1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/* libffi support for Altera Nios II.
Copyright (c) 2013 Mentor Graphics.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* The Nios II Processor Reference Handbook defines the procedure call
ABI as follows.
Arguments are passed as if a structure containing the types of
the arguments were constructed. The first 16 bytes are passed in r4
through r7, the remainder on the stack. The first 16 bytes of a function
taking variable arguments are passed in r4-r7 in the same way.
Return values of types up to 8 bytes are returned in r2 and r3. For
return values greater than 8 bytes, the caller must allocate memory for
the result and pass the address as if it were argument 0.
While this isn't specified explicitly in the ABI documentation, GCC
promotes integral arguments smaller than int size to 32 bits.
Also of note, the ABI specifies that all structure objects are
aligned to 32 bits even if all their fields have a smaller natural
alignment. See FFI_AGGREGATE_ALIGNMENT. */
/* Declare the assembly language hooks. */
extern UINT64 ffi_call_sysv (void (*) (char *, extended_cif *),
extended_cif *,
unsigned,
void (*fn) (void));
extern void ffi_closure_sysv (void);
/* Perform machine-dependent cif processing. */
ffi_status ffi_prep_cif_machdep (ffi_cif *cif)
{
/* We always want at least 16 bytes in the parameter block since it
simplifies the low-level call function. Also round the parameter
block size up to a multiple of 4 bytes to preserve
32-bit alignment of the stack pointer. */
if (cif->bytes < 16)
cif->bytes = 16;
else
cif->bytes = (cif->bytes + 3) & ~3;
return FFI_OK;
}
/* ffi_prep_args is called by the assembly routine to transfer arguments
to the stack using the pointers in the ecif array.
Note that the stack buffer is big enough to fit all the arguments,
but the first 16 bytes will be copied to registers for the actual
call. */
void ffi_prep_args (char *stack, extended_cif *ecif)
{
char *argp = stack;
unsigned int i;
/* The implicit return value pointer is passed as if it were a hidden
first argument. */
if (ecif->cif->rtype->type == FFI_TYPE_STRUCT
&& ecif->cif->rtype->size > 8)
{
(*(void **) argp) = ecif->rvalue;
argp += 4;
}
for (i = 0; i < ecif->cif->nargs; i++)
{
void *avalue = ecif->avalue[i];
ffi_type *atype = ecif->cif->arg_types[i];
size_t size = atype->size;
size_t alignment = atype->alignment;
/* Align argp as appropriate for the argument type. */
if ((alignment - 1) & (unsigned) argp)
argp = (char *) FFI_ALIGN (argp, alignment);
/* Copy the argument, promoting integral types smaller than a
word to word size. */
if (size < sizeof (int))
{
size = sizeof (int);
switch (atype->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int) *(SINT8 *) avalue;
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int) *(UINT8 *) avalue;
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int) *(SINT16 *) avalue;
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int) *(UINT16 *) avalue;
break;
case FFI_TYPE_STRUCT:
memcpy (argp, avalue, atype->size);
break;
default:
FFI_ASSERT(0);
}
}
else if (size == sizeof (int))
*(unsigned int *) argp = (unsigned int) *(UINT32 *) avalue;
else
memcpy (argp, avalue, size);
argp += size;
}
}
/* Call FN using the prepared CIF. RVALUE points to space allocated by
the caller for the return value, and AVALUE is an array of argument
pointers. */
void ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
extended_cif ecif;
UINT64 result;
/* If bigret is true, this is the case where a return value of larger
than 8 bytes is handled by being passed by reference as an implicit
argument. */
int bigret = (cif->rtype->type == FFI_TYPE_STRUCT
&& cif->rtype->size > 8);
ecif.cif = cif;
ecif.avalue = avalue;
/* Allocate space for return value if this is the pass-by-reference case
and the caller did not provide a buffer. */
if (rvalue == NULL && bigret)
ecif.rvalue = alloca (cif->rtype->size);
else
ecif.rvalue = rvalue;
result = ffi_call_sysv (ffi_prep_args, &ecif, cif->bytes, fn);
/* Now result contains the 64 bit contents returned from fn in
r2 and r3. Copy the value of the appropriate size to the user-provided
rvalue buffer. */
if (rvalue && !bigret)
switch (cif->rtype->size)
{
case 1:
*(UINT8 *)rvalue = (UINT8) result;
break;
case 2:
*(UINT16 *)rvalue = (UINT16) result;
break;
case 4:
*(UINT32 *)rvalue = (UINT32) result;
break;
case 8:
*(UINT64 *)rvalue = (UINT64) result;
break;
default:
memcpy (rvalue, (void *)&result, cif->rtype->size);
break;
}
}
/* This function is invoked from the closure trampoline to invoke
CLOSURE with argument block ARGS. Parse ARGS according to
CLOSURE->cfi and invoke CLOSURE->fun. */
static UINT64
ffi_closure_helper (unsigned char *args,
ffi_closure *closure)
{
ffi_cif *cif = closure->cif;
unsigned char *argp = args;
void **parsed_args = alloca (cif->nargs * sizeof (void *));
UINT64 result;
void *retptr;
unsigned int i;
/* First figure out what to do about the return type. If this is the
big-structure-return case, the first arg is the hidden return buffer
allocated by the caller. */
if (cif->rtype->type == FFI_TYPE_STRUCT
&& cif->rtype->size > 8)
{
retptr = *((void **) argp);
argp += 4;
}
else
retptr = (void *) &result;
/* Fill in the array of argument pointers. */
for (i = 0; i < cif->nargs; i++)
{
size_t size = cif->arg_types[i]->size;
size_t alignment = cif->arg_types[i]->alignment;
/* Align argp as appropriate for the argument type. */
if ((alignment - 1) & (unsigned) argp)
argp = (char *) FFI_ALIGN (argp, alignment);
/* Arguments smaller than an int are promoted to int. */
if (size < sizeof (int))
size = sizeof (int);
/* Store the pointer. */
parsed_args[i] = argp;
argp += size;
}
/* Call the user-supplied function. */
(closure->fun) (cif, retptr, parsed_args, closure->user_data);
return result;
}
/* Initialize CLOSURE with a trampoline to call FUN with
CIF and USER_DATA. */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun) (ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
unsigned int *tramp = (unsigned int *) &closure->tramp[0];
int i;
if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
/* The trampoline looks like:
movhi r8, %hi(ffi_closure_sysv)
ori r8, r8, %lo(ffi_closure_sysv)
movhi r9, %hi(ffi_closure_helper)
ori r0, r9, %lo(ffi_closure_helper)
movhi r10, %hi(closure)
ori r10, r10, %lo(closure)
jmp r8
and then ffi_closure_sysv retrieves the closure pointer out of r10
in addition to the arguments passed in the normal way for the call,
and invokes ffi_closure_helper. We encode the pointer to
ffi_closure_helper in the trampoline because making a PIC call
to it in ffi_closure_sysv would be messy (it would have to indirect
through the GOT). */
#define HI(x) ((((unsigned int) (x)) >> 16) & 0xffff)
#define LO(x) (((unsigned int) (x)) & 0xffff)
tramp[0] = (0 << 27) | (8 << 22) | (HI (ffi_closure_sysv) << 6) | 0x34;
tramp[1] = (8 << 27) | (8 << 22) | (LO (ffi_closure_sysv) << 6) | 0x14;
tramp[2] = (0 << 27) | (9 << 22) | (HI (ffi_closure_helper) << 6) | 0x34;
tramp[3] = (9 << 27) | (9 << 22) | (LO (ffi_closure_helper) << 6) | 0x14;
tramp[4] = (0 << 27) | (10 << 22) | (HI (closure) << 6) | 0x34;
tramp[5] = (10 << 27) | (10 << 22) | (LO (closure) << 6) | 0x14;
tramp[6] = (8 << 27) | (0x0d << 11) | 0x3a;
#undef HI
#undef LO
/* Flush the caches.
See Example 9-4 in the Nios II Software Developer's Handbook. */
for (i = 0; i < 7; i++)
asm volatile ("flushd 0(%0); flushi %0" :: "r"(tramp + i) : "memory");
asm volatile ("flushp" ::: "memory");
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}