Hash :
2687cfc5
Author :
Date :
2023-02-02T09:10:00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2018-2023 Hood Chatham, Brion Vibber, Kleis Auke Wolthuizen, and others.
wasm32/emscripten Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdint.h>
#include <emscripten/emscripten.h>
#ifdef DEBUG_F
#define LOG_DEBUG(args...) \
console.warn(`====LIBFFI(line __LINE__)`, args)
#else
#define LOG_DEBUG(args...) 0
#endif
#define EM_JS_MACROS(ret, name, args, body...) EM_JS(ret, name, args, body)
#if WASM_BIGINT
EM_JS_DEPS(libffi, "$getWasmTableEntry,$setWasmTableEntry,$getEmptyTableSlot,$convertJsFunctionToWasm");
#define CALL_FUNCTION_POINTER(ptr, args...) \
(LOG_DEBUG("CALL_FUNC_PTR", ptr, args), \
getWasmTableEntry(ptr).apply(null, args))
#define JS_FUNCTION_TO_WASM convertJsFunctionToWasm
#else
EM_JS_DEPS(libffi, "$getWasmTableEntry,$setWasmTableEntry,$getEmptyTableSlot,$convertJsFunctionToWasm,$dynCall,$generateFuncType,$uleb128Encode");
#define CALL_FUNCTION_POINTER(ptr, args...) \
(LOG_DEBUG("CALL_FUNC_PTR", sig, ptr, args), \
dynCall(sig, ptr, args))
#define JS_FUNCTION_TO_WASM createLegalizerWrapper
#endif
// Signature calculations are not needed if WASM_BIGINT is present.
#if WASM_BIGINT
#define SIG(sig)
#else
#define SIG(sig) sig
#endif
#define DEREF_U8(addr, offset) HEAPU8[addr + offset]
#define DEREF_S8(addr, offset) HEAP8[addr + offset]
#define DEREF_U16(addr, offset) HEAPU16[(addr >> 1) + offset]
#define DEREF_S16(addr, offset) HEAP16[(addr >> 1) + offset]
#define DEREF_U32(addr, offset) HEAPU32[(addr >> 2) + offset]
#define DEREF_S32(addr, offset) HEAP32[(addr >> 2) + offset]
#define DEREF_F32(addr, offset) HEAPF32[(addr >> 2) + offset]
#define DEREF_F64(addr, offset) HEAPF64[(addr >> 3) + offset]
#if WASM_BIGINT
// We have HEAPU64 in this case.
#define DEREF_U64(addr, offset) HEAPU64[(addr >> 3) + offset]
#endif
#define CHECK_FIELD_OFFSET(struct, field, offset) \
_Static_assert( \
offsetof(struct, field) == offset, \
"Memory layout of '" #struct "' has changed: '" #field "' is in an unexpected location");
CHECK_FIELD_OFFSET(ffi_cif, abi, 4*0);
CHECK_FIELD_OFFSET(ffi_cif, nargs, 4*1);
CHECK_FIELD_OFFSET(ffi_cif, arg_types, 4*2);
CHECK_FIELD_OFFSET(ffi_cif, rtype, 4*3);
CHECK_FIELD_OFFSET(ffi_cif, nfixedargs, 4*6);
#define CIF__ABI(addr) DEREF_U32(addr, 0)
#define CIF__NARGS(addr) DEREF_U32(addr, 1)
#define CIF__ARGTYPES(addr) DEREF_U32(addr, 2)
#define CIF__RTYPE(addr) DEREF_U32(addr, 3)
#define CIF__NFIXEDARGS(addr) DEREF_U32(addr, 6)
CHECK_FIELD_OFFSET(ffi_type, size, 0);
CHECK_FIELD_OFFSET(ffi_type, alignment, 4);
CHECK_FIELD_OFFSET(ffi_type, type, 6);
CHECK_FIELD_OFFSET(ffi_type, elements, 8);
#define FFI_TYPE__SIZE(addr) DEREF_U32(addr, 0)
#define FFI_TYPE__ALIGN(addr) DEREF_U16(addr + 4, 0)
#define FFI_TYPE__TYPEID(addr) DEREF_U16(addr + 6, 0)
#define FFI_TYPE__ELEMENTS(addr) DEREF_U32(addr + 8, 0)
#define ALIGN_ADDRESS(addr, align) (addr &= (~((align) - 1)))
#define STACK_ALLOC(stack, size, align) ((stack -= (size)), ALIGN_ADDRESS(stack, align))
// Most wasm runtimes support at most 1000 Js trampoline args.
#define MAX_ARGS 1000
#include <stddef.h>
#define VARARGS_FLAG 1
#define FFI_OK_MACRO 0
_Static_assert(FFI_OK_MACRO == FFI_OK, "FFI_OK must be 0");
#define FFI_BAD_TYPEDEF_MACRO 1
_Static_assert(FFI_BAD_TYPEDEF_MACRO == FFI_BAD_TYPEDEF, "FFI_BAD_TYPEDEF must be 1");
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep(ffi_cif *cif)
{
if (cif->abi != FFI_WASM32_EMSCRIPTEN)
return FFI_BAD_ABI;
// This is called after ffi_prep_cif_machdep_var so we need to avoid
// overwriting cif->nfixedargs.
if (!(cif->flags & VARARGS_FLAG))
cif->nfixedargs = cif->nargs;
if (cif->nargs > MAX_ARGS)
return FFI_BAD_TYPEDEF;
if (cif->rtype->type == FFI_TYPE_COMPLEX)
return FFI_BAD_TYPEDEF;
// If they put the COMPLEX type into a struct we won't notice, but whatever.
for (int i = 0; i < cif->nargs; i++)
if (cif->arg_types[i]->type == FFI_TYPE_COMPLEX)
return FFI_BAD_TYPEDEF;
return FFI_OK;
}
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep_var(ffi_cif *cif, unsigned nfixedargs, unsigned ntotalargs)
{
cif->flags |= VARARGS_FLAG;
cif->nfixedargs = nfixedargs;
// The varargs takes up one extra argument
if (cif->nfixedargs + 1 > MAX_ARGS)
return FFI_BAD_TYPEDEF;
return FFI_OK;
}
/**
* A Javascript helper function. This takes an argument typ which is a wasm
* pointer to an ffi_type object. It returns a pair a type and a type id.
*
* - If it is not a struct, return its type and its typeid field.
* - If it is a struct of size >= 2, return the type and its typeid (which
* will be FFI_TYPE_STRUCT)
* - If it is a struct of size 0, return FFI_TYPE_VOID (????? this is broken)
* - If it is a struct of size 1, replace it with the single field and apply
* the same logic again to that.
*
* By always unboxing structs up front, we can avoid messy casework later.
*/
EM_JS_MACROS(
void,
unbox_small_structs, (ffi_type type_ptr), {
var type_id = FFI_TYPE__TYPEID(type_ptr);
while (type_id === FFI_TYPE_STRUCT) {
var elements = FFI_TYPE__ELEMENTS(type_ptr);
var first_element = DEREF_U32(elements, 0);
if (first_element === 0) {
type_id = FFI_TYPE_VOID;
break;
} else if (DEREF_U32(elements, 1) === 0) {
type_ptr = first_element;
type_id = FFI_TYPE__TYPEID(first_element);
} else {
break;
}
}
return [type_ptr, type_id];
})
EM_JS_MACROS(
void,
ffi_call_js, (ffi_cif *cif, ffi_fp fn, void *rvalue, void **avalue),
{
var abi = CIF__ABI(cif);
var nargs = CIF__NARGS(cif);
var nfixedargs = CIF__NFIXEDARGS(cif);
var arg_types_ptr = CIF__ARGTYPES(cif);
var rtype_unboxed = unbox_small_structs(CIF__RTYPE(cif));
var rtype_ptr = rtype_unboxed[0];
var rtype_id = rtype_unboxed[1];
var orig_stack_ptr = stackSave();
var cur_stack_ptr = orig_stack_ptr;
var args = [];
// Does our onwards call return by argument or normally? We return by argument
// no matter what.
var ret_by_arg = false;
if (rtype_id === FFI_TYPE_COMPLEX) {
throw new Error('complex ret marshalling nyi');
}
if (rtype_id < 0 || rtype_id > FFI_TYPE_LAST) {
throw new Error('Unexpected rtype ' + rtype_id);
}
// If the return type is a struct with multiple entries or a long double, the
// function takes an extra first argument which is a pointer to return value.
// Conveniently, we've already received a pointer to return value, so we can
// just use this. We also mark a flag that we don't need to convert the return
// value of the dynamic call back to C.
if (rtype_id === FFI_TYPE_LONGDOUBLE || rtype_id === FFI_TYPE_STRUCT) {
args.push(rvalue);
ret_by_arg = true;
}
SIG(var sig = "");
#if !WASM_BIGINT
switch(rtype_id) {
case FFI_TYPE_VOID:
SIG(sig = 'v');
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_LONGDOUBLE:
SIG(sig = 'vi');
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
SIG(sig = 'i');
break;
case FFI_TYPE_FLOAT:
SIG(sig = 'f');
break;
case FFI_TYPE_DOUBLE:
SIG(sig = 'd');
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
SIG(sig = 'j');
break;
}
#endif
// Accumulate a Javascript list of arguments for the Javascript wrapper for
// the wasm function. The Javascript wrapper does a type conversion from
// Javascript to C automatically, here we manually do the inverse conversion
// from C to Javascript.
for (var i = 0; i < nfixedargs; i++) {
var arg_ptr = DEREF_U32(avalue, i);
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
// It's okay here to always use unsigned integers as long as the size is 32
// or 64 bits. Smaller sizes get extended to 32 bits differently according
// to whether they are signed or unsigned.
switch (arg_type_id) {
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
args.push(DEREF_U32(arg_ptr, 0));
SIG(sig += 'i');
break;
case FFI_TYPE_FLOAT:
args.push(DEREF_F32(arg_ptr, 0));
SIG(sig += 'f');
break;
case FFI_TYPE_DOUBLE:
args.push(DEREF_F64(arg_ptr, 0));
SIG(sig += 'd');
break;
case FFI_TYPE_UINT8:
args.push(DEREF_U8(arg_ptr, 0));
SIG(sig += 'i');
break;
case FFI_TYPE_SINT8:
args.push(DEREF_S8(arg_ptr, 0));
SIG(sig += 'i');
break;
case FFI_TYPE_UINT16:
args.push(DEREF_U16(arg_ptr, 0));
SIG(sig += 'i');
break;
case FFI_TYPE_SINT16:
args.push(DEREF_S16(arg_ptr, 0));
SIG(sig += 'i');
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#if WASM_BIGINT
args.push(DEREF_U64(arg_ptr, 0));
#else
args.push(DEREF_U32(arg_ptr, 0));
args.push(DEREF_U32(arg_ptr, 1));
#endif
SIG(sig += 'j');
break;
case FFI_TYPE_LONGDOUBLE:
// long double is passed as a pair of BigInts.
#if WASM_BIGINT
args.push(DEREF_U64(arg_ptr, 0));
args.push(DEREF_U64(arg_ptr, 1));
#else
args.push(DEREF_U32(arg_ptr, 0));
args.push(DEREF_U32(arg_ptr, 1));
args.push(DEREF_U32(arg_ptr, 2));
args.push(DEREF_U32(arg_ptr, 3));
#endif
SIG(sig += "jj");
break;
case FFI_TYPE_STRUCT:
// Nontrivial structs are passed by pointer.
// Have to copy the struct onto the stack though because C ABI says it's
// call by value.
var size = FFI_TYPE__SIZE(arg_type_ptr);
var align = FFI_TYPE__ALIGN(arg_type_ptr);
STACK_ALLOC(cur_stack_ptr, size, align);
HEAP8.subarray(cur_stack_ptr, cur_stack_ptr+size).set(HEAP8.subarray(arg_ptr, arg_ptr + size));
args.push(cur_stack_ptr);
SIG(sig += 'i');
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex marshalling nyi');
default:
throw new Error('Unexpected type ' + arg_type_id);
}
}
// Wasm functions can't directly manipulate the callstack, so varargs
// arguments have to go on a separate stack. A varags function takes one extra
// argument which is a pointer to where on the separate stack the args are
// located. Because stacks are allocated backwards, we have to loop over the
// varargs backwards.
//
// We don't have any way of knowing how many args were actually passed, so we
// just always copy extra nonsense past the end. The ownwards call will know
// not to look at it.
if (nfixedargs != nargs) {
SIG(sig += 'i');
var struct_arg_info = [];
for (var i = nargs - 1; i >= nfixedargs; i--) {
var arg_ptr = DEREF_U32(avalue, i);
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
switch (arg_type_id) {
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
STACK_ALLOC(cur_stack_ptr, 1, 1);
DEREF_U8(cur_stack_ptr, 0) = DEREF_U8(arg_ptr, 0);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
STACK_ALLOC(cur_stack_ptr, 2, 2);
DEREF_U16(cur_stack_ptr, 0) = DEREF_U16(arg_ptr, 0);
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_FLOAT:
STACK_ALLOC(cur_stack_ptr, 4, 4);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
break;
case FFI_TYPE_DOUBLE:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
STACK_ALLOC(cur_stack_ptr, 8, 8);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
DEREF_U32(cur_stack_ptr, 1) = DEREF_U32(arg_ptr, 1);
break;
case FFI_TYPE_LONGDOUBLE:
STACK_ALLOC(cur_stack_ptr, 16, 8);
DEREF_U32(cur_stack_ptr, 0) = DEREF_U32(arg_ptr, 0);
DEREF_U32(cur_stack_ptr, 1) = DEREF_U32(arg_ptr, 1);
DEREF_U32(cur_stack_ptr, 2) = DEREF_U32(arg_ptr, 2);
DEREF_U32(cur_stack_ptr, 3) = DEREF_U32(arg_ptr, 3);
break;
case FFI_TYPE_STRUCT:
// Again, struct must be passed by pointer.
// But ABI is by value, so have to copy struct onto stack.
// Currently arguments are going onto stack so we can't put it there now. Come back for this.
STACK_ALLOC(cur_stack_ptr, 4, 4);
struct_arg_info.push([cur_stack_ptr, arg_ptr, FFI_TYPE__SIZE(arg_type_ptr), FFI_TYPE__ALIGN(arg_type_ptr)]);
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex arg marshalling nyi');
default:
throw new Error('Unexpected argtype ' + arg_type_id);
}
}
// extra normal argument which is the pointer to the varargs.
args.push(cur_stack_ptr);
// Now allocate variable struct args on stack too.
for (var i = 0; i < struct_arg_info.length; i++) {
var struct_info = struct_arg_info[i];
var arg_target = struct_info[0];
var arg_ptr = struct_info[1];
var size = struct_info[2];
var align = struct_info[3];
STACK_ALLOC(cur_stack_ptr, size, align);
HEAP8.subarray(cur_stack_ptr, cur_stack_ptr+size).set(HEAP8.subarray(arg_ptr, arg_ptr + size));
DEREF_U32(arg_target, 0) = cur_stack_ptr;
}
}
stackRestore(cur_stack_ptr);
stackAlloc(0); // stackAlloc enforces alignment invariants on the stack pointer
var result = CALL_FUNCTION_POINTER(fn, args);
// Put the stack pointer back (we moved it if there were any struct args or we
// made a varargs call)
stackRestore(orig_stack_ptr);
// We need to return by argument. If return value was a nontrivial struct or
// long double, the onwards call already put the return value in rvalue
if (ret_by_arg) {
return;
}
// Otherwise the result was automatically converted from C into Javascript and
// we need to manually convert it back to C.
switch (rtype_id) {
case FFI_TYPE_VOID:
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
DEREF_U32(rvalue, 0) = result;
break;
case FFI_TYPE_FLOAT:
DEREF_F32(rvalue, 0) = result;
break;
case FFI_TYPE_DOUBLE:
DEREF_F64(rvalue, 0) = result;
break;
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
DEREF_U8(rvalue, 0) = result;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
DEREF_U16(rvalue, 0) = result;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
#if WASM_BIGINT
DEREF_U64(rvalue, 0) = result;
#else
DEREF_U32(rvalue, 0) = result;
DEREF_U32(rvalue, 1) = getTempRet0();
#endif
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex ret marshalling nyi');
default:
throw new Error('Unexpected rtype ' + rtype_id);
}
});
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) {
ffi_call_js(cif, fn, rvalue, avalue);
}
CHECK_FIELD_OFFSET(ffi_closure, ftramp, 4*0);
CHECK_FIELD_OFFSET(ffi_closure, cif, 4*1);
CHECK_FIELD_OFFSET(ffi_closure, fun, 4*2);
CHECK_FIELD_OFFSET(ffi_closure, user_data, 4*3);
#define CLOSURE__wrapper(addr) DEREF_U32(addr, 0)
#define CLOSURE__cif(addr) DEREF_U32(addr, 1)
#define CLOSURE__fun(addr) DEREF_U32(addr, 2)
#define CLOSURE__user_data(addr) DEREF_U32(addr, 3)
EM_JS_MACROS(void *, ffi_closure_alloc_js, (size_t size, void **code), {
var closure = _malloc(size);
var index = getEmptyTableSlot();
DEREF_U32(code, 0) = index;
CLOSURE__wrapper(closure) = index;
return closure;
})
void * __attribute__ ((visibility ("default")))
ffi_closure_alloc(size_t size, void **code) {
return ffi_closure_alloc_js(size, code);
}
EM_JS_MACROS(void, ffi_closure_free_js, (void *closure), {
var index = CLOSURE__wrapper(closure);
freeTableIndexes.push(index);
_free(closure);
})
void __attribute__ ((visibility ("default")))
ffi_closure_free(void *closure) {
return ffi_closure_free_js(closure);
}
#if !WASM_BIGINT
// When !WASM_BIGINT, we assume there is no JS bigint integration, so JavaScript
// functions cannot take 64 bit integer arguments.
//
// We need to make our own wasm legalizer adaptor that splits 64 bit integer
// arguments and then calls the JavaScript trampoline, then the JavaScript
// trampoline reassembles them, calls the closure, then splits the result (if
// it's a 64 bit integer) and the adaptor puts it back together.
//
// This is basically the reverse of the Emscripten function
// createDyncallWrapper.
EM_JS(void, createLegalizerWrapper, (int trampoline, int sig), {
if(!sig.includes("j")) {
return convertJsFunctionToWasm(trampoline, sig);
}
var sections = [];
var prelude = [
0x00, 0x61, 0x73, 0x6d, // magic ("\0asm")
0x01, 0x00, 0x00, 0x00, // version: 1
];
sections.push(prelude);
var wrappersig = [
// if return type is j, we will put the upper 32 bits into tempRet0.
sig[0].replace("j", "i"),
// in the rest of the argument list, one 64 bit integer is legalized into
// two 32 bit integers.
sig.slice(1).replace(/j/g, "ii"),
].join("");
var typeSectionBody = [
0x03, // number of types = 3
];
generateFuncType(wrappersig, typeSectionBody); // The signature of the wrapper we are generating
generateFuncType(sig, typeSectionBody); // the signature of the function pointer we will call
generateFuncType("i", typeSectionBody); // the signature of getTempRet0
var typeSection = [0x01 /* Type section code */];
uleb128Encode(typeSectionBody.length, typeSection); // length of section in bytes
typeSection.push.apply(typeSection, typeSectionBody);
sections.push(typeSection);
var importSection = [
0x02, // import section code
0x0d, // length of section in bytes
0x02, // number of imports = 2
// Import the getTempRet0 function, which we will call "r"
0x01, 0x65, // name "e"
0x01, 0x72, // name "r"
0x00, // importing a function
0x02, // type 2 = () -> i32
// Import the wrapped function, which we will call "f"
0x01, 0x65, // name "e"
0x01, 0x66, // name "f"
0x00, // importing a function
0x00, // type 0 = wrappersig
];
sections.push(importSection);
var functionSection = [
0x03, // function section code
0x02, // length of section in bytes
0x01, // number of functions = 1
0x01, // type 1 = sig
];
sections.push(functionSection);
var exportSection = [
0x07, // export section code
0x05, // length of section in bytes
0x01, // One export
0x01, 0x66, // name "f"
0x00, // type: function
0x02, // function index 2 = the wrapper function
];
sections.push(exportSection);
var convert_code = [];
convert_code.push(0x00); // no local variables (except the arguments)
function localGet(j) {
convert_code.push(0x20); // local.get
uleb128Encode(j, convert_code);
}
for (var i = 1; i < sig.length; i++) {
if (sig[i] == "j") {
localGet(i - 1);
convert_code.push(
0xa7 // i32.wrap_i64
);
localGet(i - 1);
convert_code.push(
0x42, 0x20, // i64.const 32
0x88, // i64.shr_u
0xa7 // i32.wrap_i64
);
} else {
localGet(i - 1);
}
}
convert_code.push(
0x10, 0x01 // call f
);
if (sig[0] === "j") {
// Need to reassemble a 64 bit integer. Lower 32 bits is on stack. Upper 32
// bits we get from getTempRet0
convert_code.push(
0xad, // i64.extend_i32_unsigned
0x10, 0x00, // Call function 0 (r = getTempRet0)
// join lower 32 bits and upper 32 bits
0xac, // i64.extend_i32_signed
0x42, 0x20, // i64.const 32
0x86, // i64.shl,
0x84 // i64.or
);
}
convert_code.push(0x0b); // end
var codeBody = [0x01]; // one code
uleb128Encode(convert_code.length, codeBody);
codeBody.push.apply(codeBody, convert_code);
var codeSection = [0x0a /* Code section code */];
uleb128Encode(codeBody.length, codeSection);
codeSection.push.apply(codeSection, codeBody);
sections.push(codeSection);
var bytes = new Uint8Array([].concat.apply([], sections));
// We can compile this wasm module synchronously because it is small.
var module = new WebAssembly.Module(bytes);
var instance = new WebAssembly.Instance(module, {
e: {
r: getTempRet0,
f: trampoline,
},
});
return instance.exports.f;
});
#endif
EM_JS_MACROS(
ffi_status,
ffi_prep_closure_loc_js,
(ffi_closure *closure, ffi_cif *cif, void *fun, void *user_data, void *codeloc),
{
var abi = CIF__ABI(cif);
var nargs = CIF__NARGS(cif);
var nfixedargs = CIF__NFIXEDARGS(cif);
var arg_types_ptr = CIF__ARGTYPES(cif);
var rtype_unboxed = unbox_small_structs(CIF__RTYPE(cif));
var rtype_ptr = rtype_unboxed[0];
var rtype_id = rtype_unboxed[1];
// First construct the signature of the javascript trampoline we are going to create.
// Important: this is the signature for calling us, the onward call always has sig viiii.
var sig;
var ret_by_arg = false;
switch (rtype_id) {
case FFI_TYPE_VOID:
sig = 'v';
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_LONGDOUBLE:
// Return via a first pointer argument.
sig = 'vi';
ret_by_arg = true;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
sig = 'i';
break;
case FFI_TYPE_FLOAT:
sig = 'f';
break;
case FFI_TYPE_DOUBLE:
sig = 'd';
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
sig = 'j';
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex ret marshalling nyi');
default:
throw new Error('Unexpected rtype ' + rtype_id);
}
var unboxed_arg_type_id_list = [];
var unboxed_arg_type_info_list = [];
for (var i = 0; i < nargs; i++) {
var arg_unboxed = unbox_small_structs(DEREF_U32(arg_types_ptr, i));
var arg_type_ptr = arg_unboxed[0];
var arg_type_id = arg_unboxed[1];
unboxed_arg_type_id_list.push(arg_type_id);
unboxed_arg_type_info_list.push([FFI_TYPE__SIZE(arg_type_ptr), FFI_TYPE__ALIGN(arg_type_ptr)]);
}
for (var i = 0; i < nfixedargs; i++) {
switch (unboxed_arg_type_id_list[i]) {
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
case FFI_TYPE_STRUCT:
sig += 'i';
break;
case FFI_TYPE_FLOAT:
sig += 'f';
break;
case FFI_TYPE_DOUBLE:
sig += 'd';
break;
case FFI_TYPE_LONGDOUBLE:
sig += 'jj';
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
sig += 'j';
break;
case FFI_TYPE_COMPLEX:
throw new Error('complex marshalling nyi');
default:
throw new Error('Unexpected argtype ' + arg_type_id);
}
}
if (nfixedargs < nargs) {
// extra pointer to varargs stack
sig += "i";
}
LOG_DEBUG("CREATE_CLOSURE", "sig:", sig);
function trampoline() {
var args = Array.prototype.slice.call(arguments);
var size = 0;
var orig_stack_ptr = stackSave();
var cur_ptr = orig_stack_ptr;
var ret_ptr;
var jsarg_idx = 0;
// Should we return by argument or not? The onwards call returns by argument
// no matter what. (Warning: ret_by_arg means the opposite in ffi_call)
if (ret_by_arg) {
ret_ptr = args[jsarg_idx++];
} else {
// We might return 4 bytes or 8 bytes, allocate 8 just in case.
STACK_ALLOC(cur_ptr, 8, 8);
ret_ptr = cur_ptr;
}
cur_ptr -= 4 * nargs;
var args_ptr = cur_ptr;
var carg_idx = 0;
// Here we either have the actual argument, or a pair of BigInts for long
// double, or a pointer to struct. We have to store into args_ptr[i] a
// pointer to the ith argument. If the argument is a struct, just store the
// pointer. Otherwise allocate stack space and copy the js argument onto the
// stack.
for (; carg_idx < nfixedargs; carg_idx++) {
// jsarg_idx might start out as 0 or 1 depending on ret_by_arg
// it advances an extra time for long double
var cur_arg = args[jsarg_idx++];
var arg_type_info = unboxed_arg_type_info_list[carg_idx];
var arg_size = arg_type_info[0];
var arg_align = arg_type_info[1];
var arg_type_id = unboxed_arg_type_id_list[carg_idx];
switch (arg_type_id) {
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
// Bad things happen if we don't align to 4 here
STACK_ALLOC(cur_ptr, 1, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U8(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
// Bad things happen if we don't align to 4 here
STACK_ALLOC(cur_ptr, 2, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U16(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
STACK_ALLOC(cur_ptr, 4, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_U32(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_STRUCT:
// cur_arg is already a pointer to struct
// copy it onto stack to pass by value
STACK_ALLOC(cur_ptr, arg_size, arg_align);
HEAP8.subarray(cur_ptr, cur_ptr + arg_size).set(HEAP8.subarray(cur_arg, cur_arg + arg_size));
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
break;
case FFI_TYPE_FLOAT:
STACK_ALLOC(cur_ptr, 4, 4);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_F32(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_DOUBLE:
STACK_ALLOC(cur_ptr, 8, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
DEREF_F64(cur_ptr, 0) = cur_arg;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
STACK_ALLOC(cur_ptr, 8, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
#if WASM_BIGINT
DEREF_U64(cur_ptr, 0) = cur_arg;
#else
// Bigint arg was split by legalizer adaptor
DEREF_U32(cur_ptr, 0) = cur_arg;
cur_arg = args[jsarg_idx++];
DEREF_U32(cur_ptr, 1) = cur_arg;
#endif
break;
case FFI_TYPE_LONGDOUBLE:
STACK_ALLOC(cur_ptr, 16, 8);
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
#if WASM_BIGINT
DEREF_U64(cur_ptr, 0) = cur_arg;
cur_arg = args[jsarg_idx++];
DEREF_U64(cur_ptr, 1) = cur_arg;
#else
// Was split by legalizer adaptor
DEREF_U32(cur_ptr, 0) = cur_arg;
cur_arg = args[jsarg_idx++];
DEREF_U32(cur_ptr, 1) = cur_arg;
cur_arg = args[jsarg_idx++];
DEREF_U32(cur_ptr, 2) = cur_arg;
cur_arg = args[jsarg_idx++];
DEREF_U32(cur_ptr, 3) = cur_arg;
#endif
break;
}
}
// If its a varargs call, last js argument is a pointer to the varargs.
var varargs = args[args.length - 1];
// We have no way of knowing how many varargs were actually provided, this
// fills the rest of the stack space allocated with nonsense. The onward
// call will know to ignore the nonsense.
// We either have a pointer to the argument if the argument is not a struct
// or a pointer to pointer to struct. We need to store a pointer to the
// argument into args_ptr[i]
for (; carg_idx < nargs; carg_idx++) {
var arg_type_id = unboxed_arg_type_id_list[carg_idx];
var arg_type_info = unboxed_arg_type_info_list[carg_idx];
var arg_size = arg_type_info[0];
var arg_align = arg_type_info[1];
if (arg_type_id === FFI_TYPE_STRUCT) {
// In this case varargs is a pointer to pointer to struct so we need to
// deref once
var struct_ptr = DEREF_U32(varargs, 0);
STACK_ALLOC(cur_ptr, arg_size, arg_align);
HEAP8.subarray(cur_ptr, cur_ptr + arg_size).set(HEAP8.subarray(struct_ptr, struct_ptr + arg_size));
DEREF_U32(args_ptr, carg_idx) = cur_ptr;
} else {
DEREF_U32(args_ptr, carg_idx) = varargs;
}
varargs += 4;
}
stackRestore(cur_ptr);
stackAlloc(0); // stackAlloc enforces alignment invariants on the stack pointer
LOG_DEBUG("CALL_CLOSURE", "closure:", closure, "fptr", CLOSURE__fun(closure), "cif", CLOSURE__cif(closure));
getWasmTableEntry(CLOSURE__fun(closure))(
CLOSURE__cif(closure), ret_ptr, args_ptr,
CLOSURE__user_data(closure)
);
stackRestore(orig_stack_ptr);
// If we aren't supposed to return by argument, figure out what to return.
if (!ret_by_arg) {
switch (sig[0]) {
case "i":
return DEREF_U32(ret_ptr, 0);
case "j":
#if WASM_BIGINT
return DEREF_U64(ret_ptr, 0);
#else
// Split the return i64, set the upper 32 bits into tempRet0 and return
// the lower 32 bits.
setTempRet0(DEREF_U32(ret_ptr, 1));
return DEREF_U32(ret_ptr, 0);
#endif
case "d":
return DEREF_F64(ret_ptr, 0);
case "f":
return DEREF_F32(ret_ptr, 0);
}
}
}
try {
var wasm_trampoline = JS_FUNCTION_TO_WASM(trampoline, sig);
} catch(e) {
return FFI_BAD_TYPEDEF_MACRO;
}
setWasmTableEntry(codeloc, wasm_trampoline);
CLOSURE__cif(closure) = cif;
CLOSURE__fun(closure) = fun;
CLOSURE__user_data(closure) = user_data;
return FFI_OK_MACRO;
})
// EM_JS does not correctly handle function pointer arguments, so we need a
// helper
ffi_status ffi_prep_closure_loc(ffi_closure *closure, ffi_cif *cif,
void (*fun)(ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc) {
if (cif->abi != FFI_WASM32_EMSCRIPTEN)
return FFI_BAD_ABI;
return ffi_prep_closure_loc_js(closure, cif, (void *)fun, user_data,
codeloc);
}