1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include <stdio.h>
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Stack alignment requirement in bytes */
#define AARCH64_STACK_ALIGN 16
#define N_X_ARG_REG 8
#define N_V_ARG_REG 8
#define AARCH64_FFI_WITH_V (1 << AARCH64_FFI_WITH_V_BIT)
union _d
{
UINT64 d;
UINT32 s[2];
};
struct call_context
{
UINT64 x [AARCH64_N_XREG];
struct
{
union _d d[2];
} v [AARCH64_N_VREG];
};
static void *
get_x_addr (struct call_context *context, unsigned n)
{
return &context->x[n];
}
static void *
get_s_addr (struct call_context *context, unsigned n)
{
#if defined __AARCH64EB__
return &context->v[n].d[1].s[1];
#else
return &context->v[n].d[0].s[0];
#endif
}
static void *
get_d_addr (struct call_context *context, unsigned n)
{
#if defined __AARCH64EB__
return &context->v[n].d[1];
#else
return &context->v[n].d[0];
#endif
}
static void *
get_v_addr (struct call_context *context, unsigned n)
{
return &context->v[n];
}
/* Return the memory location at which a basic type would reside
were it to have been stored in register n. */
static void *
get_basic_type_addr (unsigned short type, struct call_context *context,
unsigned n)
{
switch (type)
{
case FFI_TYPE_FLOAT:
return get_s_addr (context, n);
case FFI_TYPE_DOUBLE:
return get_d_addr (context, n);
case FFI_TYPE_LONGDOUBLE:
return get_v_addr (context, n);
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
return get_x_addr (context, n);
default:
FFI_ASSERT (0);
return NULL;
}
}
/* Return the alignment width for each of the basic types. */
static size_t
get_basic_type_alignment (unsigned short type)
{
switch (type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
return sizeof (UINT64);
case FFI_TYPE_LONGDOUBLE:
return sizeof (long double);
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
return sizeof (UINT64);
default:
FFI_ASSERT (0);
return 0;
}
}
/* Return the size in bytes for each of the basic types. */
static size_t
get_basic_type_size (unsigned short type)
{
switch (type)
{
case FFI_TYPE_FLOAT:
return sizeof (UINT32);
case FFI_TYPE_DOUBLE:
return sizeof (UINT64);
case FFI_TYPE_LONGDOUBLE:
return sizeof (long double);
case FFI_TYPE_UINT8:
return sizeof (UINT8);
case FFI_TYPE_SINT8:
return sizeof (SINT8);
case FFI_TYPE_UINT16:
return sizeof (UINT16);
case FFI_TYPE_SINT16:
return sizeof (SINT16);
case FFI_TYPE_UINT32:
return sizeof (UINT32);
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
return sizeof (SINT32);
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
return sizeof (UINT64);
case FFI_TYPE_SINT64:
return sizeof (SINT64);
default:
FFI_ASSERT (0);
return 0;
}
}
extern void
ffi_call_SYSV (unsigned (*)(struct call_context *context, unsigned char *,
extended_cif *),
struct call_context *context,
extended_cif *,
unsigned,
void (*fn)(void));
extern void
ffi_closure_SYSV (ffi_closure *);
/* Test for an FFI floating point representation. */
static unsigned
is_floating_type (unsigned short type)
{
return (type == FFI_TYPE_FLOAT || type == FFI_TYPE_DOUBLE
|| type == FFI_TYPE_LONGDOUBLE);
}
/* Test for a homogeneous structure. */
static unsigned short
get_homogeneous_type (ffi_type *ty)
{
if (ty->type == FFI_TYPE_STRUCT && ty->elements)
{
unsigned i;
unsigned short candidate_type
= get_homogeneous_type (ty->elements[0]);
for (i =1; ty->elements[i]; i++)
{
unsigned short iteration_type = 0;
/* If we have a nested struct, we must find its homogeneous type.
If that fits with our candidate type, we are still
homogeneous. */
if (ty->elements[i]->type == FFI_TYPE_STRUCT
&& ty->elements[i]->elements)
{
iteration_type = get_homogeneous_type (ty->elements[i]);
}
else
{
iteration_type = ty->elements[i]->type;
}
/* If we are not homogeneous, return FFI_TYPE_STRUCT. */
if (candidate_type != iteration_type)
return FFI_TYPE_STRUCT;
}
return candidate_type;
}
/* Base case, we have no more levels of nesting, so we
are a basic type, and so, trivially homogeneous in that type. */
return ty->type;
}
/* Determine the number of elements within a STRUCT.
Note, we must handle nested structs.
If ty is not a STRUCT this function will return 0. */
static unsigned
element_count (ffi_type *ty)
{
if (ty->type == FFI_TYPE_STRUCT && ty->elements)
{
unsigned n;
unsigned elems = 0;
for (n = 0; ty->elements[n]; n++)
{
if (ty->elements[n]->type == FFI_TYPE_STRUCT
&& ty->elements[n]->elements)
elems += element_count (ty->elements[n]);
else
elems++;
}
return elems;
}
return 0;
}
/* Test for a homogeneous floating point aggregate.
A homogeneous floating point aggregate is a homogeneous aggregate of
a half- single- or double- precision floating point type with one
to four elements. Note that this includes nested structs of the
basic type. */
static int
is_hfa (ffi_type *ty)
{
if (ty->type == FFI_TYPE_STRUCT
&& ty->elements[0]
&& is_floating_type (get_homogeneous_type (ty)))
{
unsigned n = element_count (ty);
return n >= 1 && n <= 4;
}
return 0;
}
/* Test if an ffi_type is a candidate for passing in a register.
This test does not check that sufficient registers of the
appropriate class are actually available, merely that IFF
sufficient registers are available then the argument will be passed
in register(s).
Note that an ffi_type that is deemed to be a register candidate
will always be returned in registers.
Returns 1 if a register candidate else 0. */
static int
is_register_candidate (ffi_type *ty)
{
switch (ty->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_POINTER:
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
case FFI_TYPE_SINT64:
return 1;
case FFI_TYPE_STRUCT:
if (is_hfa (ty))
{
return 1;
}
else if (ty->size > 16)
{
/* Too large. Will be replaced with a pointer to memory. The
pointer MAY be passed in a register, but the value will
not. This test specifically fails since the argument will
never be passed by value in registers. */
return 0;
}
else
{
/* Might be passed in registers depending on the number of
registers required. */
return (ty->size + 7) / 8 < N_X_ARG_REG;
}
break;
default:
FFI_ASSERT (0);
break;
}
return 0;
}
/* Test if an ffi_type argument or result is a candidate for a vector
register. */
static int
is_v_register_candidate (ffi_type *ty)
{
return is_floating_type (ty->type)
|| (ty->type == FFI_TYPE_STRUCT && is_hfa (ty));
}
/* Representation of the procedure call argument marshalling
state.
The terse state variable names match the names used in the AARCH64
PCS. */
struct arg_state
{
unsigned ngrn; /* Next general-purpose register number. */
unsigned nsrn; /* Next vector register number. */
unsigned nsaa; /* Next stack offset. */
};
/* Initialize a procedure call argument marshalling state. */
static void
arg_init (struct arg_state *state, unsigned call_frame_size)
{
state->ngrn = 0;
state->nsrn = 0;
state->nsaa = 0;
}
/* Return the number of available consecutive core argument
registers. */
static unsigned
available_x (struct arg_state *state)
{
return N_X_ARG_REG - state->ngrn;
}
/* Return the number of available consecutive vector argument
registers. */
static unsigned
available_v (struct arg_state *state)
{
return N_V_ARG_REG - state->nsrn;
}
static void *
allocate_to_x (struct call_context *context, struct arg_state *state)
{
FFI_ASSERT (state->ngrn < N_X_ARG_REG)
return get_x_addr (context, (state->ngrn)++);
}
static void *
allocate_to_s (struct call_context *context, struct arg_state *state)
{
FFI_ASSERT (state->nsrn < N_V_ARG_REG)
return get_s_addr (context, (state->nsrn)++);
}
static void *
allocate_to_d (struct call_context *context, struct arg_state *state)
{
FFI_ASSERT (state->nsrn < N_V_ARG_REG)
return get_d_addr (context, (state->nsrn)++);
}
static void *
allocate_to_v (struct call_context *context, struct arg_state *state)
{
FFI_ASSERT (state->nsrn < N_V_ARG_REG)
return get_v_addr (context, (state->nsrn)++);
}
/* Allocate an aligned slot on the stack and return a pointer to it. */
static void *
allocate_to_stack (struct arg_state *state, void *stack, unsigned alignment,
unsigned size)
{
void *allocation;
/* Round up the NSAA to the larger of 8 or the natural
alignment of the argument's type. */
state->nsaa = ALIGN (state->nsaa, alignment);
state->nsaa = ALIGN (state->nsaa, alignment);
state->nsaa = ALIGN (state->nsaa, 8);
allocation = stack + state->nsaa;
state->nsaa += size;
return allocation;
}
static void
copy_basic_type (void *dest, void *source, unsigned short type)
{
/* This is necessary to ensure that basic types are copied
sign extended to 64-bits as libffi expects. */
switch (type)
{
case FFI_TYPE_FLOAT:
*(float *) dest = *(float *) source;
break;
case FFI_TYPE_DOUBLE:
*(double *) dest = *(double *) source;
break;
case FFI_TYPE_LONGDOUBLE:
*(long double *) dest = *(long double *) source;
break;
case FFI_TYPE_UINT8:
*(ffi_arg *) dest = *(UINT8 *) source;
break;
case FFI_TYPE_SINT8:
*(ffi_sarg *) dest = *(SINT8 *) source;
break;
case FFI_TYPE_UINT16:
*(ffi_arg *) dest = *(UINT16 *) source;
break;
case FFI_TYPE_SINT16:
*(ffi_sarg *) dest = *(SINT16 *) source;
break;
case FFI_TYPE_UINT32:
*(ffi_arg *) dest = *(UINT32 *) source;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
*(ffi_sarg *) dest = *(SINT32 *) source;
break;
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
*(ffi_arg *) dest = *(UINT64 *) source;
break;
case FFI_TYPE_SINT64:
*(ffi_sarg *) dest = *(SINT64 *) source;
break;
default:
FFI_ASSERT (0);
}
}
static void
copy_hfa_to_reg_or_stack (void *memory,
ffi_type *ty,
struct call_context *context,
unsigned char *stack,
struct arg_state *state)
{
unsigned elems = element_count (ty);
if (available_v (state) < elems)
{
/* There are insufficient V registers. Further V register allocations
are prevented, the NSAA is adjusted (by allocate_to_stack ())
and the argument is copied to memory at the adjusted NSAA. */
state->nsrn = N_V_ARG_REG;
memcpy (allocate_to_stack (state, stack, ty->alignment, ty->size),
memory,
ty->size);
}
else
{
int i;
unsigned short type = get_homogeneous_type (ty);
unsigned elems = element_count (ty);
for (i = 0; i < elems; i++)
{
void *reg = allocate_to_v (context, state);
copy_basic_type (reg, memory, type);
memory += get_basic_type_size (type);
}
}
}
/* Either allocate an appropriate register for the argument type, or if
none are available, allocate a stack slot and return a pointer
to the allocated space. */
static void *
allocate_to_register_or_stack (struct call_context *context,
unsigned char *stack,
struct arg_state *state,
unsigned short type)
{
size_t alignment = get_basic_type_alignment (type);
size_t size = alignment;
switch (type)
{
case FFI_TYPE_FLOAT:
/* This is the only case for which the allocated stack size
should not match the alignment of the type. */
size = sizeof (UINT32);
/* Fall through. */
case FFI_TYPE_DOUBLE:
if (state->nsrn < N_V_ARG_REG)
return allocate_to_d (context, state);
state->nsrn = N_V_ARG_REG;
break;
case FFI_TYPE_LONGDOUBLE:
if (state->nsrn < N_V_ARG_REG)
return allocate_to_v (context, state);
state->nsrn = N_V_ARG_REG;
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
if (state->ngrn < N_X_ARG_REG)
return allocate_to_x (context, state);
state->ngrn = N_X_ARG_REG;
break;
default:
FFI_ASSERT (0);
}
return allocate_to_stack (state, stack, alignment, size);
}
/* Copy a value to an appropriate register, or if none are
available, to the stack. */
static void
copy_to_register_or_stack (struct call_context *context,
unsigned char *stack,
struct arg_state *state,
void *value,
unsigned short type)
{
copy_basic_type (
allocate_to_register_or_stack (context, stack, state, type),
value,
type);
}
/* Marshall the arguments from FFI representation to procedure call
context and stack. */
static unsigned
aarch64_prep_args (struct call_context *context, unsigned char *stack,
extended_cif *ecif)
{
int i;
struct arg_state state;
arg_init (&state, ALIGN(ecif->cif->bytes, 16));
for (i = 0; i < ecif->cif->nargs; i++)
{
ffi_type *ty = ecif->cif->arg_types[i];
switch (ty->type)
{
case FFI_TYPE_VOID:
FFI_ASSERT (0);
break;
/* If the argument is a basic type the argument is allocated to an
appropriate register, or if none are available, to the stack. */
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
copy_to_register_or_stack (context, stack, &state,
ecif->avalue[i], ty->type);
break;
case FFI_TYPE_STRUCT:
if (is_hfa (ty))
{
copy_hfa_to_reg_or_stack (ecif->avalue[i], ty, context,
stack, &state);
}
else if (ty->size > 16)
{
/* If the argument is a composite type that is larger than 16
bytes, then the argument has been copied to memory, and
the argument is replaced by a pointer to the copy. */
copy_to_register_or_stack (context, stack, &state,
&(ecif->avalue[i]), FFI_TYPE_POINTER);
}
else if (available_x (&state) >= (ty->size + 7) / 8)
{
/* If the argument is a composite type and the size in
double-words is not more than the number of available
X registers, then the argument is copied into consecutive
X registers. */
int j;
for (j = 0; j < (ty->size + 7) / 8; j++)
{
memcpy (allocate_to_x (context, &state),
&(((UINT64 *) ecif->avalue[i])[j]),
sizeof (UINT64));
}
}
else
{
/* Otherwise, there are insufficient X registers. Further X
register allocations are prevented, the NSAA is adjusted
(by allocate_to_stack ()) and the argument is copied to
memory at the adjusted NSAA. */
state.ngrn = N_X_ARG_REG;
memcpy (allocate_to_stack (&state, stack, ty->alignment,
ty->size), ecif->avalue + i, ty->size);
}
break;
default:
FFI_ASSERT (0);
break;
}
}
return ecif->cif->aarch64_flags;
}
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
/* Round the stack up to a multiple of the stack alignment requirement. */
cif->bytes =
(cif->bytes + (AARCH64_STACK_ALIGN - 1)) & ~ (AARCH64_STACK_ALIGN - 1);
/* Initialize our flags. We are interested if this CIF will touch a
vector register, if so we will enable context save and load to
those registers, otherwise not. This is intended to be friendly
to lazy float context switching in the kernel. */
cif->aarch64_flags = 0;
if (is_v_register_candidate (cif->rtype))
{
cif->aarch64_flags |= AARCH64_FFI_WITH_V;
}
else
{
int i;
for (i = 0; i < cif->nargs; i++)
if (is_v_register_candidate (cif->arg_types[i]))
{
cif->aarch64_flags |= AARCH64_FFI_WITH_V;
break;
}
}
return FFI_OK;
}
/* Call a function with the provided arguments and capture the return
value. */
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
{
struct call_context context;
unsigned stack_bytes;
/* Figure out the total amount of stack space we need, the
above call frame space needs to be 16 bytes aligned to
ensure correct alignment of the first object inserted in
that space hence the ALIGN applied to cif->bytes.*/
stack_bytes = ALIGN(cif->bytes, 16);
memset (&context, 0, sizeof (context));
if (is_register_candidate (cif->rtype))
{
ffi_call_SYSV (aarch64_prep_args, &context, &ecif, stack_bytes, fn);
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_INT:
case FFI_TYPE_SINT64:
{
void *addr = get_basic_type_addr (cif->rtype->type,
&context, 0);
copy_basic_type (rvalue, addr, cif->rtype->type);
break;
}
case FFI_TYPE_STRUCT:
if (is_hfa (cif->rtype))
{
int j;
unsigned short type = get_homogeneous_type (cif->rtype);
unsigned elems = element_count (cif->rtype);
for (j = 0; j < elems; j++)
{
void *reg = get_basic_type_addr (type, &context, j);
copy_basic_type (rvalue, reg, type);
rvalue += get_basic_type_size (type);
}
}
else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
{
unsigned size = ALIGN (cif->rtype->size, sizeof (UINT64));
memcpy (rvalue, get_x_addr (&context, 0), size);
}
else
{
FFI_ASSERT (0);
}
break;
default:
FFI_ASSERT (0);
break;
}
}
else
{
memcpy (get_x_addr (&context, 8), &rvalue, sizeof (UINT64));
ffi_call_SYSV (aarch64_prep_args, &context, &ecif,
stack_bytes, fn);
}
break;
}
default:
FFI_ASSERT (0);
break;
}
}
static unsigned char trampoline [] =
{ 0x70, 0x00, 0x00, 0x58, /* ldr x16, 1f */
0x91, 0x00, 0x00, 0x10, /* adr x17, 2f */
0x00, 0x02, 0x1f, 0xd6 /* br x16 */
};
/* Build a trampoline. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX,FLAGS) \
({unsigned char *__tramp = (unsigned char*)(TRAMP); \
UINT64 __fun = (UINT64)(FUN); \
UINT64 __ctx = (UINT64)(CTX); \
UINT64 __flags = (UINT64)(FLAGS); \
memcpy (__tramp, trampoline, sizeof (trampoline)); \
memcpy (__tramp + 12, &__fun, sizeof (__fun)); \
memcpy (__tramp + 20, &__ctx, sizeof (__ctx)); \
memcpy (__tramp + 28, &__flags, sizeof (__flags)); \
__clear_cache(__tramp, __tramp + FFI_TRAMPOLINE_SIZE); \
})
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_SYSV, codeloc,
cif->aarch64_flags);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* Primary handler to setup and invoke a function within a closure.
A closure when invoked enters via the assembler wrapper
ffi_closure_SYSV(). The wrapper allocates a call context on the
stack, saves the interesting registers (from the perspective of
the calling convention) into the context then passes control to
ffi_closure_SYSV_inner() passing the saved context and a pointer to
the stack at the point ffi_closure_SYSV() was invoked.
On the return path the assembler wrapper will reload call context
registers.
ffi_closure_SYSV_inner() marshalls the call context into ffi value
descriptors, invokes the wrapped function, then marshalls the return
value back into the call context. */
void
ffi_closure_SYSV_inner (ffi_closure *closure, struct call_context *context,
void *stack)
{
ffi_cif *cif = closure->cif;
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
void *rvalue = NULL;
int i;
struct arg_state state;
arg_init (&state, ALIGN(cif->bytes, 16));
for (i = 0; i < cif->nargs; i++)
{
ffi_type *ty = cif->arg_types[i];
switch (ty->type)
{
case FFI_TYPE_VOID:
FFI_ASSERT (0);
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_INT:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
avalue[i] = allocate_to_register_or_stack (context, stack,
&state, ty->type);
break;
case FFI_TYPE_STRUCT:
if (is_hfa (ty))
{
unsigned n = element_count (ty);
if (available_v (&state) < n)
{
state.nsrn = N_V_ARG_REG;
avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
ty->size);
}
else
{
switch (get_homogeneous_type (ty))
{
case FFI_TYPE_FLOAT:
{
/* Eeek! We need a pointer to the structure,
however the homogeneous float elements are
being passed in individual S registers,
therefore the structure is not represented as
a contiguous sequence of bytes in our saved
register context. We need to fake up a copy
of the structure laid out in memory
correctly. The fake can be tossed once the
closure function has returned hence alloca()
is sufficient. */
int j;
UINT32 *p = avalue[i] = alloca (ty->size);
for (j = 0; j < element_count (ty); j++)
memcpy (&p[j],
allocate_to_s (context, &state),
sizeof (*p));
break;
}
case FFI_TYPE_DOUBLE:
{
/* Eeek! We need a pointer to the structure,
however the homogeneous float elements are
being passed in individual S registers,
therefore the structure is not represented as
a contiguous sequence of bytes in our saved
register context. We need to fake up a copy
of the structure laid out in memory
correctly. The fake can be tossed once the
closure function has returned hence alloca()
is sufficient. */
int j;
UINT64 *p = avalue[i] = alloca (ty->size);
for (j = 0; j < element_count (ty); j++)
memcpy (&p[j],
allocate_to_d (context, &state),
sizeof (*p));
break;
}
case FFI_TYPE_LONGDOUBLE:
memcpy (&avalue[i],
allocate_to_v (context, &state),
sizeof (*avalue));
break;
default:
FFI_ASSERT (0);
break;
}
}
}
else if (ty->size > 16)
{
/* Replace Composite type of size greater than 16 with a
pointer. */
memcpy (&avalue[i],
allocate_to_register_or_stack (context, stack,
&state, FFI_TYPE_POINTER),
sizeof (avalue[i]));
}
else if (available_x (&state) >= (ty->size + 7) / 8)
{
avalue[i] = get_x_addr (context, state.ngrn);
state.ngrn += (ty->size + 7) / 8;
}
else
{
state.ngrn = N_X_ARG_REG;
avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
ty->size);
}
break;
default:
FFI_ASSERT (0);
break;
}
}
/* Figure out where the return value will be passed, either in
registers or in a memory block allocated by the caller and passed
in x8. */
if (is_register_candidate (cif->rtype))
{
/* Register candidates are *always* returned in registers. */
/* Allocate a scratchpad for the return value, we will let the
callee scrible the result into the scratch pad then move the
contents into the appropriate return value location for the
call convention. */
rvalue = alloca (cif->rtype->size);
(closure->fun) (cif, rvalue, avalue, closure->user_data);
/* Copy the return value into the call context so that it is returned
as expected to our caller. */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
{
void *addr = get_basic_type_addr (cif->rtype->type, context, 0);
copy_basic_type (addr, rvalue, cif->rtype->type);
break;
}
case FFI_TYPE_STRUCT:
if (is_hfa (cif->rtype))
{
int i;
unsigned short type = get_homogeneous_type (cif->rtype);
unsigned elems = element_count (cif->rtype);
for (i = 0; i < elems; i++)
{
void *reg = get_basic_type_addr (type, context, i);
copy_basic_type (reg, rvalue, type);
rvalue += get_basic_type_size (type);
}
}
else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
{
unsigned size = ALIGN (cif->rtype->size, sizeof (UINT64)) ;
memcpy (get_x_addr (context, 0), rvalue, size);
}
else
{
FFI_ASSERT (0);
}
break;
default:
FFI_ASSERT (0);
break;
}
}
else
{
memcpy (&rvalue, get_x_addr (context, 8), sizeof (UINT64));
(closure->fun) (cif, rvalue, avalue, closure->user_data);
}
}