Hash :
473bcbca
Author :
Date :
2015-11-07T12:01:06
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename libffi.info
@settitle libffi
@setchapternewpage off
@c %**end of header
@c Merge the standard indexes into a single one.
@syncodeindex fn cp
@syncodeindex vr cp
@syncodeindex ky cp
@syncodeindex pg cp
@syncodeindex tp cp
@include version.texi
@copying
This manual is for Libffi, a portable foreign-function interface
library.
Copyright @copyright{} 2008, 2010, 2011 Red Hat, Inc.
@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version. A copy of the license is included in the
section entitled ``GNU General Public License''.
@end quotation
@end copying
@dircategory Development
@direntry
* libffi: (libffi). Portable foreign-function interface library.
@end direntry
@titlepage
@title Libffi
@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage
@ifnottex
@node Top
@top libffi
@insertcopying
@menu
* Introduction:: What is libffi?
* Using libffi:: How to use libffi.
* Missing Features:: Things libffi can't do.
* Index:: Index.
@end menu
@end ifnottex
@node Introduction
@chapter What is libffi?
Compilers for high level languages generate code that follow certain
conventions. These conventions are necessary, in part, for separate
compilation to work. One such convention is the @dfn{calling
convention}. The calling convention is a set of assumptions made by
the compiler about where function arguments will be found on entry to
a function. A calling convention also specifies where the return
value for a function is found. The calling convention is also
sometimes called the @dfn{ABI} or @dfn{Application Binary Interface}.
@cindex calling convention
@cindex ABI
@cindex Application Binary Interface
Some programs may not know at the time of compilation what arguments
are to be passed to a function. For instance, an interpreter may be
told at run-time about the number and types of arguments used to call
a given function. @samp{Libffi} can be used in such programs to
provide a bridge from the interpreter program to compiled code.
The @samp{libffi} library provides a portable, high level programming
interface to various calling conventions. This allows a programmer to
call any function specified by a call interface description at run
time.
@acronym{FFI} stands for Foreign Function Interface. A foreign
function interface is the popular name for the interface that allows
code written in one language to call code written in another language.
The @samp{libffi} library really only provides the lowest, machine
dependent layer of a fully featured foreign function interface. A
layer must exist above @samp{libffi} that handles type conversions for
values passed between the two languages.
@cindex FFI
@cindex Foreign Function Interface
@node Using libffi
@chapter Using libffi
@menu
* The Basics:: The basic libffi API.
* Simple Example:: A simple example.
* Types:: libffi type descriptions.
* Multiple ABIs:: Different passing styles on one platform.
* The Closure API:: Writing a generic function.
* Closure Example:: A closure example.
* Thread Safety:: Thread safety.
@end menu
@node The Basics
@section The Basics
@samp{Libffi} assumes that you have a pointer to the function you wish
to call and that you know the number and types of arguments to pass
it, as well as the return type of the function.
The first thing you must do is create an @code{ffi_cif} object that
matches the signature of the function you wish to call. This is a
separate step because it is common to make multiple calls using a
single @code{ffi_cif}. The @dfn{cif} in @code{ffi_cif} stands for
Call InterFace. To prepare a call interface object, use the function
@code{ffi_prep_cif}.
@cindex cif
@findex ffi_prep_cif
@defun ffi_status ffi_prep_cif (ffi_cif *@var{cif}, ffi_abi @var{abi}, unsigned int @var{nargs}, ffi_type *@var{rtype}, ffi_type **@var{argtypes})
This initializes @var{cif} according to the given parameters.
@var{abi} is the ABI to use; normally @code{FFI_DEFAULT_ABI} is what
you want. @ref{Multiple ABIs} for more information.
@var{nargs} is the number of arguments that this function accepts.
@var{rtype} is a pointer to an @code{ffi_type} structure that
describes the return type of the function. @xref{Types}.
@var{argtypes} is a vector of @code{ffi_type} pointers.
@var{argtypes} must have @var{nargs} elements. If @var{nargs} is 0,
this argument is ignored.
@code{ffi_prep_cif} returns a @code{libffi} status code, of type
@code{ffi_status}. This will be either @code{FFI_OK} if everything
worked properly; @code{FFI_BAD_TYPEDEF} if one of the @code{ffi_type}
objects is incorrect; or @code{FFI_BAD_ABI} if the @var{abi} parameter
is invalid.
@end defun
If the function being called is variadic (varargs) then
@code{ffi_prep_cif_var} must be used instead of @code{ffi_prep_cif}.
@findex ffi_prep_cif_var
@defun ffi_status ffi_prep_cif_var (ffi_cif *@var{cif}, ffi_abi @var{abi}, unsigned int @var{nfixedargs}, unsigned int @var{ntotalargs}, ffi_type *@var{rtype}, ffi_type **@var{argtypes})
This initializes @var{cif} according to the given parameters for
a call to a variadic function. In general it's operation is the
same as for @code{ffi_prep_cif} except that:
@var{nfixedargs} is the number of fixed arguments, prior to any
variadic arguments. It must be greater than zero.
@var{ntotalargs} the total number of arguments, including variadic
and fixed arguments. @var{argtypes} must have this many elements.
Note that, different cif's must be prepped for calls to the same
function when different numbers of arguments are passed.
Also note that a call to @code{ffi_prep_cif_var} with
@var{nfixedargs}=@var{nototalargs} is NOT equivalent to a call to
@code{ffi_prep_cif}.
@end defun
Note that the resulting @code{ffi_cif} holds pointers to all the
@code{ffi_type} objects that were used durin initialization. You must
ensure that these type objects have a lifetime at least as long as
that of the @code{ffi_cif}.
To call a function using an initialized @code{ffi_cif}, use the
@code{ffi_call} function:
@findex ffi_call
@defun void ffi_call (ffi_cif *@var{cif}, void *@var{fn}, void *@var{rvalue}, void **@var{avalues})
This calls the function @var{fn} according to the description given in
@var{cif}. @var{cif} must have already been prepared using
@code{ffi_prep_cif}.
@var{rvalue} is a pointer to a chunk of memory that will hold the
result of the function call. This must be large enough to hold the
result, no smaller than the system register size (generally 32 or 64
bits), and must be suitably aligned; it is the caller's responsibility
to ensure this. If @var{cif} declares that the function returns
@code{void} (using @code{ffi_type_void}), then @var{rvalue} is
ignored.
In most situations, @samp{libffi} will handle promotion according to
the ABI. However, for historical reasons, there is a special case
with return values that must be handled by your code. In particular,
for integral (not @code{struct}) types that are narrower than the
system register size, the return value will be widened by
@samp{libffi}. @samp{libffi} provides a type, @code{ffi_arg}, that
can be used as the return type. For example, if the CIF was defined
with a return type of @code{char}, @samp{libffi} will try to store a
full @code{ffi_arg} into the return value.
@var{avalues} is a vector of @code{void *} pointers that point to the
memory locations holding the argument values for a call. If @var{cif}
declares that the function has no arguments (i.e., @var{nargs} was 0),
then @var{avalues} is ignored. Note that argument values may be
modified by the callee (for instance, structs passed by value); the
burden of copying pass-by-value arguments is placed on the caller.
Note that while the return value must be register-sized, arguments
should exactly match their declared type. For example, if an argument
is a @code{short}, then the entry is @var{avalues} should point to an
object declared as @code{short}; but if the return type is
@code{short}, then @var{rvalue} should point to an object declared as
a larger type -- usually @code{ffi_arg}.
@end defun
@node Simple Example
@section Simple Example
Here is a trivial example that calls @code{puts} a few times.
@example
#include <stdio.h>
#include <ffi.h>
int main()
@{
ffi_cif cif;
ffi_type *args[1];
void *values[1];
char *s;
ffi_arg rc;
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
values[0] = &s;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_sint, args) == FFI_OK)
@{
s = "Hello World!";
ffi_call(&cif, puts, &rc, values);
/* rc now holds the result of the call to puts */
/* values holds a pointer to the function's arg, so to
call puts() again all we need to do is change the
value of s */
s = "This is cool!";
ffi_call(&cif, puts, &rc, values);
@}
return 0;
@}
@end example
@node Types
@section Types
@menu
* Primitive Types:: Built-in types.
* Structures:: Structure types.
* Size and Alignment:: Size and alignment of types.
* Arrays and Unions:: Arrays and unions.
* Type Example:: Structure type example.
* Complex:: Complex types.
* Complex Type Example:: Complex type example.
@end menu
@node Primitive Types
@subsection Primitive Types
@code{Libffi} provides a number of built-in type descriptors that can
be used to describe argument and return types:
@table @code
@item ffi_type_void
@tindex ffi_type_void
The type @code{void}. This cannot be used for argument types, only
for return values.
@item ffi_type_uint8
@tindex ffi_type_uint8
An unsigned, 8-bit integer type.
@item ffi_type_sint8
@tindex ffi_type_sint8
A signed, 8-bit integer type.
@item ffi_type_uint16
@tindex ffi_type_uint16
An unsigned, 16-bit integer type.
@item ffi_type_sint16
@tindex ffi_type_sint16
A signed, 16-bit integer type.
@item ffi_type_uint32
@tindex ffi_type_uint32
An unsigned, 32-bit integer type.
@item ffi_type_sint32
@tindex ffi_type_sint32
A signed, 32-bit integer type.
@item ffi_type_uint64
@tindex ffi_type_uint64
An unsigned, 64-bit integer type.
@item ffi_type_sint64
@tindex ffi_type_sint64
A signed, 64-bit integer type.
@item ffi_type_float
@tindex ffi_type_float
The C @code{float} type.
@item ffi_type_double
@tindex ffi_type_double
The C @code{double} type.
@item ffi_type_uchar
@tindex ffi_type_uchar
The C @code{unsigned char} type.
@item ffi_type_schar
@tindex ffi_type_schar
The C @code{signed char} type. (Note that there is not an exact
equivalent to the C @code{char} type in @code{libffi}; ordinarily you
should either use @code{ffi_type_schar} or @code{ffi_type_uchar}
depending on whether @code{char} is signed.)
@item ffi_type_ushort
@tindex ffi_type_ushort
The C @code{unsigned short} type.
@item ffi_type_sshort
@tindex ffi_type_sshort
The C @code{short} type.
@item ffi_type_uint
@tindex ffi_type_uint
The C @code{unsigned int} type.
@item ffi_type_sint
@tindex ffi_type_sint
The C @code{int} type.
@item ffi_type_ulong
@tindex ffi_type_ulong
The C @code{unsigned long} type.
@item ffi_type_slong
@tindex ffi_type_slong
The C @code{long} type.
@item ffi_type_longdouble
@tindex ffi_type_longdouble
On platforms that have a C @code{long double} type, this is defined.
On other platforms, it is not.
@item ffi_type_pointer
@tindex ffi_type_pointer
A generic @code{void *} pointer. You should use this for all
pointers, regardless of their real type.
@item ffi_type_complex_float
@tindex ffi_type_complex_float
The C @code{_Complex float} type.
@item ffi_type_complex_double
@tindex ffi_type_complex_double
The C @code{_Complex double} type.
@item ffi_type_complex_longdouble
@tindex ffi_type_complex_longdouble
The C @code{_Complex long double} type.
On platforms that have a C @code{long double} type, this is defined.
On other platforms, it is not.
@end table
Each of these is of type @code{ffi_type}, so you must take the address
when passing to @code{ffi_prep_cif}.
@node Structures
@subsection Structures
@samp{libffi} is perfectly happy passing structures back and forth.
You must first describe the structure to @samp{libffi} by creating a
new @code{ffi_type} object for it.
@tindex ffi_type
@deftp {Data type} ffi_type
The @code{ffi_type} has the following members:
@table @code
@item size_t size
This is set by @code{libffi}; you should initialize it to zero.
@item unsigned short alignment
This is set by @code{libffi}; you should initialize it to zero.
@item unsigned short type
For a structure, this should be set to @code{FFI_TYPE_STRUCT}.
@item ffi_type **elements
This is a @samp{NULL}-terminated array of pointers to @code{ffi_type}
objects. There is one element per field of the struct.
Note that @samp{libffi} has no special support for bit-fields. You
must manage these manually.
@end table
@end deftp
The @code{size} and @code{alignment} fields will be filled in by
@code{ffi_prep_cif} or @code{ffi_prep_cif_var}, as needed.
@node Size and Alignment
@subsection Size and Alignment
@code{libffi} will set the @code{size} and @code{alignment} fields of
an @code{ffi_type} object for you. It does so using its knowledge of
the ABI.
You might expect that you can simply read these fields for a type that
has been laid out by @code{libffi}. However, there are some caveats.
@itemize @bullet
@item
The size or alignment of some of the built-in types may vary depending
on the chosen ABI.
@item
The size and alignment of a new structure type will not be set by
@code{libffi} until it has been passed to @code{ffi_prep_cif}.
@item
A structure type cannot be shared across ABIs. Instead each ABI needs
its own copy of the structure type.
@end itemize
So, before examining these fields, it is safest to pass the
@code{ffi_type} object to @code{ffi_prep_cif} first. This function
will do all the needed setup.
@example
ffi_type *desired_type;
ffi_abi desired_abi;
@dots{}
ffi_cif cif;
if (ffi_prep_cif (&cif, desired_abi, 0, desired_type, NULL) == FFI_OK)
@{
size_t size = desired_type->size;
unsigned short alignment = desired_type->alignment;
@}
@end example
@node Arrays and Unions
@subsection Arrays and Unions
@subsubsection Arrays
@samp{libffi} does not have direct support for arrays or unions.
However, they can be emulated using structures.
To emulate an array, simply create an @code{ffi_type} using
@code{FFI_TYPE_STRUCT} with as many members as there are elements in
the array.
@example
ffi_type array_type;
ffi_type **elements
int i;
elements = malloc ((n + 1) * sizeof (ffi_type *));
for (i = 0; i < n; ++i)
elements[i] = array_element_type;
elements[n] = NULL;
array_type.size = array_type.alignment = 0;
array_type.type = FFI_TYPE_STRUCT;
array_type.elements = elements;
@end example
Note that arrays cannot be passed or returned by value in C --
structure types created like this should only be used to refer to
members of real @code{FFI_TYPE_STRUCT} objects.
However, a phony array type like this will not cause any errors from
@samp{libffi} if you use it as an argument or return type. This may
be confusing.
@subsubsection Unions
A union can also be emulated using @code{FFI_TYPE_STRUCT}. In this
case, however, you must make sure that the size and alignment match
the real requirements of the union.
One simple way to do this is to ensue that each element type is laid
out. Then, give the new structure type a single element; the size of
the largest element; and the largest alignment seen as well.
This example uses the @code{ffi_prep_cif} trick to ensure that each
element type is laid out.
@example
ffi_abi desired_abi;
ffi_type union_type;
ffi_type **union_elements;
int i;
ffi_type element_types[2];
element_types[1] = NULL;
union_type.size = union_type.alignment = 0;
union_type.type = FFI_TYPE_STRUCT;
union_type.elements = element_types;
for (i = 0; union_elements[i]; ++i)
@{
ffi_cif cif;
if (ffi_prep_cif (&cif, desired_abi, 0, union_elements[i], NULL) == FFI_OK)
@{
if (union_elements[i]->size > union_type.size)
@{
union_type.size = union_elements[i];
size = union_elements[i]->size;
@}
if (union_elements[i]->alignment > union_type.alignment)
union_type.alignment = union_elements[i]->alignment;
@}
@}
@end example
@node Type Example
@subsection Type Example
The following example initializes a @code{ffi_type} object
representing the @code{tm} struct from Linux's @file{time.h}.
Here is how the struct is defined:
@example
struct tm @{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
/* Those are for future use. */
long int __tm_gmtoff__;
__const char *__tm_zone__;
@};
@end example
Here is the corresponding code to describe this struct to
@code{libffi}:
@example
@{
ffi_type tm_type;
ffi_type *tm_type_elements[12];
int i;
tm_type.size = tm_type.alignment = 0;
tm_type.type = FFI_TYPE_STRUCT;
tm_type.elements = &tm_type_elements;
for (i = 0; i < 9; i++)
tm_type_elements[i] = &ffi_type_sint;
tm_type_elements[9] = &ffi_type_slong;
tm_type_elements[10] = &ffi_type_pointer;
tm_type_elements[11] = NULL;
/* tm_type can now be used to represent tm argument types and
return types for ffi_prep_cif() */
@}
@end example
@node Complex
@subsection Complex Types
@samp{libffi} supports the complex types defined by the C99
standard (@code{_Complex float}, @code{_Complex double} and
@code{_Complex long double} with the built-in type descriptors
@code{ffi_type_complex_float}, @code{ffi_type_complex_double} and
@code{ffi_type_complex_longdouble}.
Custom complex types like @code{_Complex int} can also be used.
An @code{ffi_type} object has to be defined to describe the
complex type to @samp{libffi}.
@tindex ffi_type
@deftp {Data type} ffi_type
@table @code
@item size_t size
This must be manually set to the size of the complex type.
@item unsigned short alignment
This must be manually set to the alignment of the complex type.
@item unsigned short type
For a complex type, this must be set to @code{FFI_TYPE_COMPLEX}.
@item ffi_type **elements
This is a @samp{NULL}-terminated array of pointers to
@code{ffi_type} objects. The first element is set to the
@code{ffi_type} of the complex's base type. The second element
must be set to @code{NULL}.
@end table
@end deftp
The section @ref{Complex Type Example} shows a way to determine
the @code{size} and @code{alignment} members in a platform
independent way.
For platforms that have no complex support in @code{libffi} yet,
the functions @code{ffi_prep_cif} and @code{ffi_prep_args} abort
the program if they encounter a complex type.
@node Complex Type Example
@subsection Complex Type Example
This example demonstrates how to use complex types:
@example
#include <stdio.h>
#include <ffi.h>
#include <complex.h>
void complex_fn(_Complex float cf,
_Complex double cd,
_Complex long double cld)
@{
printf("cf=%f+%fi\ncd=%f+%fi\ncld=%f+%fi\n",
(float)creal (cf), (float)cimag (cf),
(float)creal (cd), (float)cimag (cd),
(float)creal (cld), (float)cimag (cld));
@}
int main()
@{
ffi_cif cif;
ffi_type *args[3];
void *values[3];
_Complex float cf;
_Complex double cd;
_Complex long double cld;
/* Initialize the argument info vectors */
args[0] = &ffi_type_complex_float;
args[1] = &ffi_type_complex_double;
args[2] = &ffi_type_complex_longdouble;
values[0] = &cf;
values[1] = &cd;
values[2] = &cld;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 3,
&ffi_type_void, args) == FFI_OK)
@{
cf = 1.0 + 20.0 * I;
cd = 300.0 + 4000.0 * I;
cld = 50000.0 + 600000.0 * I;
/* Call the function */
ffi_call(&cif, (void (*)(void))complex_fn, 0, values);
@}
return 0;
@}
@end example
This is an example for defining a custom complex type descriptor
for compilers that support them:
@example
/*
* This macro can be used to define new complex type descriptors
* in a platform independent way.
*
* name: Name of the new descriptor is ffi_type_complex_<name>.
* type: The C base type of the complex type.
*/
#define FFI_COMPLEX_TYPEDEF(name, type, ffitype) \
static ffi_type *ffi_elements_complex_##name [2] = @{ \
(ffi_type *)(&ffitype), NULL \
@}; \
struct struct_align_complex_##name @{ \
char c; \
_Complex type x; \
@}; \
ffi_type ffi_type_complex_##name = @{ \
sizeof(_Complex type), \
offsetof(struct struct_align_complex_##name, x), \
FFI_TYPE_COMPLEX, \
(ffi_type **)ffi_elements_complex_##name \
@}
/* Define new complex type descriptors using the macro: */
/* ffi_type_complex_sint */
FFI_COMPLEX_TYPEDEF(sint, int, ffi_type_sint);
/* ffi_type_complex_uchar */
FFI_COMPLEX_TYPEDEF(uchar, unsigned char, ffi_type_uint8);
@end example
The new type descriptors can then be used like one of the built-in
type descriptors in the previous example.
@node Multiple ABIs
@section Multiple ABIs
A given platform may provide multiple different ABIs at once. For
instance, the x86 platform has both @samp{stdcall} and @samp{fastcall}
functions.
@code{libffi} provides some support for this. However, this is
necessarily platform-specific.
@c FIXME: document the platforms
@node The Closure API
@section The Closure API
@code{libffi} also provides a way to write a generic function -- a
function that can accept and decode any combination of arguments.
This can be useful when writing an interpreter, or to provide wrappers
for arbitrary functions.
This facility is called the @dfn{closure API}. Closures are not
supported on all platforms; you can check the @code{FFI_CLOSURES}
define to determine whether they are supported on the current
platform.
@cindex closures
@cindex closure API
@findex FFI_CLOSURES
Because closures work by assembling a tiny function at runtime, they
require special allocation on platforms that have a non-executable
heap. Memory management for closures is handled by a pair of
functions:
@findex ffi_closure_alloc
@defun void *ffi_closure_alloc (size_t @var{size}, void **@var{code})
Allocate a chunk of memory holding @var{size} bytes. This returns a
pointer to the writable address, and sets *@var{code} to the
corresponding executable address.
@var{size} should be sufficient to hold a @code{ffi_closure} object.
@end defun
@findex ffi_closure_free
@defun void ffi_closure_free (void *@var{writable})
Free memory allocated using @code{ffi_closure_alloc}. The argument is
the writable address that was returned.
@end defun
Once you have allocated the memory for a closure, you must construct a
@code{ffi_cif} describing the function call. Finally you can prepare
the closure function:
@findex ffi_prep_closure_loc
@defun ffi_status ffi_prep_closure_loc (ffi_closure *@var{closure}, ffi_cif *@var{cif}, void (*@var{fun}) (ffi_cif *@var{cif}, void *@var{ret}, void **@var{args}, void *@var{user_data}), void *@var{user_data}, void *@var{codeloc})
Prepare a closure function.
@var{closure} is the address of a @code{ffi_closure} object; this is
the writable address returned by @code{ffi_closure_alloc}.
@var{cif} is the @code{ffi_cif} describing the function parameters.
Note that this object, and the types to which it refers, must be kept
alive until the closure itself is freed.
@var{user_data} is an arbitrary datum that is passed, uninterpreted,
to your closure function.
@var{codeloc} is the executable address returned by
@code{ffi_closure_alloc}.
@var{fun} is the function which will be called when the closure is
invoked. It is called with the arguments:
@table @var
@item cif
The @code{ffi_cif} passed to @code{ffi_prep_closure_loc}.
@item ret
A pointer to the memory used for the function's return value.
@var{fun} must fill this, unless the function is declared as returning
@code{void}. Note that this points to memory that is exactly the size
of the type given as the return type when initializing the CIF. In
particular, closures do not have the special promotion behavior of
@code{ffi_call}.
@c FIXME: is this NULL for void-returning functions?
@c (experimentally it is not, but it seems like a good idea)
@item args
A vector of pointers to memory holding the arguments to the function.
@item user_data
The same @var{user_data} that was passed to
@code{ffi_prep_closure_loc}.
@end table
@code{ffi_prep_closure_loc} will return @code{FFI_OK} if everything
went ok, and one of the other @code{ffi_status} values on error.
After calling @code{ffi_prep_closure_loc}, you can cast @var{codeloc}
to the appropriate pointer-to-function type.
@end defun
You may see old code referring to @code{ffi_prep_closure}. This
function is deprecated, as it cannot handle the need for separate
writable and executable addresses.
@node Closure Example
@section Closure Example
A trivial example that creates a new @code{puts} by binding
@code{fputs} with @code{stdout}.
@example
#include <stdio.h>
#include <ffi.h>
/* Acts like puts with the file given at time of enclosure. */
void puts_binding(ffi_cif *cif, void *ret, void* args[],
void *stream)
@{
*(ffi_arg *)ret = fputs(*(char **)args[0], (FILE *)stream);
@}
typedef int (*puts_t)(char *);
int main()
@{
ffi_cif cif;
ffi_type *args[1];
ffi_closure *closure;
void *bound_puts;
int rc;
/* Allocate closure and bound_puts */
closure = ffi_closure_alloc(sizeof(ffi_closure), &bound_puts);
if (closure)
@{
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_sint, args) == FFI_OK)
@{
/* Initialize the closure, setting stream to stdout */
if (ffi_prep_closure_loc(closure, &cif, puts_binding,
stdout, bound_puts) == FFI_OK)
@{
rc = ((puts_t)bound_puts)("Hello World!");
/* rc now holds the result of the call to fputs */
@}
@}
@}
/* Deallocate both closure, and bound_puts */
ffi_closure_free(closure);
return 0;
@}
@end example
@node Thread Safety
@section Thread Safety
@code{libffi} is not completely thread-safe. However, many parts are,
and if you follow some simple rules, you can use it safely in a
multi-threaded program.
@itemize @bullet
@item
@code{ffi_prep_cif} may modify the @code{ffi_type} objects passed to
it. It is best to ensure that only a single thread prepares a given
@code{ffi_cif} at a time.
@item
On some platforms, @code{ffi_prep_cif} may modify the size and
alignment of some types, depending on the chosen ABI. On these
platforms, if you switch between ABIs, you must ensure that there is
only one call to @code{ffi_prep_cif} at a time.
Currently the only affected platform is PowerPC and the only affected
type is @code{long double}.
@end itemize
@node Missing Features
@chapter Missing Features
@code{libffi} is missing a few features. We welcome patches to add
support for these.
@itemize @bullet
@item
Variadic closures.
@item
There is no support for bit fields in structures.
@item
The ``raw'' API is undocumented.
@c anything else?
@item
The Go API is undocumented.
@end itemize
Note that variadic support is very new and tested on a relatively
small number of platforms.
@node Index
@unnumbered Index
@printindex cp
@bye