Hash :
ab83cbb9
Author :
Date :
2014-10-29T14:38:42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2011 Timothy Wall
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
Copyright (c) 2011 Anthony Green
Copyright (c) 2011 Free Software Foundation
Copyright (c) 1998, 2008, 2011 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include "internal.h"
/* Forward declares. */
static int vfp_type_p (const ffi_type *);
static void layout_vfp_args (ffi_cif *);
static void *
ffi_align (ffi_type *ty, void *p)
{
/* Align if necessary */
size_t alignment;
#ifdef _WIN32_WCE
alignment = 4;
#else
alignment = ty->alignment;
if (alignment < 4)
alignment = 4;
#endif
return (void *) ALIGN (p, alignment);
}
static size_t
ffi_put_arg (ffi_type *ty, void *src, void *dst)
{
size_t z = ty->size;
switch (ty->type)
{
case FFI_TYPE_SINT8:
*(UINT32 *)dst = *(SINT8 *)src;
break;
case FFI_TYPE_UINT8:
*(UINT32 *)dst = *(UINT8 *)src;
break;
case FFI_TYPE_SINT16:
*(UINT32 *)dst = *(SINT16 *)src;
break;
case FFI_TYPE_UINT16:
*(UINT32 *)dst = *(UINT16 *)src;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_FLOAT:
*(UINT32 *)dst = *(UINT32 *)src;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
case FFI_TYPE_DOUBLE:
*(UINT64 *)dst = *(UINT64 *)src;
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
memcpy (dst, src, z);
break;
default:
abort();
}
return ALIGN (z, 4);
}
/* ffi_prep_args is called once stack space has been allocated
for the function's arguments.
The vfp_space parameter is the load area for VFP regs, the return
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
static void
ffi_prep_args_SYSV (ffi_cif *cif, int flags, void *rvalue,
void **avalue, char *argp)
{
ffi_type **arg_types = cif->arg_types;
int i, n;
if (flags == ARM_TYPE_STRUCT)
{
*(void **) argp = rvalue;
argp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
argp = ffi_align (ty, argp);
argp += ffi_put_arg (ty, avalue[i], argp);
}
}
static void
ffi_prep_args_VFP (ffi_cif *cif, int flags, void *rvalue,
void **avalue, char *stack, char *vfp_space)
{
ffi_type **arg_types = cif->arg_types;
int i, n, vi = 0;
char *argp, *regp, *eo_regp;
char stack_used = 0;
char done_with_regs = 0;
/* The first 4 words on the stack are used for values
passed in core registers. */
regp = stack;
eo_regp = argp = regp + 16;
/* If the function returns an FFI_TYPE_STRUCT in memory,
that address is passed in r0 to the function. */
if (flags == ARM_TYPE_STRUCT)
{
*(void **) regp = rvalue;
regp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
void *a = avalue[i];
int is_vfp_type = vfp_type_p (ty);
/* Allocated in VFP registers. */
if (vi < cif->vfp_nargs && is_vfp_type)
{
char *vfp_slot = vfp_space + cif->vfp_args[vi++] * 4;
ffi_put_arg (ty, a, vfp_slot);
continue;
}
/* Try allocating in core registers. */
else if (!done_with_regs && !is_vfp_type)
{
char *tregp = ffi_align (ty, regp);
size_t size = ty->size;
size = (size < 4) ? 4 : size; // pad
/* Check if there is space left in the aligned register
area to place the argument. */
if (tregp + size <= eo_regp)
{
regp = tregp + ffi_put_arg (ty, a, tregp);
done_with_regs = (regp == argp);
// ensure we did not write into the stack area
FFI_ASSERT (regp <= argp);
continue;
}
/* In case there are no arguments in the stack area yet,
the argument is passed in the remaining core registers
and on the stack. */
else if (!stack_used)
{
stack_used = 1;
done_with_regs = 1;
argp = tregp + ffi_put_arg (ty, a, tregp);
FFI_ASSERT (eo_regp < argp);
continue;
}
}
/* Base case, arguments are passed on the stack */
stack_used = 1;
argp = ffi_align (ty, argp);
argp += ffi_put_arg (ty, a, argp);
}
}
/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
int flags = 0, cabi = cif->abi;
size_t bytes = cif->bytes;
/* Map out the register placements of VFP register args. The VFP
hard-float calling conventions are slightly more sophisticated
than the base calling conventions, so we do it here instead of
in ffi_prep_args(). */
if (cabi == FFI_VFP)
layout_vfp_args (cif);
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
flags = ARM_TYPE_VOID;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
flags = ARM_TYPE_INT;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
flags = ARM_TYPE_INT64;
break;
case FFI_TYPE_FLOAT:
flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_S : ARM_TYPE_INT);
break;
case FFI_TYPE_DOUBLE:
flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_D : ARM_TYPE_INT64);
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
if (cabi == FFI_VFP)
{
int h = vfp_type_p (cif->rtype);
flags = ARM_TYPE_VFP_N;
if (h == 0x100 + FFI_TYPE_FLOAT)
flags = ARM_TYPE_VFP_S;
if (h == 0x100 + FFI_TYPE_DOUBLE)
flags = ARM_TYPE_VFP_D;
if (h != 0)
break;
}
/* A Composite Type not larger than 4 bytes is returned in r0.
A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
if (cif->rtype->size <= 4)
flags = ARM_TYPE_INT;
else
{
flags = ARM_TYPE_STRUCT;
bytes += 4;
}
break;
default:
abort();
}
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't harm anything
when it isn't needed. */
bytes = ALIGN (bytes, 8);
/* Minimum stack space is the 4 register arguments that we pop. */
if (bytes < 4*4)
bytes = 4*4;
cif->bytes = bytes;
cif->flags = flags;
return FFI_OK;
}
/* Perform machine dependent cif processing for variadic calls */
ffi_status
ffi_prep_cif_machdep_var (ffi_cif * cif,
unsigned int nfixedargs, unsigned int ntotalargs)
{
/* VFP variadic calls actually use the SYSV ABI */
if (cif->abi == FFI_VFP)
cif->abi = FFI_SYSV;
return ffi_prep_cif_machdep (cif);
}
/* Prototypes for assembly functions, in sysv.S. */
struct call_frame
{
void *fp;
void *lr;
void *rvalue;
int flags;
void *closure;
};
extern void ffi_call_SYSV (void *stack, struct call_frame *,
void (*fn) (void)) FFI_HIDDEN;
extern void ffi_call_VFP (void *vfp_space, struct call_frame *,
void (*fn) (void), unsigned vfp_used) FFI_HIDDEN;
static void
ffi_call_int (ffi_cif * cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
int flags = cif->flags;
ffi_type *rtype = cif->rtype;
size_t bytes, rsize, vfp_size;
char *stack, *vfp_space, *new_rvalue;
struct call_frame *frame;
rsize = 0;
if (rvalue == NULL)
{
/* If the return value is a struct and we don't have a return
value address then we need to make one. Otherwise the return
value is in registers and we can ignore them. */
if (flags == ARM_TYPE_STRUCT)
rsize = rtype->size;
else
flags = ARM_TYPE_VOID;
}
else if (flags == ARM_TYPE_VFP_N)
{
/* Largest case is double x 4. */
rsize = 32;
}
else if (flags == ARM_TYPE_INT && rtype->type == FFI_TYPE_STRUCT)
rsize = 4;
/* Largest case. */
vfp_size = (cif->abi == FFI_VFP && cif->vfp_used ? 8*8: 0);
bytes = cif->bytes;
stack = alloca (vfp_size + bytes + sizeof(struct call_frame) + rsize);
vfp_space = NULL;
if (vfp_size)
{
vfp_space = stack;
stack += vfp_size;
}
frame = (struct call_frame *)(stack + bytes);
new_rvalue = rvalue;
if (rsize)
new_rvalue = (void *)(frame + 1);
frame->rvalue = new_rvalue;
frame->flags = flags;
frame->closure = closure;
if (vfp_space)
{
ffi_prep_args_VFP (cif, flags, new_rvalue, avalue, stack, vfp_space);
ffi_call_VFP (vfp_space, frame, fn, cif->vfp_used);
}
else
{
ffi_prep_args_SYSV (cif, flags, new_rvalue, avalue, stack);
ffi_call_SYSV (stack, frame, fn);
}
if (rvalue && rvalue != new_rvalue)
memcpy (rvalue, new_rvalue, rtype->size);
}
void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
ffi_call_int (cif, fn, rvalue, avalue, NULL);
}
void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
ffi_call_int (cif, fn, rvalue, avalue, closure);
}
static void *
ffi_prep_incoming_args_SYSV (ffi_cif *cif, void *rvalue,
char *argp, void **avalue)
{
ffi_type **arg_types = cif->arg_types;
int i, n;
if (cif->flags == ARM_TYPE_STRUCT)
{
rvalue = *(void **) argp;
argp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
size_t z = ty->size;
argp = ffi_align (ty, argp);
avalue[i] = (void *) argp;
argp += z;
}
return rvalue;
}
static void *
ffi_prep_incoming_args_VFP (ffi_cif *cif, void *rvalue, char *stack,
char *vfp_space, void **avalue)
{
ffi_type **arg_types = cif->arg_types;
int i, n, vi = 0;
char *argp, *regp, *eo_regp;
char done_with_regs = 0;
char stack_used = 0;
regp = stack;
eo_regp = argp = regp + 16;
if (cif->flags == ARM_TYPE_STRUCT)
{
rvalue = *(void **) regp;
regp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
int is_vfp_type = vfp_type_p (ty);
size_t z = ty->size;
if (vi < cif->vfp_nargs && is_vfp_type)
{
avalue[i] = vfp_space + cif->vfp_args[vi++] * 4;
continue;
}
else if (!done_with_regs && !is_vfp_type)
{
char *tregp = ffi_align (ty, regp);
z = (z < 4) ? 4 : z; // pad
/* If the arguments either fits into the registers or uses registers
and stack, while we haven't read other things from the stack */
if (tregp + z <= eo_regp || !stack_used)
{
/* Because we're little endian, this is what it turns into. */
avalue[i] = (void *) tregp;
regp = tregp + z;
/* If we read past the last core register, make sure we
have not read from the stack before and continue
reading after regp. */
if (regp > eo_regp)
{
FFI_ASSERT (!stack_used);
argp = regp;
}
if (regp >= eo_regp)
{
done_with_regs = 1;
stack_used = 1;
}
continue;
}
}
stack_used = 1;
argp = ffi_align (ty, argp);
avalue[i] = (void *) argp;
argp += z;
}
return rvalue;
}
struct closure_frame
{
char vfp_space[8*8] __attribute__((aligned(8)));
char result[8*4];
char argp[];
};
int FFI_HIDDEN
ffi_closure_inner_SYSV (ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
struct closure_frame *frame)
{
void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
void *rvalue = ffi_prep_incoming_args_SYSV (cif, frame->result,
frame->argp, avalue);
fun (cif, rvalue, avalue, user_data);
return cif->flags;
}
int FFI_HIDDEN
ffi_closure_inner_VFP (ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
struct closure_frame *frame)
{
void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
void *rvalue = ffi_prep_incoming_args_VFP (cif, frame->result, frame->argp,
frame->vfp_space, avalue);
fun (cif, rvalue, avalue, user_data);
return cif->flags;
}
void ffi_closure_SYSV (void) FFI_HIDDEN;
void ffi_closure_VFP (void) FFI_HIDDEN;
void ffi_go_closure_SYSV (void) FFI_HIDDEN;
void ffi_go_closure_VFP (void) FFI_HIDDEN;
#if FFI_EXEC_TRAMPOLINE_TABLE
#include <mach/mach.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
extern void *ffi_closure_trampoline_table_page;
typedef struct ffi_trampoline_table ffi_trampoline_table;
typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry;
struct ffi_trampoline_table
{
/* contiguous writable and executable pages */
vm_address_t config_page;
vm_address_t trampoline_page;
/* free list tracking */
uint16_t free_count;
ffi_trampoline_table_entry *free_list;
ffi_trampoline_table_entry *free_list_pool;
ffi_trampoline_table *prev;
ffi_trampoline_table *next;
};
struct ffi_trampoline_table_entry
{
void *(*trampoline) ();
ffi_trampoline_table_entry *next;
};
/* Override the standard architecture trampoline size */
// XXX TODO - Fix
#undef FFI_TRAMPOLINE_SIZE
#define FFI_TRAMPOLINE_SIZE 12
/* The trampoline configuration is placed at 4080 bytes prior to the trampoline's entry point */
#define FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc) ((void **) (((uint8_t *) codeloc) - 4080));
/* The first 16 bytes of the config page are unused, as they are unaddressable from the trampoline page. */
#define FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET 16
/* Total number of trampolines that fit in one trampoline table */
#define FFI_TRAMPOLINE_COUNT ((PAGE_SIZE - FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET) / FFI_TRAMPOLINE_SIZE)
static pthread_mutex_t ffi_trampoline_lock = PTHREAD_MUTEX_INITIALIZER;
static ffi_trampoline_table *ffi_trampoline_tables = NULL;
static ffi_trampoline_table *
ffi_trampoline_table_alloc ()
{
ffi_trampoline_table *table = NULL;
/* Loop until we can allocate two contiguous pages */
while (table == NULL)
{
vm_address_t config_page = 0x0;
kern_return_t kt;
/* Try to allocate two pages */
kt =
vm_allocate (mach_task_self (), &config_page, PAGE_SIZE * 2,
VM_FLAGS_ANYWHERE);
if (kt != KERN_SUCCESS)
{
fprintf (stderr, "vm_allocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
break;
}
/* Now drop the second half of the allocation to make room for the trampoline table */
vm_address_t trampoline_page = config_page + PAGE_SIZE;
kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
{
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
break;
}
/* Remap the trampoline table to directly follow the config page */
vm_prot_t cur_prot;
vm_prot_t max_prot;
kt =
vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE,
mach_task_self (),
(vm_address_t) & ffi_closure_trampoline_table_page, FALSE,
&cur_prot, &max_prot, VM_INHERIT_SHARE);
/* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */
if (kt != KERN_SUCCESS)
{
/* Log unexpected failures */
if (kt != KERN_NO_SPACE)
{
fprintf (stderr, "vm_remap() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
}
vm_deallocate (mach_task_self (), config_page, PAGE_SIZE);
continue;
}
/* We have valid trampoline and config pages */
table = calloc (1, sizeof (ffi_trampoline_table));
table->free_count = FFI_TRAMPOLINE_COUNT;
table->config_page = config_page;
table->trampoline_page = trampoline_page;
/* Create and initialize the free list */
table->free_list_pool =
calloc (FFI_TRAMPOLINE_COUNT, sizeof (ffi_trampoline_table_entry));
uint16_t i;
for (i = 0; i < table->free_count; i++)
{
ffi_trampoline_table_entry *entry = &table->free_list_pool[i];
entry->trampoline =
(void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));
if (i < table->free_count - 1)
entry->next = &table->free_list_pool[i + 1];
}
table->free_list = table->free_list_pool;
}
return table;
}
void *
ffi_closure_alloc (size_t size, void **code)
{
/* Create the closure */
ffi_closure *closure = malloc (size);
if (closure == NULL)
return NULL;
pthread_mutex_lock (&ffi_trampoline_lock);
/* Check for an active trampoline table with available entries. */
ffi_trampoline_table *table = ffi_trampoline_tables;
if (table == NULL || table->free_list == NULL)
{
table = ffi_trampoline_table_alloc ();
if (table == NULL)
{
free (closure);
return NULL;
}
/* Insert the new table at the top of the list */
table->next = ffi_trampoline_tables;
if (table->next != NULL)
table->next->prev = table;
ffi_trampoline_tables = table;
}
/* Claim the free entry */
ffi_trampoline_table_entry *entry = ffi_trampoline_tables->free_list;
ffi_trampoline_tables->free_list = entry->next;
ffi_trampoline_tables->free_count--;
entry->next = NULL;
pthread_mutex_unlock (&ffi_trampoline_lock);
/* Initialize the return values */
*code = entry->trampoline;
closure->trampoline_table = table;
closure->trampoline_table_entry = entry;
return closure;
}
void
ffi_closure_free (void *ptr)
{
ffi_closure *closure = ptr;
pthread_mutex_lock (&ffi_trampoline_lock);
/* Fetch the table and entry references */
ffi_trampoline_table *table = closure->trampoline_table;
ffi_trampoline_table_entry *entry = closure->trampoline_table_entry;
/* Return the entry to the free list */
entry->next = table->free_list;
table->free_list = entry;
table->free_count++;
/* If all trampolines within this table are free, and at least one other table exists, deallocate
* the table */
if (table->free_count == FFI_TRAMPOLINE_COUNT
&& ffi_trampoline_tables != table)
{
/* Remove from the list */
if (table->prev != NULL)
table->prev->next = table->next;
if (table->next != NULL)
table->next->prev = table->prev;
/* Deallocate pages */
kern_return_t kt;
kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
kt =
vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
if (kt != KERN_SUCCESS)
fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
__FILE__, __LINE__);
/* Deallocate free list */
free (table->free_list_pool);
free (table);
}
else if (ffi_trampoline_tables != table)
{
/* Otherwise, bump this table to the top of the list */
table->prev = NULL;
table->next = ffi_trampoline_tables;
if (ffi_trampoline_tables != NULL)
ffi_trampoline_tables->prev = table;
ffi_trampoline_tables = table;
}
pthread_mutex_unlock (&ffi_trampoline_lock);
/* Free the closure */
free (closure);
}
#else
extern unsigned int ffi_arm_trampoline[2] FFI_HIDDEN;
#endif
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure * closure,
ffi_cif * cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc)
{
void (*closure_func) (void) = ffi_closure_SYSV;
if (cif->abi == FFI_VFP)
{
/* We only need take the vfp path if there are vfp arguments. */
if (cif->vfp_used)
closure_func = ffi_closure_VFP;
}
else if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
#if FFI_EXEC_TRAMPOLINE_TABLE
void **config = FFI_TRAMPOLINE_CODELOC_CONFIG (codeloc);
config[0] = closure;
config[1] = closure_func;
#else
memcpy (closure->tramp, ffi_arm_trampoline, 8);
__clear_cache(closure->tramp, closure->tramp + 8); /* clear data map */
__clear_cache(codeloc, codeloc + 8); /* clear insn map */
*(void (**)(void))(closure->tramp + 8) = closure_func;
#endif
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *))
{
void (*closure_func) (void) = ffi_go_closure_SYSV;
if (cif->abi == FFI_VFP)
{
/* We only need take the vfp path if there are vfp arguments. */
if (cif->vfp_used)
closure_func = ffi_go_closure_VFP;
}
else if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
closure->tramp = closure_func;
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}
/* Below are routines for VFP hard-float support. */
/* A subroutine of vfp_type_p. Given a structure type, return the type code
of the first non-structure element. Recurse for structure elements.
Return -1 if the structure is in fact empty, i.e. no nested elements. */
static int
is_hfa0 (const ffi_type *ty)
{
ffi_type **elements = ty->elements;
int i, ret = -1;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
ret = elements[i]->type;
if (ret == FFI_TYPE_STRUCT || ret == FFI_TYPE_COMPLEX)
{
ret = is_hfa0 (elements[i]);
if (ret < 0)
continue;
}
break;
}
return ret;
}
/* A subroutine of vfp_type_p. Given a structure type, return true if all
of the non-structure elements are the same as CANDIDATE. */
static int
is_hfa1 (const ffi_type *ty, int candidate)
{
ffi_type **elements = ty->elements;
int i;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
return 1;
}
/* Determine if TY is an homogenous floating point aggregate (HFA).
That is, a structure consisting of 1 to 4 members of all the same type,
where that type is a floating point scalar.
Returns non-zero iff TY is an HFA. The result is an encoded value where
bits 0-7 contain the type code, and bits 8-10 contain the element count. */
static int
vfp_type_p (const ffi_type *ty)
{
ffi_type **elements;
int candidate, i;
size_t size, ele_count;
/* Quickest tests first. */
candidate = ty->type;
switch (ty->type)
{
default:
return 0;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
ele_count = 1;
goto done;
case FFI_TYPE_COMPLEX:
candidate = ty->elements[0]->type;
if (candidate != FFI_TYPE_FLOAT && candidate != FFI_TYPE_DOUBLE)
return 0;
ele_count = 2;
goto done;
case FFI_TYPE_STRUCT:
break;
}
/* No HFA types are smaller than 4 bytes, or larger than 32 bytes. */
size = ty->size;
if (size < 4 || size > 32)
return 0;
/* Find the type of the first non-structure member. */
elements = ty->elements;
candidate = elements[0]->type;
if (candidate == FFI_TYPE_STRUCT || candidate == FFI_TYPE_COMPLEX)
{
for (i = 0; ; ++i)
{
candidate = is_hfa0 (elements[i]);
if (candidate >= 0)
break;
}
}
/* If the first member is not a floating point type, it's not an HFA.
Also quickly re-check the size of the structure. */
switch (candidate)
{
case FFI_TYPE_FLOAT:
ele_count = size / sizeof(float);
if (size != ele_count * sizeof(float))
return 0;
break;
case FFI_TYPE_DOUBLE:
ele_count = size / sizeof(double);
if (size != ele_count * sizeof(double))
return 0;
break;
default:
return 0;
}
if (ele_count > 4)
return 0;
/* Finally, make sure that all scalar elements are the same type. */
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
/* All tests succeeded. Encode the result. */
done:
return (ele_count << 8) | candidate;
}
static int
place_vfp_arg (ffi_cif *cif, int h)
{
unsigned short reg = cif->vfp_reg_free;
int align = 1, nregs = h >> 8;
if ((h & 0xff) == FFI_TYPE_DOUBLE)
align = 2, nregs *= 2;
/* Align register number. */
if ((reg & 1) && align == 2)
reg++;
while (reg + nregs <= 16)
{
int s, new_used = 0;
for (s = reg; s < reg + nregs; s++)
{
new_used |= (1 << s);
if (cif->vfp_used & (1 << s))
{
reg += align;
goto next_reg;
}
}
/* Found regs to allocate. */
cif->vfp_used |= new_used;
cif->vfp_args[cif->vfp_nargs++] = reg;
/* Update vfp_reg_free. */
if (cif->vfp_used & (1 << cif->vfp_reg_free))
{
reg += nregs;
while (cif->vfp_used & (1 << reg))
reg += 1;
cif->vfp_reg_free = reg;
}
return 0;
next_reg:;
}
// done, mark all regs as used
cif->vfp_reg_free = 16;
cif->vfp_used = 0xFFFF;
return 1;
}
static void
layout_vfp_args (ffi_cif * cif)
{
int i;
/* Init VFP fields */
cif->vfp_used = 0;
cif->vfp_nargs = 0;
cif->vfp_reg_free = 0;
memset (cif->vfp_args, -1, 16); /* Init to -1. */
for (i = 0; i < cif->nargs; i++)
{
int h = vfp_type_p (cif->arg_types[i]);
if (h && place_vfp_arg (cif, h) == 1)
break;
}
}