Hash :
8f4772f3
Author :
Date :
2013-01-07T06:14:53
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/* -----------------------------------------------------------------------
ffi.c
m68k Foreign Function Interface
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <unistd.h>
#ifdef __rtems__
void rtems_cache_flush_multiple_data_lines( const void *, size_t );
#else
#include <sys/syscall.h>
#ifdef __MINT__
#include <mint/mintbind.h>
#include <mint/ssystem.h>
#else
#include <asm/cachectl.h>
#endif
#endif
void ffi_call_SYSV (extended_cif *,
unsigned, unsigned,
void *, void (*fn) ());
void *ffi_prep_args (void *stack, extended_cif *ecif);
void ffi_closure_SYSV (ffi_closure *);
void ffi_closure_struct_SYSV (ffi_closure *);
unsigned int ffi_closure_SYSV_inner (ffi_closure *closure,
void *resp, void *args);
/* ffi_prep_args is called by the assembly routine once stack space has
been allocated for the function's arguments. */
void *
ffi_prep_args (void *stack, extended_cif *ecif)
{
unsigned int i;
void **p_argv;
char *argp;
ffi_type **p_arg;
void *struct_value_ptr;
argp = stack;
if (
#ifdef __MINT__
(ecif->cif->rtype->type == FFI_TYPE_LONGDOUBLE) ||
#endif
(((ecif->cif->rtype->type == FFI_TYPE_STRUCT)
&& !ecif->cif->flags)))
struct_value_ptr = ecif->rvalue;
else
struct_value_ptr = NULL;
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z = (*p_arg)->size;
int type = (*p_arg)->type;
if (z < sizeof (int))
{
switch (type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int) *(SINT8 *) *p_argv;
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int) *(UINT8 *) *p_argv;
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int) *(SINT16 *) *p_argv;
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int) *(UINT16 *) *p_argv;
break;
case FFI_TYPE_STRUCT:
#ifdef __MINT__
if (z == 1 || z == 2)
memcpy (argp + 2, *p_argv, z);
else
memcpy (argp, *p_argv, z);
#else
memcpy (argp + sizeof (int) - z, *p_argv, z);
#endif
break;
default:
FFI_ASSERT (0);
}
z = sizeof (int);
}
else
{
memcpy (argp, *p_argv, z);
/* Align if necessary. */
if ((sizeof(int) - 1) & z)
z = ALIGN(z, sizeof(int));
}
p_argv++;
argp += z;
}
return struct_value_ptr;
}
#define CIF_FLAGS_INT 1
#define CIF_FLAGS_DINT 2
#define CIF_FLAGS_FLOAT 4
#define CIF_FLAGS_DOUBLE 8
#define CIF_FLAGS_LDOUBLE 16
#define CIF_FLAGS_POINTER 32
#define CIF_FLAGS_STRUCT1 64
#define CIF_FLAGS_STRUCT2 128
#define CIF_FLAGS_SINT8 256
#define CIF_FLAGS_SINT16 512
/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
cif->flags = 0;
break;
case FFI_TYPE_STRUCT:
if (cif->rtype->elements[0]->type == FFI_TYPE_STRUCT &&
cif->rtype->elements[1])
{
cif->flags = 0;
break;
}
switch (cif->rtype->size)
{
case 1:
#ifdef __MINT__
cif->flags = CIF_FLAGS_STRUCT2;
#else
cif->flags = CIF_FLAGS_STRUCT1;
#endif
break;
case 2:
cif->flags = CIF_FLAGS_STRUCT2;
break;
#ifdef __MINT__
case 3:
#endif
case 4:
cif->flags = CIF_FLAGS_INT;
break;
#ifdef __MINT__
case 7:
#endif
case 8:
cif->flags = CIF_FLAGS_DINT;
break;
default:
cif->flags = 0;
break;
}
break;
case FFI_TYPE_FLOAT:
cif->flags = CIF_FLAGS_FLOAT;
break;
case FFI_TYPE_DOUBLE:
cif->flags = CIF_FLAGS_DOUBLE;
break;
#if (FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE)
case FFI_TYPE_LONGDOUBLE:
#ifdef __MINT__
cif->flags = 0;
#else
cif->flags = CIF_FLAGS_LDOUBLE;
#endif
break;
#endif
case FFI_TYPE_POINTER:
cif->flags = CIF_FLAGS_POINTER;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = CIF_FLAGS_DINT;
break;
case FFI_TYPE_SINT16:
cif->flags = CIF_FLAGS_SINT16;
break;
case FFI_TYPE_SINT8:
cif->flags = CIF_FLAGS_SINT8;
break;
default:
cif->flags = CIF_FLAGS_INT;
break;
}
return FFI_OK;
}
void
ffi_call (ffi_cif *cif, void (*fn) (), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return value
address then we need to make one. */
if (rvalue == NULL
&& cif->rtype->type == FFI_TYPE_STRUCT
&& cif->rtype->size > 8)
ecif.rvalue = alloca (cif->rtype->size);
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (&ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
default:
FFI_ASSERT (0);
break;
}
}
static void
ffi_prep_incoming_args_SYSV (char *stack, void **avalue, ffi_cif *cif)
{
unsigned int i;
void **p_argv;
char *argp;
ffi_type **p_arg;
argp = stack;
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
z = (*p_arg)->size;
#ifdef __MINT__
if (cif->flags &&
cif->rtype->type == FFI_TYPE_STRUCT &&
(z == 1 || z == 2))
{
*p_argv = (void *) (argp + 2);
z = 4;
}
else
if (cif->flags &&
cif->rtype->type == FFI_TYPE_STRUCT &&
(z == 3 || z == 4))
{
*p_argv = (void *) (argp);
z = 4;
}
else
#endif
if (z <= 4)
{
*p_argv = (void *) (argp + 4 - z);
z = 4;
}
else
{
*p_argv = (void *) argp;
/* Align if necessary */
if ((sizeof(int) - 1) & z)
z = ALIGN(z, sizeof(int));
}
p_argv++;
argp += z;
}
}
unsigned int
ffi_closure_SYSV_inner (ffi_closure *closure, void *resp, void *args)
{
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void *));
ffi_prep_incoming_args_SYSV(args, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
return cif->flags;
}
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
*(unsigned short *)closure->tramp = 0x207c;
*(void **)(closure->tramp + 2) = codeloc;
*(unsigned short *)(closure->tramp + 6) = 0x4ef9;
if (
#ifdef __MINT__
(cif->rtype->type == FFI_TYPE_LONGDOUBLE) ||
#endif
(((cif->rtype->type == FFI_TYPE_STRUCT)
&& !cif->flags)))
*(void **)(closure->tramp + 8) = ffi_closure_struct_SYSV;
else
*(void **)(closure->tramp + 8) = ffi_closure_SYSV;
#ifdef __rtems__
rtems_cache_flush_multiple_data_lines( codeloc, FFI_TRAMPOLINE_SIZE );
#elif defined(__MINT__)
Ssystem(S_FLUSHCACHE, codeloc, FFI_TRAMPOLINE_SIZE);
#else
syscall(SYS_cacheflush, codeloc, FLUSH_SCOPE_LINE,
FLUSH_CACHE_BOTH, FFI_TRAMPOLINE_SIZE);
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}