1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/* -----------------------------------------------------------------------
ffi.c - Copyright (C) 2009 Anthony Green
Moxie Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
void *ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
register int count = 0;
p_argv = ecif->avalue;
argp = stack;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
z = (*p_arg)->size;
if ((*p_arg)->type == FFI_TYPE_STRUCT)
{
z = sizeof(void*);
*(void **) argp = *p_argv;
}
/* if ((*p_arg)->type == FFI_TYPE_FLOAT)
{
if (count > 24)
{
// This is going on the stack. Turn it into a double.
*(double *) argp = (double) *(float*)(* p_argv);
z = sizeof(double);
}
else
*(void **) argp = *(void **)(* p_argv);
} */
else if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
count += z;
}
return (stack + ((count > 24) ? 24 : ALIGN_DOWN(count, 8)));
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
if (cif->rtype->type == FFI_TYPE_STRUCT)
cif->flags = -1;
else
cif->flags = cif->rtype->size;
cif->bytes = ALIGN (cif->bytes, 8);
return FFI_OK;
}
extern void ffi_call_EABI(void *(*)(char *, extended_cif *),
extended_cif *,
unsigned, unsigned,
unsigned *,
void (*fn)(void));
void ffi_call(ffi_cif *cif,
void (*fn)(void),
void *rvalue,
void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_EABI:
ffi_call_EABI(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
break;
default:
FFI_ASSERT(0);
break;
}
}
void ffi_closure_eabi (unsigned arg1, unsigned arg2, unsigned arg3,
unsigned arg4, unsigned arg5, unsigned arg6)
{
/* This function is called by a trampoline. The trampoline stows a
pointer to the ffi_closure object in gr7. We must save this
pointer in a place that will persist while we do our work. */
register ffi_closure *creg __asm__ ("gr7");
ffi_closure *closure = creg;
/* Arguments that don't fit in registers are found on the stack
at a fixed offset above the current frame pointer. */
register char *frame_pointer __asm__ ("fp");
char *stack_args = frame_pointer + 16;
/* Lay the register arguments down in a continuous chunk of memory. */
unsigned register_args[6] =
{ arg1, arg2, arg3, arg4, arg5, arg6 };
ffi_cif *cif = closure->cif;
ffi_type **arg_types = cif->arg_types;
void **avalue = alloca (cif->nargs * sizeof(void *));
char *ptr = (char *) register_args;
int i;
/* Find the address of each argument. */
for (i = 0; i < cif->nargs; i++)
{
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT8:
avalue[i] = ptr + 3;
break;
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
avalue[i] = ptr + 2;
break;
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_FLOAT:
avalue[i] = ptr;
break;
case FFI_TYPE_STRUCT:
avalue[i] = *(void**)ptr;
break;
default:
/* This is an 8-byte value. */
avalue[i] = ptr;
ptr += 4;
break;
}
ptr += 4;
/* If we've handled more arguments than fit in registers,
start looking at the those passed on the stack. */
if (ptr == ((char *)register_args + (6*4)))
ptr = stack_args;
}
/* Invoke the closure. */
if (cif->rtype->type == FFI_TYPE_STRUCT)
{
/* The caller allocates space for the return structure, and
passes a pointer to this space in gr3. Use this value directly
as the return value. */
register void *return_struct_ptr __asm__("gr3");
(closure->fun) (cif, return_struct_ptr, avalue, closure->user_data);
}
else
{
/* Allocate space for the return value and call the function. */
long long rvalue;
(closure->fun) (cif, &rvalue, avalue, closure->user_data);
/* Functions return 4-byte or smaller results in gr8. 8-byte
values also use gr9. We fill the both, even for small return
values, just to avoid a branch. */
asm ("ldi @(%0, #0), gr8" : : "r" (&rvalue));
asm ("ldi @(%0, #0), gr9" : : "r" (&((int *) &rvalue)[1]));
}
}
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
unsigned int *tramp = (unsigned int *) &closure->tramp[0];
unsigned long fn = (long) ffi_closure_eabi;
unsigned long cls = (long) codeloc;
int i;
fn = (unsigned long) ffi_closure_eabi;
tramp[0] = 0x8cfc0000 + (fn & 0xffff); /* setlos lo(fn), gr6 */
tramp[1] = 0x8efc0000 + (cls & 0xffff); /* setlos lo(cls), gr7 */
tramp[2] = 0x8cf80000 + (fn >> 16); /* sethi hi(fn), gr6 */
tramp[3] = 0x8ef80000 + (cls >> 16); /* sethi hi(cls), gr7 */
tramp[4] = 0x80300006; /* jmpl @(gr0, gr6) */
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
/* Cache flushing. */
for (i = 0; i < FFI_TRAMPOLINE_SIZE; i++)
__asm__ volatile ("dcf @(%0,%1)\n\tici @(%2,%1)" :: "r" (tramp), "r" (i),
"r" (codeloc));
return FFI_OK;
}