Branch
Hash :
5922b499
Author :
Thomas de Grivel
Date :
2024-10-15T13:53:45
Here are a few ikc3
examples to play with.
KC3 maps are key-value stores, you can use any tag as a key and associate a value to it.
You can use destructuring to access KC3 maps :
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> a = %{}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> %{id: id, title: "My title", message: message} = a
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> id
1
ikc3> message
"Hello, world !"
You can use the dot syntax to access map values from a Sym
key :
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> a.id
1
ikc3> a.message
"Hello, world !"
You can also use the KC3.access
function for the same result :
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> access(a, :id)
1
ikc3> access(a, :message)
"Hello, world !"
ikc3
fully supports Unicode :
Some unicode characters :
ikc3> '\U+1B2FB'
'π»'
ikc3> 'π
'
'π
'
ikc3> 'π€©'
'π€©'
ikc3>
ikc3> a = 1 + 100000000000000000000000000000000
100000000000000000000000000000001
ikc3> a * a
10000000000000000000000000000000200000000000000000000000000000001
ikc3>
Ratios are made with a couple of large integers : the numerator which can be any number, and the denominator which has to be positive. They represent fractions of integral numbers. They are written with a slash and no space.
ikc3> 1/2 + 2/3
7/6
ikc3> 1/2 * 2/3
1/3
ikc3> 1/2 / 2/3
3/4
ikc3> 1/2 - 2/3
-1/6
Complex numbers are constructed using the operator +i
on any kind of
numbers (unsigned, signed, float, ratios, and even other complex
numbers). For instance, you can write a +i b
where a
and b
are
real numbers.
ikc3> 1 +i 2
1 +i 2
ikc3> 1 +i 2 + 2 +i 3
3 +i 5
ikc3> (1 +i 2) * (2 +i 3)
-4 +i 7
ikc3> (1 +i 2) / (2 +i 3)
0 +i 0
ikc3> (1/1 +i 2/1) / (2 +i 3)
8/13 +i 1/13
As you can see integer division is not producing ratios. That might change in future releases.
Lists are marked with brackets []
.
Regular lists can be :
[1 | []]
β [1]
[1, 2, 3]
[1, 2 | [3, 4]]
β [1, 2, 3, 4]
[]
Regular lists end with the empty list : [1] == [1 | []]
.
You can also contruct dotted lists like in Common Lisp where the next list pointer is an arbitrary form. E.g. :
[1 | 2]
[1, 2, 3 | 4]
[[] | 1]
All these list formats are supported in pattern matching.
The KC3 pattern matching principles come from Erlang and Elixir.
All tag data structures in KC3 can be pattern matched using the equal
sign (=
) against litteral values containing identifiers. All
identifiers are supposed to be new bindings when using pattern matching
in KC3. If you want to use an identifierβs value in pattern matching you
must use the pin operator (^
). Variables can be assigned a new value
from either side of the equal sign and from inside a tag data structure,
which is called destructuring.
Examples :
ikc3> a = 1
1
ikc3> a = 2
2
ikc3> a
2
ikc3> ^ a = 1
void
ikc3> ^ a = 2
2
ikc3> ^ a = b
2
ikc3> b
2
To use destructuring just type the litteral value you want to match and put identifiers (variable names) where you want a variable matching the value on the other side of the equal sign. This is the most visual approach possible to text-based value matching : the data is constantly matched to litterals that show their type to the programmer. This is really helpful when writing large programs that need to scale in the way of abstractions. Let the data flow in the code through visual types.
Examples :
ikc3> [x, y | z] = List.reverse([1, 2, 3, 4])
[4, 3, 2, 1]
ikc3> x
4
ikc3> y
3
ikc3> z
[2, 1]
KC3 macros are like Common Lisp macros with Elixir pattern-matching.
Macros are like functions but start with macro
instead of fn
and
their arguments do not get evaluated. However they get pattern matched
and the full power of the pattern matcher is available for arguments
destructuring. Use a map if you want named arguments. Use a list if you
want &rest arguments, use a block if you want a &body argument.
When evaluated, a macro call returns a tag which is in turn evaluated in the calling site lexical environment. This allows for DSLs and custom control structures to be defined in KC3.
Many basic operations in KC3 are defined as macros : error handling,
free operations with unwind-protect
, graph database operations like
Facts.with
.
Conditionals in KC3 are like in Ruby, for example :
ikc3> if true && true
ikc3> 1 + 1
ikc3> 2 + 2
ikc3> end
4
ikc3> if true && false
ikc3> 1 + 1
ikc3> 2 + 2
ikc3> else
ikc3> 3 + 3
ikc3> 4 + 4
ikc3> end
8
A KC3 if
statement always return a value. If the condition is true, the
first (then) block gets evaluated. If the condition is false the second
block gets evaluated. If the condition is false and an else
block is
not provided, then void
gets returned.
One liner examples with then
:
ikc3> if 42 then 100 else 101 end
100
ikc3> if 0 then 100 else 101 end
101
Example :
ikc3> defmodule Example do
ikc3> def three = 3
ikc3> def double = fn (x) do x * 2 end
ikc3> def double_tuple = macro (x) do {x, x} end
ikc3> def operator_double = %KC3.Operator{sym: :double, symbol_value: fn (x) { x * 2 }
ikc3> end
Example
ikc3> Example.three
3
ikc3> Example.double
fn (x) do x * 2 end
ikc3> Example.double(21)
42
ikc3> Example.double_tuple(:ok)
{:ok, :ok}
ikc3> double 21
42
The Facts module allows read and write access to a graph database containing facts : triples of subject, predicate, object.
Examples for querying the KC3 database containing all definitions of the interpreter :
ikc3> Facts.with_tags(Facts.env_facts(), KC3, :operator, ?,
fn (fact) { puts(fact.object); :ok })
operator_eq
operator_gt
operator_lt
[...]
:ok
Top : KC3 Guides
Previous : KC3 Structure Guide
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
# KC3 tutorial and examples
Here are a few `ikc3` examples to play with.
## Maps
KC3 maps are key-value stores, you can use any tag as a key and
associate a value to it.
You can use destructuring to access KC3 maps :
```elixir
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> a = %{}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> %{id: id, title: "My title", message: message} = a
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> id
1
ikc3> message
"Hello, world !"
```
You can use the dot syntax to access map values from a `Sym` key :
```elixir
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> a.id
1
ikc3> a.message
"Hello, world !"
```
You can also use the `KC3.access` function for the same result :
```elixir
ikc3> a = %{id: 1, title: "My title", message: "Hello, world !"}
%{id: 1, title: "My title", message: "Hello, world !"}
ikc3> access(a, :id)
1
ikc3> access(a, :message)
"Hello, world !"
```
## Unicode characters
`ikc3` fully supports Unicode :
Some unicode characters :
```elixir
ikc3> '\U+1B2FB'
'π»'
ikc3> 'π
'
'π
'
ikc3> 'π€©'
'π€©'
ikc3>
```
## Large integers
```elixir
ikc3> a = 1 + 100000000000000000000000000000000
100000000000000000000000000000001
ikc3> a * a
10000000000000000000000000000000200000000000000000000000000000001
ikc3>
```
## Ratios
Ratios are made with a couple of large integers : the numerator
which can be any number, and the denominator which has to be positive.
They represent fractions of integral numbers.
They are written with a slash and no space.
```elixir
ikc3> 1/2 + 2/3
7/6
ikc3> 1/2 * 2/3
1/3
ikc3> 1/2 / 2/3
3/4
ikc3> 1/2 - 2/3
-1/6
```
## Complex numbers
Complex numbers are constructed using the operator `+i` on any kind of
numbers (unsigned, signed, float, ratios, and even other complex
numbers). For instance, you can write `a +i b` where `a` and `b` are
real numbers.
```elixir
ikc3> 1 +i 2
1 +i 2
ikc3> 1 +i 2 + 2 +i 3
3 +i 5
ikc3> (1 +i 2) * (2 +i 3)
-4 +i 7
ikc3> (1 +i 2) / (2 +i 3)
0 +i 0
ikc3> (1/1 +i 2/1) / (2 +i 3)
8/13 +i 1/13
```
As you can see integer division is not producing ratios.
That might change in future releases.
## Lists
Lists are marked with brackets `[]`.
Regular lists can be :
- an element and a list : `[1 | []]` β `[1]`
- multiple elements : `[1, 2, 3]`
- multiple elements and a list : `[1, 2 | [3, 4]]` β `[1, 2, 3, 4]`
- the empty list : `[]`
Regular lists end with the empty list : `[1] == [1 | []]`.
You can also contruct dotted lists like in Common Lisp where
the next list pointer is an arbitrary form. E.g. :
- an element and an element : `[1 | 2]`
- multiple elements and an element : `[1, 2, 3 | 4]`
- the empty list and an element : `[[] | 1]`
All these list formats are supported in pattern matching.
## Pattern matching and destructuring
The KC3 pattern matching principles come from Erlang and Elixir.
All tag data structures in KC3 can be pattern matched using the equal
sign (`=`) against litteral values containing identifiers. All
identifiers are supposed to be new bindings when using pattern matching
in KC3. If you want to use an identifier's value in pattern matching you
must use the _pin operator_ (`^`). Variables can be assigned a new value
from either side of the equal sign and from inside a tag data structure,
which is called _destructuring_.
Examples :
```elixir
ikc3> a = 1
1
ikc3> a = 2
2
ikc3> a
2
ikc3> ^ a = 1
void
ikc3> ^ a = 2
2
ikc3> ^ a = b
2
ikc3> b
2
```
To use destructuring just type the litteral value you want to match and
put identifiers (variable names) where you want a variable matching the
value on the other side of the equal sign. This is the most visual
approach possible to text-based value matching : the data is constantly
matched to litterals that show their type to the programmer. This is
really helpful when writing large programs that need to scale in the way
of abstractions. Let the data flow in the code through visual types.
Examples :
```elixir
ikc3> [x, y | z] = List.reverse([1, 2, 3, 4])
[4, 3, 2, 1]
ikc3> x
4
ikc3> y
3
ikc3> z
[2, 1]
```
## Macros
KC3 macros are like Common Lisp macros with Elixir pattern-matching.
Macros are like functions but start with `macro` instead of `fn` and
their arguments do not get evaluated. However they get pattern matched
and the full power of the pattern matcher is available for arguments
destructuring. Use a map if you want named arguments. Use a list if you
want &rest arguments, use a block if you want a &body argument.
When evaluated, a macro call returns a tag which is in turn evaluated
in the calling site lexical environment. This allows for DSLs and custom
control structures to be defined in KC3.
Many basic operations in KC3 are defined as macros : error handling,
free operations with `unwind-protect`, graph database operations like
`Facts.with`.
## If, then, else.
Conditionals in KC3 are like in Ruby, for example :
```elixir
ikc3> if true && true
ikc3> 1 + 1
ikc3> 2 + 2
ikc3> end
4
ikc3> if true && false
ikc3> 1 + 1
ikc3> 2 + 2
ikc3> else
ikc3> 3 + 3
ikc3> 4 + 4
ikc3> end
8
```
A KC3 `if` statement always return a value. If the condition is true, the
first (then) block gets evaluated. If the condition is false the second
block gets evaluated. If the condition is false and an `else` block is
not provided, then `void` gets returned.
One liner examples with `then` :
```elixir
ikc3> if 42 then 100 else 101 end
100
ikc3> if 0 then 100 else 101 end
101
```
## defmodule and def
Example :
```elixir
ikc3> defmodule Example do
ikc3> def three = 3
ikc3> def double = fn (x) do x * 2 end
ikc3> def double_tuple = macro (x) do {x, x} end
ikc3> def operator_double = %KC3.Operator{sym: :double, symbol_value: fn (x) { x * 2 }
ikc3> end
Example
ikc3> Example.three
3
ikc3> Example.double
fn (x) do x * 2 end
ikc3> Example.double(21)
42
ikc3> Example.double_tuple(:ok)
{:ok, :ok}
ikc3> double 21
42
```
## Facts
The Facts module allows read and write access to a graph database
containing facts : triples of subject, predicate, object.
Examples for querying the KC3 database containing all definitions of
the interpreter :
```elixir
ikc3> Facts.with_tags(Facts.env_facts(), KC3, :operator, ?,
fn (fact) { puts(fact.object); :ok })
operator_eq
operator_gt
operator_lt
[...]
:ok
```
---
Top : [KC3 Guides](./)
Previous : [KC3 Structure Guide](3.4_Structure)