Hash :
c4df19c9
Author :
Date :
2023-02-18T03:33:47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2013 Synopsys, Inc. (www.synopsys.com)
ARC Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL RENESAS TECHNOLOGY BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/cachectl.h>
#define NARGREG 8
#define STKALIGN 4
#define MAXCOPYARG (2 * sizeof(double))
typedef struct call_context
{
size_t r[8];
/* used by the assembly code to in-place construct its own stack frame */
char frame[16];
} call_context;
typedef struct call_builder
{
call_context *aregs;
int used_integer;
//int used_float;
size_t *used_stack;
void *struct_stack;
} call_builder;
/* integer (not pointer) less than ABI XLEN */
/* FFI_TYPE_INT does not appear to be used */
#if defined(__ARC64_ARCH64__)
#define IS_INT(type) ((type) >= FFI_TYPE_UINT8 && (type) <= FFI_TYPE_SINT64)
#else
#define IS_INT(type) ((type) >= FFI_TYPE_UINT8 && (type) <= FFI_TYPE_SINT32)
#endif
/* for little endian ARC, the code is in fact stored as mixed endian for
performance reasons */
#if __BIG_ENDIAN__
#define CODE_ENDIAN(x) (x)
#else
#define CODE_ENDIAN(x) ( (((uint32_t) (x)) << 16) | (((uint32_t) (x)) >> 16))
#endif
/* Perform machine dependent cif processing. */
ffi_status
ffi_prep_cif_machdep (ffi_cif * cif)
{
/* Set the return type flag. */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_STRUCT:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
case FFI_TYPE_DOUBLE:
cif->flags = FFI_TYPE_DOUBLE;
break;
case FFI_TYPE_FLOAT:
default:
cif->flags = FFI_TYPE_INT;
break;
}
return FFI_OK;
}
/* allocates a single register, float register, or XLEN-sized stack slot to a datum */
static void marshal_atom(call_builder *cb, int type, void *data) {
size_t value = 0;
switch (type) {
case FFI_TYPE_UINT8: value = *(uint8_t *)data; break;
case FFI_TYPE_SINT8: value = *(int8_t *)data; break;
case FFI_TYPE_UINT16: value = *(uint16_t *)data; break;
case FFI_TYPE_SINT16: value = *(int16_t *)data; break;
/* 32-bit quantities are always sign-extended in the ABI */
case FFI_TYPE_UINT32: value = *(int32_t *)data; break;
case FFI_TYPE_SINT32: value = *(int32_t *)data; break;
#if defined(__ARC64_ARCH64__)
case FFI_TYPE_UINT64: value = *(uint64_t *)data; break;
case FFI_TYPE_SINT64: value = *(int64_t *)data; break;
#endif
case FFI_TYPE_POINTER: value = *(size_t *)data; break;
default: FFI_ASSERT(0); break;
}
if (cb->used_integer == NARGREG) {
*cb->used_stack++ = value;
} else {
cb->aregs->r[cb->used_integer++] = value;
}
}
/* adds an argument to a call, or a not by reference return value */
static void marshal(call_builder *cb, ffi_type *type, int var, void *data) {
size_t realign[2];
#if (defined(__ARC64_ARCH64__) || defined(__ARC64_ARCH32__))
if (type->size > 2 * __SIZEOF_POINTER__) {
if (var) {
marshal_atom(cb, FFI_TYPE_POINTER, &data);
} else {
/* copy to stack and pass by reference */
data = memcpy (cb->struct_stack, data, type->size);
cb->struct_stack = (size_t *) FFI_ALIGN ((char *) cb->struct_stack + type->size, __SIZEOF_POINTER__);
marshal_atom(cb, FFI_TYPE_POINTER, &data);
}
}
#else
if (type->type == FFI_TYPE_STRUCT) {
if (var) {
if (type->size > 0)
marshal_atom(cb, FFI_TYPE_POINTER, data);
} else {
int i;
for (i = 0; i < type->size; i += sizeof(size_t)) {
marshal_atom(cb, FFI_TYPE_POINTER, data);
data += sizeof(size_t);
}
}
}
#endif
else if (IS_INT(type->type) || type->type == FFI_TYPE_POINTER) {
marshal_atom(cb, type->type, data);
} else {
memcpy(realign, data, type->size);
if (type->size > 0)
marshal_atom(cb, FFI_TYPE_POINTER, realign);
if (type->size > __SIZEOF_POINTER__)
marshal_atom(cb, FFI_TYPE_POINTER, realign + 1);
}
}
static void unmarshal_atom(call_builder *cb, int type, void *data) {
size_t value;
if (cb->used_integer == NARGREG) {
value = *cb->used_stack++;
} else {
value = cb->aregs->r[cb->used_integer++];
}
switch (type) {
case FFI_TYPE_UINT8: *(uint8_t *)data = value; break;
case FFI_TYPE_SINT8: *(uint8_t *)data = value; break;
case FFI_TYPE_UINT16: *(uint16_t *)data = value; break;
case FFI_TYPE_SINT16: *(uint16_t *)data = value; break;
case FFI_TYPE_UINT32: *(uint32_t *)data = value; break;
case FFI_TYPE_SINT32: *(uint32_t *)data = value; break;
#if defined(__ARC64_ARCH64__)
case FFI_TYPE_UINT64: *(uint64_t *)data = value; break;
case FFI_TYPE_SINT64: *(uint64_t *)data = value; break;
#endif
case FFI_TYPE_POINTER: *(size_t *)data = value; break;
default: FFI_ASSERT(0); break;
}
}
/* for arguments passed by reference returns the pointer, otherwise the arg is copied (up to MAXCOPYARG bytes) */
static void *unmarshal(call_builder *cb, ffi_type *type, int var, void *data) {
size_t realign[2];
void *pointer;
#if defined(__ARC64_ARCH64__)
if (type->size > 2 * __SIZEOF_POINTER__) {
/* pass by reference */
unmarshal_atom(cb, FFI_TYPE_POINTER, (char*)&pointer);
return pointer;
}
#elif defined(__ARC64_ARCH32__)
if (type->type == FFI_TYPE_STRUCT) {
if (type->size > 2 * __SIZEOF_POINTER__) {
unmarshal_atom(cb, FFI_TYPE_POINTER, &realign[0]);
memcpy(data, (const void*)realign[0], type->size);
return data;
} else {
int i;
void *pdata = data;
for (i = 0; i < type->size; i += sizeof(size_t)) {
unmarshal_atom(cb, FFI_TYPE_POINTER, pdata);
pdata += sizeof(size_t);
}
return data;
}
}
#else
if (type->type == FFI_TYPE_STRUCT) {
if (var) {
int i;
void *pdata = data;
for (i = 0; i < type->size; i += sizeof(size_t)) {
unmarshal_atom(cb, FFI_TYPE_POINTER, pdata);
pdata += sizeof(size_t);
}
return data;
} else {
if (type->size > 0)
unmarshal_atom(cb, FFI_TYPE_POINTER, &realign[0]);
memcpy(data, (const void*)realign[0], type->size);
return data;
}
}
#endif
else if (IS_INT(type->type) || type->type == FFI_TYPE_POINTER) {
unmarshal_atom(cb, type->type, data);
return data;
} else {
if (type->size > 0)
unmarshal_atom(cb, FFI_TYPE_POINTER, realign);
if (type->size > __SIZEOF_POINTER__)
unmarshal_atom(cb, FFI_TYPE_POINTER, realign + 1);
memcpy(data, realign, type->size);
return data;
}
}
static int passed_by_ref(ffi_type *type, int var) {
if (type->type == FFI_TYPE_STRUCT)
return 1;
return type->size > 2 * __SIZEOF_POINTER__;
}
/* Low level routine for calling functions */
extern void ffi_call_asm (void *stack, struct call_context *regs,
void (*fn) (void), void *closure) FFI_HIDDEN;
static void
ffi_call_int (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue,
void *closure)
{
int return_by_ref = passed_by_ref(cif->rtype, 0);
/* Allocate space for stack arg parameters. */
size_t arg_bytes = FFI_ALIGN(2 * sizeof(size_t) * cif->nargs, STKALIGN);
/* Allocate space for copies of big structures. */
size_t struct_bytes = FFI_ALIGN(cif->bytes, STKALIGN);
// size_t rval_bytes = 0;
// if (rvalue == NULL && cif->rtype->size > 2*__SIZEOF_POINTER__)
// rval_bytes = FFI_ALIGN(cif->rtype->size, STKALIGN);
size_t alloc_size = arg_bytes + /*rval_bytes +*/ struct_bytes + sizeof(call_context);
size_t alloc_base = (size_t)alloca(alloc_size);
// if (rval_bytes)
// rvalue = (void*)(alloc_base + arg_bytes);
call_builder cb;
cb.used_integer = 0;
cb.aregs = (call_context*)(alloc_base + arg_bytes /*+ rval_bytes*/ + struct_bytes);
cb.used_stack = (void*)alloc_base;
cb.struct_stack = (void *)(alloc_base + arg_bytes /*+ rval_bytes*/);
// if (cif->rtype->type == FFI_TYPE_STRUCT)
// marshal(&cb, &ffi_type_pointer, 0, &rvalue);
if (return_by_ref)
marshal(&cb, &ffi_type_pointer, 0, &rvalue);
int i;
for (i = 0; i < cif->nargs; i++)
marshal(&cb, cif->arg_types[i], 0, avalue[i]);
ffi_call_asm ((void *) alloc_base, cb.aregs, fn, closure);
cb.used_integer = 0;
if (!return_by_ref && rvalue)
{
if (IS_INT(cif->rtype->type)
&& cif->rtype->size < sizeof (ffi_arg))
{
/* Integer types smaller than ffi_arg need to be extended. */
switch (cif->rtype->type) {
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
case FFI_TYPE_SINT32:
unmarshal_atom (&cb, (sizeof (ffi_arg) > 4
? FFI_TYPE_SINT64 : FFI_TYPE_SINT32),
rvalue);
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_UINT32:
unmarshal_atom (&cb, (sizeof (ffi_arg) > 4
? FFI_TYPE_UINT64 : FFI_TYPE_UINT32),
rvalue);
break;
}
}
else
unmarshal(&cb, cif->rtype, 0, rvalue);
}
}
void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
ffi_call_int(cif, fn, rvalue, avalue, NULL);
}
void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
ffi_call_int(cif, fn, rvalue, avalue, closure);
}
extern void ffi_closure_asm(void) FFI_HIDDEN;
ffi_status
ffi_prep_closure_loc (ffi_closure * closure, ffi_cif * cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc)
{
uint32_t *tramp = (uint32_t *) & (closure->tramp[0]);
size_t address_ffi_closure = (size_t) ffi_closure_asm;
switch (cif->abi)
{
#if defined(__ARC64_ARCH64__)
case FFI_ARC64:
FFI_ASSERT (tramp == codeloc);
tramp[0] = CODE_ENDIAN (0x580a1fc0); /* movl r8, pcl */
tramp[1] = CODE_ENDIAN (0x5c0b1f80); /* movhl r12, limm */
tramp[2] = CODE_ENDIAN ((uint32_t)(address_ffi_closure >> 32));
tramp[3] = CODE_ENDIAN (0x5c051f8c); /* orl r12, r12, limm */
tramp[4] = CODE_ENDIAN ((uint32_t)(address_ffi_closure & 0xffffffff));
tramp[5] = CODE_ENDIAN (0x20200300); /* j [r12] */
break;
#else
case FFI_ARCOMPACT:
FFI_ASSERT (tramp == codeloc);
tramp[0] = CODE_ENDIAN (0x200a1fc0); /* mov r8, pcl */
tramp[1] = CODE_ENDIAN (0x20200f80); /* j [long imm] */
tramp[2] = CODE_ENDIAN (ffi_closure_asm);
break;
#endif
default:
return FFI_BAD_ABI;
}
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
cacheflush (codeloc, FFI_TRAMPOLINE_SIZE, BCACHE);
return FFI_OK;
}
extern void ffi_go_closure_asm (void) FFI_HIDDEN;
ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *))
{
if (cif->abi <= FFI_FIRST_ABI || cif->abi >= FFI_LAST_ABI)
return FFI_BAD_ABI;
closure->tramp = (void *) ffi_go_closure_asm;
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}
/* Called by the assembly code with aregs pointing to saved argument registers
and stack pointing to the stacked arguments. Return values passed in
registers will be reloaded from aregs. */
void FFI_HIDDEN
ffi_closure_inner (ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
size_t *stack, call_context *aregs)
{
void **avalue = alloca(cif->nargs * sizeof(void*));
/* storage for arguments which will be copied by unmarshal(). We could
theoretically avoid the copies in many cases and use at most 128 bytes
of memory, but allocating disjoint storage for each argument is
simpler. */
char *astorage = alloca(cif->bytes);
char *ptr = astorage;
void *rvalue;
call_builder cb;
int i;
cb.aregs = aregs;
cb.used_integer = 0;
cb.used_stack = stack;
/* handle hidden argument */
if (cif->flags == FFI_TYPE_STRUCT)
unmarshal(&cb, &ffi_type_pointer, 0, &rvalue);
else
rvalue = alloca(cif->rtype->size);
for (i = 0; i < cif->nargs; i++) {
avalue[i] = unmarshal(&cb, cif->arg_types[i], 1, ptr);
ptr += cif->arg_types[i]->size;
}
fun (cif, rvalue, avalue, user_data);
if (cif->rtype->type != FFI_TYPE_VOID) {
cb.used_integer = 0;
marshal(&cb, cif->rtype, 1, rvalue);
}
}