Hash :
5e9ac7e2
Author :
Date :
2016-08-10T15:22:19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <fficonfig.h>
#include <ffi.h>
#include <ffi_common.h>
#include "internal.h"
/* Force FFI_TYPE_LONGDOUBLE to be different than FFI_TYPE_DOUBLE;
all further uses in this file will refer to the 128-bit type. */
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
# if FFI_TYPE_LONGDOUBLE != 4
# error FFI_TYPE_LONGDOUBLE out of date
# endif
#else
# undef FFI_TYPE_LONGDOUBLE
# define FFI_TYPE_LONGDOUBLE 4
#endif
union _d
{
UINT64 d;
UINT32 s[2];
};
struct _v
{
union _d d[2] __attribute__((aligned(16)));
};
struct call_context
{
struct _v v[N_V_ARG_REG];
UINT64 x[N_X_ARG_REG];
};
#if FFI_EXEC_TRAMPOLINE_TABLE
#ifdef __MACH__
#include <mach/vm_param.h>
#endif
#else
#if defined (__clang__) && defined (__APPLE__)
extern void sys_icache_invalidate (void *start, size_t len);
#endif
static inline void
ffi_clear_cache (void *start, void *end)
{
#if defined (__clang__) && defined (__APPLE__)
sys_icache_invalidate (start, (char *)end - (char *)start);
#elif defined (__GNUC__)
__builtin___clear_cache (start, end);
#else
#error "Missing builtin to flush instruction cache"
#endif
}
#endif
/* A subroutine of is_vfp_type. Given a structure type, return the type code
of the first non-structure element. Recurse for structure elements.
Return -1 if the structure is in fact empty, i.e. no nested elements. */
static int
is_hfa0 (const ffi_type *ty)
{
ffi_type **elements = ty->elements;
int i, ret = -1;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
ret = elements[i]->type;
if (ret == FFI_TYPE_STRUCT || ret == FFI_TYPE_COMPLEX)
{
ret = is_hfa0 (elements[i]);
if (ret < 0)
continue;
}
break;
}
return ret;
}
/* A subroutine of is_vfp_type. Given a structure type, return true if all
of the non-structure elements are the same as CANDIDATE. */
static int
is_hfa1 (const ffi_type *ty, int candidate)
{
ffi_type **elements = ty->elements;
int i;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
return 1;
}
/* Determine if TY may be allocated to the FP registers. This is both an
fp scalar type as well as an homogenous floating point aggregate (HFA).
That is, a structure consisting of 1 to 4 members of all the same type,
where that type is an fp scalar.
Returns non-zero iff TY is an HFA. The result is the AARCH64_RET_*
constant for the type. */
static int
is_vfp_type (const ffi_type *ty)
{
ffi_type **elements;
int candidate, i;
size_t size, ele_count;
/* Quickest tests first. */
candidate = ty->type;
switch (candidate)
{
default:
return 0;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
ele_count = 1;
goto done;
case FFI_TYPE_COMPLEX:
candidate = ty->elements[0]->type;
switch (candidate)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
ele_count = 2;
goto done;
}
return 0;
case FFI_TYPE_STRUCT:
break;
}
/* No HFA types are smaller than 4 bytes, or larger than 64 bytes. */
size = ty->size;
if (size < 4 || size > 64)
return 0;
/* Find the type of the first non-structure member. */
elements = ty->elements;
candidate = elements[0]->type;
if (candidate == FFI_TYPE_STRUCT || candidate == FFI_TYPE_COMPLEX)
{
for (i = 0; ; ++i)
{
candidate = is_hfa0 (elements[i]);
if (candidate >= 0)
break;
}
}
/* If the first member is not a floating point type, it's not an HFA.
Also quickly re-check the size of the structure. */
switch (candidate)
{
case FFI_TYPE_FLOAT:
ele_count = size / sizeof(float);
if (size != ele_count * sizeof(float))
return 0;
break;
case FFI_TYPE_DOUBLE:
ele_count = size / sizeof(double);
if (size != ele_count * sizeof(double))
return 0;
break;
case FFI_TYPE_LONGDOUBLE:
ele_count = size / sizeof(long double);
if (size != ele_count * sizeof(long double))
return 0;
break;
default:
return 0;
}
if (ele_count > 4)
return 0;
/* Finally, make sure that all scalar elements are the same type. */
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
/* All tests succeeded. Encode the result. */
done:
return candidate * 4 + (4 - ele_count);
}
/* Representation of the procedure call argument marshalling
state.
The terse state variable names match the names used in the AARCH64
PCS. */
struct arg_state
{
unsigned ngrn; /* Next general-purpose register number. */
unsigned nsrn; /* Next vector register number. */
size_t nsaa; /* Next stack offset. */
#if defined (__APPLE__)
unsigned allocating_variadic;
#endif
};
/* Initialize a procedure call argument marshalling state. */
static void
arg_init (struct arg_state *state)
{
state->ngrn = 0;
state->nsrn = 0;
state->nsaa = 0;
#if defined (__APPLE__)
state->allocating_variadic = 0;
#endif
}
/* Allocate an aligned slot on the stack and return a pointer to it. */
static void *
allocate_to_stack (struct arg_state *state, void *stack,
size_t alignment, size_t size)
{
size_t nsaa = state->nsaa;
/* Round up the NSAA to the larger of 8 or the natural
alignment of the argument's type. */
#if defined (__APPLE__)
if (state->allocating_variadic && alignment < 8)
alignment = 8;
#else
if (alignment < 8)
alignment = 8;
#endif
nsaa = ALIGN (nsaa, alignment);
state->nsaa = nsaa + size;
return (char *)stack + nsaa;
}
static ffi_arg
extend_integer_type (void *source, int type)
{
switch (type)
{
case FFI_TYPE_UINT8:
return *(UINT8 *) source;
case FFI_TYPE_SINT8:
return *(SINT8 *) source;
case FFI_TYPE_UINT16:
return *(UINT16 *) source;
case FFI_TYPE_SINT16:
return *(SINT16 *) source;
case FFI_TYPE_UINT32:
return *(UINT32 *) source;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
return *(SINT32 *) source;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
return *(UINT64 *) source;
break;
case FFI_TYPE_POINTER:
return *(uintptr_t *) source;
default:
abort();
}
}
static void
extend_hfa_type (void *dest, void *src, int h)
{
ssize_t f = h - AARCH64_RET_S4;
void *x0;
asm volatile (
"adr %0, 0f\n"
" add %0, %0, %1\n"
" br %0\n"
"0: ldp s16, s17, [%3]\n" /* S4 */
" ldp s18, s19, [%3, #8]\n"
" b 4f\n"
" ldp s16, s17, [%3]\n" /* S3 */
" ldr s18, [%3, #8]\n"
" b 3f\n"
" ldp s16, s17, [%3]\n" /* S2 */
" b 2f\n"
" nop\n"
" ldr s16, [%3]\n" /* S1 */
" b 1f\n"
" nop\n"
" ldp d16, d17, [%3]\n" /* D4 */
" ldp d18, d19, [%3, #16]\n"
" b 4f\n"
" ldp d16, d17, [%3]\n" /* D3 */
" ldr d18, [%3, #16]\n"
" b 3f\n"
" ldp d16, d17, [%3]\n" /* D2 */
" b 2f\n"
" nop\n"
" ldr d16, [%3]\n" /* D1 */
" b 1f\n"
" nop\n"
" ldp q16, q17, [%3]\n" /* Q4 */
" ldp q18, q19, [%3, #16]\n"
" b 4f\n"
" ldp q16, q17, [%3]\n" /* Q3 */
" ldr q18, [%3, #16]\n"
" b 3f\n"
" ldp q16, q17, [%3]\n" /* Q2 */
" b 2f\n"
" nop\n"
" ldr q16, [%3]\n" /* Q1 */
" b 1f\n"
"4: str q19, [%2, #48]\n"
"3: str q18, [%2, #32]\n"
"2: str q17, [%2, #16]\n"
"1: str q16, [%2]"
: "=&r"(x0)
: "r"(f * 12), "r"(dest), "r"(src)
: "memory", "v16", "v17", "v18", "v19");
}
static void *
compress_hfa_type (void *dest, void *reg, int h)
{
switch (h)
{
case AARCH64_RET_S1:
if (dest == reg)
{
#ifdef __AARCH64EB__
dest += 12;
#endif
}
else
*(float *)dest = *(float *)reg;
break;
case AARCH64_RET_S2:
asm ("ldp q16, q17, [%1]\n\t"
"st2 { v16.s, v17.s }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17");
break;
case AARCH64_RET_S3:
asm ("ldp q16, q17, [%1]\n\t"
"ldr q18, [%1, #32]\n\t"
"st3 { v16.s, v17.s, v18.s }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17", "v18");
break;
case AARCH64_RET_S4:
asm ("ldp q16, q17, [%1]\n\t"
"ldp q18, q19, [%1, #32]\n\t"
"st4 { v16.s, v17.s, v18.s, v19.s }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17", "v18", "v19");
break;
case AARCH64_RET_D1:
if (dest == reg)
{
#ifdef __AARCH64EB__
dest += 8;
#endif
}
else
*(double *)dest = *(double *)reg;
break;
case AARCH64_RET_D2:
asm ("ldp q16, q17, [%1]\n\t"
"st2 { v16.d, v17.d }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17");
break;
case AARCH64_RET_D3:
asm ("ldp q16, q17, [%1]\n\t"
"ldr q18, [%1, #32]\n\t"
"st3 { v16.d, v17.d, v18.d }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17", "v18");
break;
case AARCH64_RET_D4:
asm ("ldp q16, q17, [%1]\n\t"
"ldp q18, q19, [%1, #32]\n\t"
"st4 { v16.d, v17.d, v18.d, v19.d }[0], [%0]"
: : "r"(dest), "r"(reg) : "memory", "v16", "v17", "v18", "v19");
break;
default:
if (dest != reg)
return memcpy (dest, reg, 16 * (4 - (h & 3)));
break;
}
return dest;
}
/* Either allocate an appropriate register for the argument type, or if
none are available, allocate a stack slot and return a pointer
to the allocated space. */
static void *
allocate_int_to_reg_or_stack (struct call_context *context,
struct arg_state *state,
void *stack, size_t size)
{
if (state->ngrn < N_X_ARG_REG)
return &context->x[state->ngrn++];
state->ngrn = N_X_ARG_REG;
return allocate_to_stack (state, stack, size, size);
}
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
ffi_type *rtype = cif->rtype;
size_t bytes = cif->bytes;
int flags, i, n;
switch (rtype->type)
{
case FFI_TYPE_VOID:
flags = AARCH64_RET_VOID;
break;
case FFI_TYPE_UINT8:
flags = AARCH64_RET_UINT8;
break;
case FFI_TYPE_UINT16:
flags = AARCH64_RET_UINT16;
break;
case FFI_TYPE_UINT32:
flags = AARCH64_RET_UINT32;
break;
case FFI_TYPE_SINT8:
flags = AARCH64_RET_SINT8;
break;
case FFI_TYPE_SINT16:
flags = AARCH64_RET_SINT16;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
flags = AARCH64_RET_SINT32;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
flags = AARCH64_RET_INT64;
break;
case FFI_TYPE_POINTER:
flags = (sizeof(void *) == 4 ? AARCH64_RET_UINT32 : AARCH64_RET_INT64);
break;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
flags = is_vfp_type (rtype);
if (flags == 0)
{
size_t s = rtype->size;
if (s > 16)
{
flags = AARCH64_RET_VOID | AARCH64_RET_IN_MEM;
bytes += 8;
}
else if (s == 16)
flags = AARCH64_RET_INT128;
else if (s == 8)
flags = AARCH64_RET_INT64;
else
flags = AARCH64_RET_INT128 | AARCH64_RET_NEED_COPY;
}
break;
default:
abort();
}
for (i = 0, n = cif->nargs; i < n; i++)
if (is_vfp_type (cif->arg_types[i]))
{
flags |= AARCH64_FLAG_ARG_V;
break;
}
/* Round the stack up to a multiple of the stack alignment requirement. */
cif->bytes = ALIGN(bytes, 16);
cif->flags = flags;
#if defined (__APPLE__)
cif->aarch64_nfixedargs = 0;
#endif
return FFI_OK;
}
#if defined (__APPLE__)
/* Perform Apple-specific cif processing for variadic calls */
ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
unsigned int nfixedargs,
unsigned int ntotalargs)
{
ffi_status status = ffi_prep_cif_machdep (cif);
cif->aarch64_nfixedargs = nfixedargs;
return status;
}
#endif /* __APPLE__ */
extern void ffi_call_SYSV (struct call_context *context, void *frame,
void (*fn)(void), void *rvalue, int flags,
void *closure) FFI_HIDDEN;
/* Call a function with the provided arguments and capture the return
value. */
static void
ffi_call_int (ffi_cif *cif, void (*fn)(void), void *orig_rvalue,
void **avalue, void *closure)
{
struct call_context *context;
void *stack, *frame, *rvalue;
struct arg_state state;
size_t stack_bytes, rtype_size, rsize;
int i, nargs, flags;
ffi_type *rtype;
flags = cif->flags;
rtype = cif->rtype;
rtype_size = rtype->size;
stack_bytes = cif->bytes;
/* If the target function returns a structure via hidden pointer,
then we cannot allow a null rvalue. Otherwise, mash a null
rvalue to void return type. */
rsize = 0;
if (flags & AARCH64_RET_IN_MEM)
{
if (orig_rvalue == NULL)
rsize = rtype_size;
}
else if (orig_rvalue == NULL)
flags &= AARCH64_FLAG_ARG_V;
else if (flags & AARCH64_RET_NEED_COPY)
rsize = 16;
/* Allocate consectutive stack for everything we'll need. */
context = alloca (sizeof(struct call_context) + stack_bytes + 32 + rsize);
stack = context + 1;
frame = stack + stack_bytes;
rvalue = (rsize ? frame + 32 : orig_rvalue);
arg_init (&state);
for (i = 0, nargs = cif->nargs; i < nargs; i++)
{
ffi_type *ty = cif->arg_types[i];
size_t s = ty->size;
void *a = avalue[i];
int h, t;
t = ty->type;
switch (t)
{
case FFI_TYPE_VOID:
FFI_ASSERT (0);
break;
/* If the argument is a basic type the argument is allocated to an
appropriate register, or if none are available, to the stack. */
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_POINTER:
do_pointer:
{
ffi_arg ext = extend_integer_type (a, t);
if (state.ngrn < N_X_ARG_REG)
context->x[state.ngrn++] = ext;
else
{
void *d = allocate_to_stack (&state, stack, ty->alignment, s);
state.ngrn = N_X_ARG_REG;
/* Note that the default abi extends each argument
to a full 64-bit slot, while the iOS abi allocates
only enough space. */
#ifdef __APPLE__
memcpy(d, a, s);
#else
*(ffi_arg *)d = ext;
#endif
}
}
break;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
{
void *dest;
h = is_vfp_type (ty);
if (h)
{
int elems = 4 - (h & 3);
if (state.nsrn + elems <= N_V_ARG_REG)
{
dest = &context->v[state.nsrn];
state.nsrn += elems;
extend_hfa_type (dest, a, h);
break;
}
state.nsrn = N_V_ARG_REG;
dest = allocate_to_stack (&state, stack, ty->alignment, s);
}
else if (s > 16)
{
/* If the argument is a composite type that is larger than 16
bytes, then the argument has been copied to memory, and
the argument is replaced by a pointer to the copy. */
a = &avalue[i];
t = FFI_TYPE_POINTER;
goto do_pointer;
}
else
{
size_t n = (s + 7) / 8;
if (state.ngrn + n <= N_X_ARG_REG)
{
/* If the argument is a composite type and the size in
double-words is not more than the number of available
X registers, then the argument is copied into
consecutive X registers. */
dest = &context->x[state.ngrn];
state.ngrn += n;
}
else
{
/* Otherwise, there are insufficient X registers. Further
X register allocations are prevented, the NSAA is
adjusted and the argument is copied to memory at the
adjusted NSAA. */
state.ngrn = N_X_ARG_REG;
dest = allocate_to_stack (&state, stack, ty->alignment, s);
}
}
memcpy (dest, a, s);
}
break;
default:
abort();
}
#if defined (__APPLE__)
if (i + 1 == cif->aarch64_nfixedargs)
{
state.ngrn = N_X_ARG_REG;
state.nsrn = N_V_ARG_REG;
state.allocating_variadic = 1;
}
#endif
}
ffi_call_SYSV (context, frame, fn, rvalue, flags, closure);
if (flags & AARCH64_RET_NEED_COPY)
memcpy (orig_rvalue, rvalue, rtype_size);
}
void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
ffi_call_int (cif, fn, rvalue, avalue, NULL);
}
#ifdef FFI_GO_CLOSURES
void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
ffi_call_int (cif, fn, rvalue, avalue, closure);
}
#endif /* FFI_GO_CLOSURES */
/* Build a trampoline. */
extern void ffi_closure_SYSV (void) FFI_HIDDEN;
extern void ffi_closure_SYSV_V (void) FFI_HIDDEN;
ffi_status
ffi_prep_closure_loc (ffi_closure *closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
void (*start)(void);
if (cif->flags & AARCH64_FLAG_ARG_V)
start = ffi_closure_SYSV_V;
else
start = ffi_closure_SYSV;
#if FFI_EXEC_TRAMPOLINE_TABLE
#ifdef __MACH__
void **config = (void **)((uint8_t *)codeloc - PAGE_MAX_SIZE);
config[0] = closure;
config[1] = start;
#endif
#else
static const unsigned char trampoline[16] = {
0x90, 0x00, 0x00, 0x58, /* ldr x16, tramp+16 */
0xf1, 0xff, 0xff, 0x10, /* adr x17, tramp+0 */
0x00, 0x02, 0x1f, 0xd6 /* br x16 */
};
char *tramp = closure->tramp;
memcpy (tramp, trampoline, sizeof(trampoline));
*(UINT64 *)(tramp + 16) = (uintptr_t)start;
ffi_clear_cache(tramp, tramp + FFI_TRAMPOLINE_SIZE);
#endif
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
#ifdef FFI_GO_CLOSURES
extern void ffi_go_closure_SYSV (void) FFI_HIDDEN;
extern void ffi_go_closure_SYSV_V (void) FFI_HIDDEN;
ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*))
{
void (*start)(void);
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
if (cif->flags & AARCH64_FLAG_ARG_V)
start = ffi_go_closure_SYSV_V;
else
start = ffi_go_closure_SYSV;
closure->tramp = start;
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}
#endif /* FFI_GO_CLOSURES */
/* Primary handler to setup and invoke a function within a closure.
A closure when invoked enters via the assembler wrapper
ffi_closure_SYSV(). The wrapper allocates a call context on the
stack, saves the interesting registers (from the perspective of
the calling convention) into the context then passes control to
ffi_closure_SYSV_inner() passing the saved context and a pointer to
the stack at the point ffi_closure_SYSV() was invoked.
On the return path the assembler wrapper will reload call context
registers.
ffi_closure_SYSV_inner() marshalls the call context into ffi value
descriptors, invokes the wrapped function, then marshalls the return
value back into the call context. */
int FFI_HIDDEN
ffi_closure_SYSV_inner (ffi_cif *cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
struct call_context *context,
void *stack, void *rvalue, void *struct_rvalue)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
int i, h, nargs, flags;
struct arg_state state;
arg_init (&state);
for (i = 0, nargs = cif->nargs; i < nargs; i++)
{
ffi_type *ty = cif->arg_types[i];
int t = ty->type;
size_t n, s = ty->size;
switch (t)
{
case FFI_TYPE_VOID:
FFI_ASSERT (0);
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_POINTER:
avalue[i] = allocate_int_to_reg_or_stack (context, &state, stack, s);
break;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
h = is_vfp_type (ty);
if (h)
{
n = 4 - (h & 3);
if (state.nsrn + n <= N_V_ARG_REG)
{
void *reg = &context->v[state.nsrn];
state.nsrn += n;
/* Eeek! We need a pointer to the structure, however the
homogeneous float elements are being passed in individual
registers, therefore for float and double the structure
is not represented as a contiguous sequence of bytes in
our saved register context. We don't need the original
contents of the register storage, so we reformat the
structure into the same memory. */
avalue[i] = compress_hfa_type (reg, reg, h);
}
else
{
state.nsrn = N_V_ARG_REG;
avalue[i] = allocate_to_stack (&state, stack,
ty->alignment, s);
}
}
else if (s > 16)
{
/* Replace Composite type of size greater than 16 with a
pointer. */
avalue[i] = *(void **)
allocate_int_to_reg_or_stack (context, &state, stack,
sizeof (void *));
}
else
{
n = (s + 7) / 8;
if (state.ngrn + n <= N_X_ARG_REG)
{
avalue[i] = &context->x[state.ngrn];
state.ngrn += n;
}
else
{
state.ngrn = N_X_ARG_REG;
avalue[i] = allocate_to_stack (&state, stack,
ty->alignment, s);
}
}
break;
default:
abort();
}
}
flags = cif->flags;
if (flags & AARCH64_RET_IN_MEM)
rvalue = struct_rvalue;
fun (cif, rvalue, avalue, user_data);
return flags;
}