Hash :
759573c9
Author :
Date :
2019-08-14T19:47:45
sample: fix 'INFINITY' undeclared error
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef EVENT__HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <time.h>
#include <event2/event.h>
#include <event2/util.h>
#include <event2/watch.h>
#if !defined(INFINITY)
#define INFINITY (1.0/0.0)
#endif
/**
An approximate histogram in constant space, based on Ben-Haim & Yom-Tov, "A
Streaming Parallel Decision Tree Algorithm" [1] and a previous implementation
in Java by Dan Rosen [2]. The histogram is represented as an array of
contiguous bins of non-uniform width. Each bin is centered on a certain point,
called its "centroid," and summarizes some "count" of observations. The bins
are ordered in the array by their centroids; an array is used rather than a
linked structure for CPU cache friendliness.
When the histogram is updated with a new observation, a new bin is created for
it, and then the pair of bins with the closest centroids are merged. Since
bins are stored in contiguous memory, this update process requires bins to be
shifted in worst-case linear time. The novel contribution of this
implementation is to maintain an insertion gap adjacent to the most recently
merged bin, such that for "well behaved" input (such as a normal
distribution), the number of shift operations required by an update should be
much less than the total number of bins on average.
This implementation is almost entirely untested. Don't trust it for
production code.
[1] http://www.jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf
[2] https://github.com/mergeconflict/histogram
*/
/** Compare two doubles for equality without the compiler warning. This is
* probably the wrong thing to do, but this is just sample code :) */
static inline int
eq(double a, double b)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
return a == b;
#pragma GCC diagnostic pop
}
struct bin {
double centroid;
unsigned long count;
};
struct histogram {
struct bin *bins;
unsigned max_bins;
unsigned num_bins;
unsigned gap;
unsigned long count;
double min;
double max;
};
static struct histogram *
histogram_new(unsigned max_bins)
{
struct histogram *h = malloc(sizeof(struct histogram));
h->bins = calloc(max_bins + 1, sizeof(struct bin));
h->max_bins = max_bins;
h->num_bins = 0;
h->gap = 0;
h->count = 0;
h->min = INFINITY;
h->max = -INFINITY;
return h;
}
static void
histogram_free(struct histogram *h)
{
free(h->bins);
free(h);
}
static void
histogram_update(struct histogram *h, double observation)
{
unsigned bin;
double delta;
double min_delta = INFINITY;
/* Update population count, min and max */
++(h->count);
if (observation < h->min)
h->min = observation;
if (observation > h->max)
h->max = observation;
/* Shift the insertion gap to the left or right so that the new bin
* containing the given observation as its centroid will be in the right
* order with respect to the other bins. */
while (1) {
/* Look at the bin to the left of the gap... */
if (h->gap != 0) {
/* If its centroid is greater than the observation, move
* the gap to the left and try again... */
if (h->bins[h->gap - 1].centroid > observation) {
h->bins[h->gap] = h->bins[h->gap - 1];
--(h->gap);
continue;
}
/* If its centroid is equal to the observation, just
* update its count in place. */
if (eq(h->bins[h->gap - 1].centroid, observation)) {
++(h->bins[h->gap - 1].count);
return;
}
}
/* Look at the bin to the right of the gap... */
if (h->gap != h->num_bins) {
/* If its centroid is less than the observation, move
* the gap to the right and try again... */
if (h->bins[h->gap + 1].centroid < observation) {
h->bins[h->gap] = h->bins[h->gap + 1];
++(h->gap);
continue;
}
/* If its centroid is equal to the observation, just
* update its count in place. */
if (eq(h->bins[h->gap + 1].centroid, observation)) {
++(h->bins[h->gap + 1].count);
return;
}
}
/* If the gap is in the right place, we're ready to insert. */
break;
}
/* Insert the observation into a new bin at the gap. */
h->bins[h->gap].centroid = observation;
h->bins[h->gap].count = 1;
/* If the histogram isn't full yet, don't bother merging bins, just
* stick the gap back at the end. */
if (h->num_bins != h->max_bins) {
h->gap = ++(h->num_bins);
return;
}
/* Find the two adjacent bins with the closest centroids and merge them.
* The choice whether to leave the gap on the left or right is
* arbitrary (we choose the left). */
for (bin = 0; bin < h->num_bins; ++bin) {
delta = h->bins[bin + 1].centroid - h->bins[bin].centroid;
if (delta < min_delta) {
min_delta = delta;
h->gap = bin;
}
}
/* The merged centroid is the weighted average of the two, and the
* merged count is the sum of the two. */
h->bins[h->gap + 1].centroid =
(h->bins[h->gap].centroid * h->bins[h->gap].count +
h->bins[h->gap + 1].centroid * h->bins[h->gap + 1].count) /
(h->bins[h->gap].count + h->bins[h->gap + 1].count);
h->bins[h->gap + 1].count += h->bins[h->gap].count;
}
static double
histogram_query(const struct histogram *h, double quantile)
{
unsigned lhs = 0, rhs = 0;
struct bin lhs_bin = { 0, 0 }, rhs_bin = { 0, 0 };
double lhs_total = 0, rhs_total = 0;
double a = 0, b = 0, c = 0, z = 0;
/* The "needle" is the n'th value represented by the histogram. For
* example, if the histogram summarizes 100 entries and we're querying
* for the 50th percentile, the needle is 50. */
double needle = h->count * quantile;
if (quantile <= 0)
return h->min;
if (quantile >= 1)
return h->max;
/* Divide the histogram into slices: the first slice starts at h->min
* and ends at h->bins[0].centroid, the last slice starts at
* h->bins[h->num_bins].centroid and ends at h->max, and the slices
* in the middle are between adjacent centroids (minding the gap). The
* "count" in each slice is the average of the count in the two bins
* that define it. Find the slice containing the needle by keeping a
* running total of the slice counts. */
while (rhs_total < needle) {
/* Determine the left-hand side bin of the current slice. Note
* that the first slice has bin 0 on its right-hand side! */
if (rhs == 0) {
lhs_bin.centroid = h->min;
lhs_bin.count = 0;
} else {
lhs_bin = h->bins[lhs];
}
/* Determine the right-hand side bin of the current slice... */
if (rhs > h->num_bins) {
lhs_bin.centroid = h->max;
rhs_bin.count = 0;
} else {
rhs_bin = h->bins[rhs];
}
/* Update the running totals: the lhs total is whatever the rhs
* total was previously, and the new rhs total includes the
* count for this slice. */
lhs_total = rhs_total;
rhs_total += 0.5 * (lhs_bin.count + rhs_bin.count);
/* Next iteration's left-hand side is the current iteration's
* right-hand side, and next iteration's right-hand side is one
* bin further right (minding the gap). */
lhs = rhs++;
if (rhs == h->gap)
rhs++;
}
/* Approximate the value at the requested quantile... */
a = rhs_bin.count - lhs_bin.count;
if (eq(a, 0)) {
b = rhs_total - lhs_total;
z = eq(b, 0) ? 0 : (needle - lhs_total) / b;
} else {
b = 2 * lhs_bin.count;
c = 2 * (lhs_total - needle);
z = (-b + sqrt(b * b - 4 * a * c)) / (2 * a);
}
return lhs_bin.centroid + (rhs_bin.centroid - lhs_bin.centroid) * z;
}
/**
This is an example of one way in which "prepare" and "check" watchers can be
useful. We track histograms of two timing metrics:
The first is "duration," which is the amount of time between a "check" and the
next "prepare" (in the next iteration of the event loop). This corresponds
pretty closely to the amount of time spent in event handlers (such as the
`on_timeout` handler in this example). In a real-world server, this would
provide a way to monitor whether any of your handlers are blocking or
otherwise performing heavy computation.
The second is "delay," which is the difference between the actual and expected
polling duration. The actual polling duration is the amount of time between a
"prepare" and the next "check" (in the same iteration of the event loop), and
the expected duration is obtained from `evwatch_prepare_get_timeout`. In a
real-world server, this provides an indication of kernel scheduling delays.
For example, if your server is lightly loaded, this delay should usually be
close to your kernel's scheduling quantum (e.g. 1 millisecond).
*/
static struct event_base *base;
static struct timeval
prepare_time = { 0, 0 },
check_time = { 0, 0 },
expected = { 0, 0 };
static struct histogram *durations, *delays;
static void on_prepare(struct evwatch *watcher, const struct evwatch_prepare_cb_info *info, void *arg)
{
struct timeval duration;
evutil_gettimeofday(&prepare_time, NULL);
evwatch_prepare_get_timeout(info, &expected);
if (check_time.tv_sec != 0) {
evutil_timersub(&prepare_time, &check_time, &duration);
histogram_update(durations, duration.tv_sec + duration.tv_usec / 1000000.0l);
}
}
static void on_check(struct evwatch *watcher, const struct evwatch_check_cb_info *info, void *arg)
{
struct timeval actual, delay;
evutil_gettimeofday(&check_time, NULL);
evutil_timersub(&check_time, &prepare_time, &actual);
evutil_timersub(&actual, &expected, &delay);
if (delay.tv_sec >= 0)
histogram_update(delays, delay.tv_sec + delay.tv_usec / 1000000.0l);
}
static void
on_timeout(evutil_socket_t fd, short events, void *arg)
{
printf("durations: [p50 = %fs, p95 = %fs], delays: [p50 = %fs, p95 = %fs]\n",
histogram_query(durations, 0.5),
histogram_query(durations, 0.95),
histogram_query(delays, 0.5),
histogram_query(delays, 0.95));
}
static void
on_sigint(evutil_socket_t sig, short events, void *arg)
{
event_base_loopbreak(base);
}
int
main(int argc, char **argv)
{
struct timeval one_second = { 1, 0 };
struct event *timeout_event, *sigint_event;
base = event_base_new();
durations = histogram_new(100);
delays = histogram_new(100);
/* add prepare and check watchers; no need to hang on to their pointers,
* since they will be freed for us in event_base_free. */
evwatch_prepare_new(base, &on_prepare, NULL);
evwatch_check_new(base, &on_check, NULL);
/* set a persistent one second timeout */
timeout_event = event_new(base, -1, EV_PERSIST, &on_timeout, NULL);
if (!timeout_event)
return EXIT_FAILURE;
event_add(timeout_event, &one_second);
/* set a handler for interrupt, so we can quit cleanly */
sigint_event = evsignal_new(base, SIGINT, &on_sigint, NULL);
if (!sigint_event)
return EXIT_FAILURE;
event_add(sigint_event, NULL);
/* run the event loop until interrupted */
event_base_dispatch(base);
/* clean up */
event_free(timeout_event);
event_free(sigint_event);
event_base_free(base);
histogram_free(durations);
histogram_free(delays);
return EXIT_SUCCESS;
}