::move (var_data_tuples));
}
return !vars.in_error () && !var_data_num_rows.in_error () && vars.length == var_data_num_rows.length;
}
bool instantiate_tuple_vars (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location,
const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances)
{
optimize_scratch_t scratch;
for (tuple_variations_t& tuple_vars : vars)
if (!tuple_vars.instantiate (normalized_axes_location, axes_triple_distances, scratch))
return false;
if (!build_region_list ()) return false;
return true;
}
bool build_region_list ()
{
/* scan all tuples and collect all unique regions, prune unused regions */
hb_hashmap_t<region_t, unsigned> all_regions;
hb_hashmap_t<region_t, unsigned> used_regions;
/* use a vector when inserting new regions, make result deterministic */
hb_vector_t<region_t> all_unique_regions;
for (const tuple_variations_t& sub_table : vars)
{
for (const tuple_delta_t& tuple : sub_table.tuple_vars)
{
region_t r = &(tuple.axis_tuples);
if (!used_regions.has (r))
{
bool all_zeros = true;
for (float d : tuple.deltas_x)
{
int delta = (int) roundf (d);
if (delta != 0)
{
all_zeros = false;
break;
}
}
if (!all_zeros)
{
if (!used_regions.set (r, 1))
return false;
}
}
if (all_regions.has (r))
continue;
if (!all_regions.set (r, 1))
return false;
all_unique_regions.push (r);
}
}
/* regions are empty means no variation data, return true */
if (!all_regions || !all_unique_regions) return true;
if (!region_list.alloc (all_regions.get_population ()))
return false;
unsigned idx = 0;
/* append the original regions that pre-existed */
for (const auto& r : orig_region_list)
{
if (!all_regions.has (&r) || !used_regions.has (&r))
continue;
region_list.push (&r);
if (!region_map.set (&r, idx))
return false;
all_regions.del (&r);
idx++;
}
/* append the new regions at the end */
for (const auto& r: all_unique_regions)
{
if (!all_regions.has (r) || !used_regions.has (r))
continue;
region_list.push (r);
if (!region_map.set (r, idx))
return false;
all_regions.del (r);
idx++;
}
return (!region_list.in_error ()) && (!region_map.in_error ());
}
/* main algorithm ported from fonttools VarStore_optimize() method, optimize
* varstore by default */
struct combined_gain_idx_tuple_t
{
uint64_t encoded;
combined_gain_idx_tuple_t () = default;
combined_gain_idx_tuple_t (unsigned gain, unsigned i, unsigned j)
: encoded ((uint64_t (0xFFFFFF - gain) << 40) | (uint64_t (i) << 20) | uint64_t (j))
{
assert (gain < 0xFFFFFF);
assert (i < 0xFFFFFFF && j < 0xFFFFFFF);
}
bool operator < (const combined_gain_idx_tuple_t& o)
{
return encoded < o.encoded;
}
bool operator <= (const combined_gain_idx_tuple_t& o)
{
return encoded <= o.encoded;
}
unsigned idx_1 () const { return (encoded >> 20) & 0xFFFFF; };
unsigned idx_2 () const { return encoded & 0xFFFFF; };
};
bool as_item_varstore (bool optimize=true, bool use_no_variation_idx=true)
{
/* return true if no variation data */
if (!region_list) return true;
unsigned num_cols = region_list.length;
/* pre-alloc a 2D vector for all sub_table's VarData rows */
unsigned total_rows = 0;
for (unsigned major = 0; major < var_data_num_rows.length; major++)
total_rows += var_data_num_rows[major];
if (!delta_rows.resize (total_rows)) return false;
/* init all rows to [0]*num_cols */
for (unsigned i = 0; i < total_rows; i++)
if (!(delta_rows[i].resize (num_cols))) return false;
/* old VarIdxes -> full encoding_row mapping */
hb_hashmap_t<unsigned, const hb_vector_t<int>*> front_mapping;
unsigned start_row = 0;
hb_vector_t<delta_row_encoding_t> encoding_objs;
/* delta_rows map, used for filtering out duplicate rows */
hb_vector_t<const hb_vector_t<int> *> major_rows;
hb_hashmap_t<const hb_vector_t<int>*, unsigned> delta_rows_map;
for (unsigned major = 0; major < vars.length; major++)
{
/* deltas are stored in tuples(column based), convert them back into items
* (row based) delta */
const tuple_variations_t& tuples = vars[major];
unsigned num_rows = var_data_num_rows[major];
if (!num_rows) continue;
for (const tuple_delta_t& tuple: tuples.tuple_vars)
{
if (tuple.deltas_x.length != num_rows)
return false;
/* skip unused regions */
unsigned *col_idx;
if (!region_map.has (&(tuple.axis_tuples), &col_idx))
continue;
for (unsigned i = 0; i < num_rows; i++)
{
int rounded_delta = roundf (tuple.deltas_x[i]);
delta_rows[start_row + i][*col_idx] += rounded_delta;
has_long |= rounded_delta < -65536 || rounded_delta > 65535;
}
}
major_rows.reset ();
for (unsigned minor = 0; minor < num_rows; minor++)
{
const hb_vector_t<int>& row = delta_rows[start_row + minor];
if (use_no_variation_idx)
{
bool all_zeros = true;
for (int delta : row)
{
if (delta != 0)
{
all_zeros = false;
break;
}
}
if (all_zeros)
continue;
}
if (!front_mapping.set ((major<<16) + minor, &row))
return false;
if (delta_rows_map.has (&row))
continue;
delta_rows_map.set (&row, 1);
major_rows.push (&row);
}
if (major_rows)
encoding_objs.push (delta_row_encoding_t (std::move (major_rows), num_cols));
start_row += num_rows;
}
/* return directly if no optimization, maintain original VariationIndex so
* varidx_map would be empty */
if (!optimize)
{
encodings = std::move (encoding_objs);
return !encodings.in_error ();
}
/* NOTE: Fonttools instancer always optimizes VarStore from scratch. This
* is too costly for large fonts. So, instead, we retain the encodings of
* the original VarStore, and just try to combine them if possible. This
* is a compromise between optimization and performance and practically
* works very well. */
// This produces slightly smaller results in some cases.
encoding_objs.qsort ();
/* main algorithm: repeatedly pick 2 best encodings to combine, and combine them */
using item_t = hb_priority_queue_t<combined_gain_idx_tuple_t>::item_t;
hb_vector_t<item_t> queue_items;
unsigned num_todos = encoding_objs.length;
for (unsigned i = 0; i < num_todos; i++)
{
for (unsigned j = i + 1; j < num_todos; j++)
{
int combining_gain = encoding_objs.arrayZ[i].gain_from_merging (encoding_objs.arrayZ[j]);
if (combining_gain > 0)
queue_items.push (item_t (combined_gain_idx_tuple_t (combining_gain, i, j), 0));
}
}
hb_priority_queue_t<combined_gain_idx_tuple_t> queue (std::move (queue_items));
hb_bit_set_t removed_todo_idxes;
while (queue)
{
auto t = queue.pop_minimum ().first;
unsigned i = t.idx_1 ();
unsigned j = t.idx_2 ();
if (removed_todo_idxes.has (i) || removed_todo_idxes.has (j))
continue;
delta_row_encoding_t& encoding = encoding_objs.arrayZ[i];
delta_row_encoding_t& other_encoding = encoding_objs.arrayZ[j];
removed_todo_idxes.add (i);
removed_todo_idxes.add (j);
encoding.merge (other_encoding);
for (unsigned idx = 0; idx < encoding_objs.length; idx++)
{
if (removed_todo_idxes.has (idx)) continue;
const delta_row_encoding_t& obj = encoding_objs.arrayZ[idx];
// In the unlikely event that the same encoding exists already, combine it.
if (obj.width == encoding.width && obj.chars == encoding.chars)
{
// This is straight port from fonttools algorithm. I added this branch there
// because I thought it can happen. But looks like we never get in here in
// practice. I'm not confident enough to remove it though; in theory it can
// happen. I think it's just that our tests are not extensive enough to hit
// this path.
for (const auto& row : obj.items)
encoding.add_row (row);
removed_todo_idxes.add (idx);
continue;
}
int combined_gain = encoding.gain_from_merging (obj);
if (combined_gain > 0)
queue.insert (combined_gain_idx_tuple_t (combined_gain, idx, encoding_objs.length), 0);
}
auto moved_encoding = std::move (encoding);
encoding_objs.push (moved_encoding);
}
int num_final_encodings = (int) encoding_objs.length - (int) removed_todo_idxes.get_population ();
if (num_final_encodings <= 0) return false;
if (!encodings.alloc (num_final_encodings)) return false;
for (unsigned i = 0; i < encoding_objs.length; i++)
{
if (removed_todo_idxes.has (i)) continue;
encodings.push (std::move (encoding_objs.arrayZ[i]));
}
return compile_varidx_map (front_mapping);
}
private:
/* compile varidx_map for one VarData subtable (index specified by major) */
bool compile_varidx_map (const hb_hashmap_t<unsigned, const hb_vector_t<int>*>& front_mapping)
{
/* full encoding_row -> new VarIdxes mapping */
hb_hashmap_t<const hb_vector_t<int>*, unsigned> back_mapping;
for (unsigned major = 0; major < encodings.length; major++)
{
delta_row_encoding_t& encoding = encodings[major];
/* just sanity check, this shouldn't happen */
if (encoding.is_empty ())
return false;
unsigned num_rows = encoding.items.length;
/* sort rows, make result deterministic */
encoding.items.qsort (_cmp_row);
/* compile old to new var_idxes mapping */
for (unsigned minor = 0; minor < num_rows; minor++)
{
unsigned new_varidx = (major << 16) + minor;
back_mapping.set (encoding.items.arrayZ[minor], new_varidx);
}
}
for (auto _ : front_mapping.iter ())
{
unsigned old_varidx = _.first;
unsigned *new_varidx;
if (back_mapping.has (_.second, &new_varidx))
varidx_map.set (old_varidx, *new_varidx);
else
varidx_map.set (old_varidx, HB_OT_LAYOUT_NO_VARIATIONS_INDEX);
}
return !varidx_map.in_error ();
}
static int _cmp_row (const void *pa, const void *pb)
{
/* compare pointers of vectors(const hb_vector_t<int>*) that represent a row */
const hb_vector_t<int>** a = (const hb_vector_t<int>**) pa;
const hb_vector_t<int>** b = (const hb_vector_t<int>**) pb;
for (unsigned i = 0; i < (*b)->length; i++)
{
int va = (*a)->arrayZ[i];
int vb = (*b)->arrayZ[i];
if (va != vb)
return va < vb ? -1 : 1;
}
return 0;
}
};
} /* namespace OT */
#endif /* HB_OT_VAR_COMMON_HH */