Hash :
f1d10cab
Author :
Thomas de Grivel
Date :
2023-08-04T13:56:10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/* -----------------------------------------------------------------------
ffi64.c - Copyright (c) 2011, 2018, 2022 Anthony Green
Copyright (c) 2013 The Written Word, Inc.
Copyright (c) 2008, 2010 Red Hat, Inc.
Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de>
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdint.h>
#include <tramp.h>
#include "internal64.h"
#ifdef __x86_64__
#define MAX_GPR_REGS 6
#define MAX_SSE_REGS 8
#if defined(__INTEL_COMPILER)
#include "xmmintrin.h"
#define UINT128 __m128
#else
#if defined(__SUNPRO_C)
#include <sunmedia_types.h>
#define UINT128 __m128i
#else
#define UINT128 __int128_t
#endif
#endif
union big_int_union
{
UINT32 i32;
UINT64 i64;
UINT128 i128;
};
struct register_args
{
/* Registers for argument passing. */
UINT64 gpr[MAX_GPR_REGS];
union big_int_union sse[MAX_SSE_REGS];
UINT64 rax; /* ssecount */
UINT64 r10; /* static chain */
};
extern void ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void)) FFI_HIDDEN;
/* All reference to register classes here is identical to the code in
gcc/config/i386/i386.c. Do *not* change one without the other. */
/* Register class used for passing given 64bit part of the argument.
These represent classes as documented by the PS ABI, with the
exception of SSESF, SSEDF classes, that are basically SSE class,
just gcc will use SF or DFmode move instead of DImode to avoid
reformatting penalties.
Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves
whenever possible (upper half does contain padding). */
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_COMPLEX_X87_CLASS,
X86_64_MEMORY_CLASS
};
#define MAX_CLASSES 4
#define SSE_CLASS_P(X) ((X) >= X86_64_SSE_CLASS && X <= X86_64_SSEUP_CLASS)
/* x86-64 register passing implementation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. */
/* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. */
static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
/* Rule #1: If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
MEMORY is used. */
if (class1 == X86_64_X87_CLASS
|| class1 == X86_64_X87UP_CLASS
|| class1 == X86_64_COMPLEX_X87_CLASS
|| class2 == X86_64_X87_CLASS
|| class2 == X86_64_X87UP_CLASS
|| class2 == X86_64_COMPLEX_X87_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #6: Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
See the x86-64 PS ABI for details.
*/
static size_t
classify_argument (ffi_type *type, enum x86_64_reg_class classes[],
size_t byte_offset)
{
switch (type->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_POINTER:
do_integer:
{
size_t size = byte_offset + type->size;
if (size <= 4)
{
classes[0] = X86_64_INTEGERSI_CLASS;
return 1;
}
else if (size <= 8)
{
classes[0] = X86_64_INTEGER_CLASS;
return 1;
}
else if (size <= 12)
{
classes[0] = X86_64_INTEGER_CLASS;
classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else if (size <= 16)
{
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
return 2;
}
else
FFI_ASSERT (0);
}
case FFI_TYPE_FLOAT:
if (!(byte_offset % 8))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case FFI_TYPE_DOUBLE:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
#endif
case FFI_TYPE_STRUCT:
{
const size_t UNITS_PER_WORD = 8;
size_t words = (type->size + byte_offset + UNITS_PER_WORD - 1)
/ UNITS_PER_WORD;
ffi_type **ptr;
unsigned int i;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* If the struct is larger than 32 bytes, pass it on the stack. */
if (type->size > 32)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
signalize memory class, so handle it as special case. */
if (!words)
{
case FFI_TYPE_VOID:
classes[0] = X86_64_NO_CLASS;
return 1;
}
/* Merge the fields of structure. */
for (ptr = type->elements; *ptr != NULL; ptr++)
{
size_t num, pos;
byte_offset = FFI_ALIGN (byte_offset, (*ptr)->alignment);
num = classify_argument (*ptr, subclasses, byte_offset % 8);
if (num == 0)
return 0;
pos = byte_offset / 8;
for (i = 0; i < num && (i + pos) < words; i++)
{
size_t pos = byte_offset / 8;
classes[i + pos] =
merge_classes (subclasses[i], classes[i + pos]);
}
byte_offset += (*ptr)->size;
}
if (words > 2)
{
/* When size > 16 bytes, if the first one isn't
X86_64_SSE_CLASS or any other ones aren't
X86_64_SSEUP_CLASS, everything should be passed in
memory. */
if (classes[0] != X86_64_SSE_CLASS)
return 0;
for (i = 1; i < words; i++)
if (classes[i] != X86_64_SSEUP_CLASS)
return 0;
}
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */
if (i > 1 && classes[i] == X86_64_SSEUP_CLASS
&& classes[i - 1] != X86_64_SSE_CLASS
&& classes[i - 1] != X86_64_SSEUP_CLASS)
{
/* The first one should never be X86_64_SSEUP_CLASS. */
FFI_ASSERT (i != 0);
classes[i] = X86_64_SSE_CLASS;
}
/* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
everything should be passed in memory. */
if (i > 1 && classes[i] == X86_64_X87UP_CLASS
&& (classes[i - 1] != X86_64_X87_CLASS))
{
/* The first one should never be X86_64_X87UP_CLASS. */
FFI_ASSERT (i != 0);
return 0;
}
}
return words;
}
case FFI_TYPE_COMPLEX:
{
ffi_type *inner = type->elements[0];
switch (inner->type)
{
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
goto do_integer;
case FFI_TYPE_FLOAT:
classes[0] = X86_64_SSE_CLASS;
if (byte_offset % 8)
{
classes[1] = X86_64_SSESF_CLASS;
return 2;
}
return 1;
case FFI_TYPE_DOUBLE:
classes[0] = classes[1] = X86_64_SSEDF_CLASS;
return 2;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
classes[0] = X86_64_COMPLEX_X87_CLASS;
return 1;
#endif
}
}
}
abort();
}
/* Examine the argument and return set number of register required in each
class. Return zero iff parameter should be passed in memory, otherwise
the number of registers. */
static size_t
examine_argument (ffi_type *type, enum x86_64_reg_class classes[MAX_CLASSES],
_Bool in_return, int *pngpr, int *pnsse)
{
size_t n;
unsigned int i;
int ngpr, nsse;
n = classify_argument (type, classes, 0);
if (n == 0)
return 0;
ngpr = nsse = 0;
for (i = 0; i < n; ++i)
switch (classes[i])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
ngpr++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
nsse++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
case X86_64_COMPLEX_X87_CLASS:
return in_return != 0;
default:
abort ();
}
*pngpr = ngpr;
*pnsse = nsse;
return n;
}
/* Perform machine dependent cif processing. */
#ifndef __ILP32__
extern ffi_status
ffi_prep_cif_machdep_efi64(ffi_cif *cif);
#endif
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep (ffi_cif *cif)
{
int gprcount, ssecount, i, avn, ngpr, nsse;
unsigned flags;
enum x86_64_reg_class classes[MAX_CLASSES];
size_t bytes, n, rtype_size;
ffi_type *rtype;
#ifndef __ILP32__
if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64)
return ffi_prep_cif_machdep_efi64(cif);
#endif
if (cif->abi != FFI_UNIX64)
return FFI_BAD_ABI;
gprcount = ssecount = 0;
rtype = cif->rtype;
rtype_size = rtype->size;
switch (rtype->type)
{
case FFI_TYPE_VOID:
flags = UNIX64_RET_VOID;
break;
case FFI_TYPE_UINT8:
flags = UNIX64_RET_UINT8;
break;
case FFI_TYPE_SINT8:
flags = UNIX64_RET_SINT8;
break;
case FFI_TYPE_UINT16:
flags = UNIX64_RET_UINT16;
break;
case FFI_TYPE_SINT16:
flags = UNIX64_RET_SINT16;
break;
case FFI_TYPE_UINT32:
flags = UNIX64_RET_UINT32;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
flags = UNIX64_RET_SINT32;
break;
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
flags = UNIX64_RET_INT64;
break;
case FFI_TYPE_POINTER:
flags = (sizeof(void *) == 4 ? UNIX64_RET_UINT32 : UNIX64_RET_INT64);
break;
case FFI_TYPE_FLOAT:
flags = UNIX64_RET_XMM32;
break;
case FFI_TYPE_DOUBLE:
flags = UNIX64_RET_XMM64;
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
flags = UNIX64_RET_X87;
break;
#endif
case FFI_TYPE_STRUCT:
n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse);
if (n == 0)
{
/* The return value is passed in memory. A pointer to that
memory is the first argument. Allocate a register for it. */
gprcount++;
/* We don't have to do anything in asm for the return. */
flags = UNIX64_RET_VOID | UNIX64_FLAG_RET_IN_MEM;
}
else
{
_Bool sse0 = SSE_CLASS_P (classes[0]);
if (rtype_size == 4 && sse0)
flags = UNIX64_RET_XMM32;
else if (rtype_size == 8)
flags = sse0 ? UNIX64_RET_XMM64 : UNIX64_RET_INT64;
else
{
_Bool sse1 = n == 2 && SSE_CLASS_P (classes[1]);
if (sse0 && sse1)
flags = UNIX64_RET_ST_XMM0_XMM1;
else if (sse0)
flags = UNIX64_RET_ST_XMM0_RAX;
else if (sse1)
flags = UNIX64_RET_ST_RAX_XMM0;
else
flags = UNIX64_RET_ST_RAX_RDX;
flags |= rtype_size << UNIX64_SIZE_SHIFT;
}
}
break;
case FFI_TYPE_COMPLEX:
switch (rtype->elements[0]->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_INT:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
flags = UNIX64_RET_ST_RAX_RDX | ((unsigned) rtype_size << UNIX64_SIZE_SHIFT);
break;
case FFI_TYPE_FLOAT:
flags = UNIX64_RET_XMM64;
break;
case FFI_TYPE_DOUBLE:
flags = UNIX64_RET_ST_XMM0_XMM1 | (16 << UNIX64_SIZE_SHIFT);
break;
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
case FFI_TYPE_LONGDOUBLE:
flags = UNIX64_RET_X87_2;
break;
#endif
default:
return FFI_BAD_TYPEDEF;
}
break;
default:
return FFI_BAD_TYPEDEF;
}
/* Go over all arguments and determine the way they should be passed.
If it's in a register and there is space for it, let that be so. If
not, add it's size to the stack byte count. */
for (bytes = 0, i = 0, avn = cif->nargs; i < avn; i++)
{
if (examine_argument (cif->arg_types[i], classes, 0, &ngpr, &nsse) == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = cif->arg_types[i]->alignment;
if (align < 8)
align = 8;
bytes = FFI_ALIGN (bytes, align);
bytes += cif->arg_types[i]->size;
}
else
{
gprcount += ngpr;
ssecount += nsse;
}
}
if (ssecount)
flags |= UNIX64_FLAG_XMM_ARGS;
cif->flags = flags;
cif->bytes = (unsigned) FFI_ALIGN (bytes, 8);
return FFI_OK;
}
static void
ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue,
void **avalue, void *closure)
{
enum x86_64_reg_class classes[MAX_CLASSES];
char *stack, *argp;
ffi_type **arg_types;
int gprcount, ssecount, ngpr, nsse, i, avn, flags;
struct register_args *reg_args;
/* Can't call 32-bit mode from 64-bit mode. */
FFI_ASSERT (cif->abi == FFI_UNIX64);
/* If the return value is a struct and we don't have a return value
address then we need to make one. Otherwise we can ignore it. */
flags = cif->flags;
if (rvalue == NULL)
{
if (flags & UNIX64_FLAG_RET_IN_MEM)
rvalue = alloca (cif->rtype->size);
else
flags = UNIX64_RET_VOID;
}
arg_types = cif->arg_types;
avn = cif->nargs;
/* Allocate the space for the arguments, plus 4 words of temp space. */
stack = alloca (sizeof (struct register_args) + cif->bytes + 4*8);
reg_args = (struct register_args *) stack;
argp = stack + sizeof (struct register_args);
reg_args->r10 = (uintptr_t) closure;
gprcount = ssecount = 0;
/* If the return value is passed in memory, add the pointer as the
first integer argument. */
if (flags & UNIX64_FLAG_RET_IN_MEM)
reg_args->gpr[gprcount++] = (unsigned long) rvalue;
for (i = 0; i < avn; ++i)
{
size_t n, size = arg_types[i]->size;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) FFI_ALIGN (argp, align);
memcpy (argp, avalue[i], size);
argp += size;
}
else
{
/* The argument is passed entirely in registers. */
char *a = (char *) avalue[i];
unsigned int j;
for (j = 0; j < n; j++, a += 8, size -= 8)
{
switch (classes[j])
{
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
/* Sign-extend integer arguments passed in general
purpose registers, to cope with the fact that
LLVM incorrectly assumes that this will be done
(the x86-64 PS ABI does not specify this). */
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
reg_args->gpr[gprcount] = (SINT64) *((SINT8 *) a);
break;
case FFI_TYPE_SINT16:
reg_args->gpr[gprcount] = (SINT64) *((SINT16 *) a);
break;
case FFI_TYPE_SINT32:
reg_args->gpr[gprcount] = (SINT64) *((SINT32 *) a);
break;
default:
reg_args->gpr[gprcount] = 0;
memcpy (®_args->gpr[gprcount], a, size);
}
gprcount++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSEDF_CLASS:
memcpy (®_args->sse[ssecount++].i64, a, sizeof(UINT64));
break;
case X86_64_SSESF_CLASS:
memcpy (®_args->sse[ssecount++].i32, a, sizeof(UINT32));
break;
default:
abort();
}
}
}
}
reg_args->rax = ssecount;
ffi_call_unix64 (stack, cif->bytes + sizeof (struct register_args),
flags, rvalue, fn);
}
#ifndef __ILP32__
extern void
ffi_call_efi64(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue);
#endif
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
ffi_type **arg_types = cif->arg_types;
int i, nargs = cif->nargs;
const int max_reg_struct_size = cif->abi == FFI_GNUW64 ? 8 : 16;
/* If we have any large structure arguments, make a copy so we are passing
by value. */
for (i = 0; i < nargs; i++)
{
ffi_type *at = arg_types[i];
int size = at->size;
if (at->type == FFI_TYPE_STRUCT && size > max_reg_struct_size)
{
char *argcopy = alloca (size);
memcpy (argcopy, avalue[i], size);
avalue[i] = argcopy;
}
}
#ifndef __ILP32__
if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64)
{
ffi_call_efi64(cif, fn, rvalue, avalue);
return;
}
#endif
ffi_call_int (cif, fn, rvalue, avalue, NULL);
}
#ifdef FFI_GO_CLOSURES
#ifndef __ILP32__
extern void
ffi_call_go_efi64(ffi_cif *cif, void (*fn)(void), void *rvalue,
void **avalue, void *closure);
#endif
void
ffi_call_go (ffi_cif *cif, void (*fn)(void), void *rvalue,
void **avalue, void *closure)
{
#ifndef __ILP32__
if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64)
{
ffi_call_go_efi64(cif, fn, rvalue, avalue, closure);
return;
}
#endif
ffi_call_int (cif, fn, rvalue, avalue, closure);
}
#endif /* FFI_GO_CLOSURES */
extern void ffi_closure_unix64(void) FFI_HIDDEN;
extern void ffi_closure_unix64_sse(void) FFI_HIDDEN;
#if defined(FFI_EXEC_STATIC_TRAMP)
extern void ffi_closure_unix64_alt(void) FFI_HIDDEN;
extern void ffi_closure_unix64_sse_alt(void) FFI_HIDDEN;
#endif
#ifndef __ILP32__
extern ffi_status
ffi_prep_closure_loc_efi64(ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc);
#endif
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
static const unsigned char trampoline[24] = {
/* endbr64 */
0xf3, 0x0f, 0x1e, 0xfa,
/* leaq -0xb(%rip),%r10 # 0x0 */
0x4c, 0x8d, 0x15, 0xf5, 0xff, 0xff, 0xff,
/* jmpq *0x7(%rip) # 0x18 */
0xff, 0x25, 0x07, 0x00, 0x00, 0x00,
/* nopl 0(%rax) */
0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00
};
void (*dest)(void);
char *tramp = closure->tramp.tramp;
#ifndef __ILP32__
if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64)
return ffi_prep_closure_loc_efi64(closure, cif, fun, user_data, codeloc);
#endif
if (cif->abi != FFI_UNIX64)
return FFI_BAD_ABI;
if (cif->flags & UNIX64_FLAG_XMM_ARGS)
dest = ffi_closure_unix64_sse;
else
dest = ffi_closure_unix64;
#if defined(FFI_EXEC_STATIC_TRAMP)
if (ffi_tramp_is_present(closure))
{
/* Initialize the static trampoline's parameters. */
if (dest == ffi_closure_unix64_sse)
dest = ffi_closure_unix64_sse_alt;
else
dest = ffi_closure_unix64_alt;
ffi_tramp_set_parms (closure->tramp.ftramp, dest, closure);
goto out;
}
#endif
/* Initialize the dynamic trampoline. */
memcpy (tramp, trampoline, sizeof(trampoline));
*(UINT64 *)(tramp + sizeof (trampoline)) = (uintptr_t)dest;
#if defined(FFI_EXEC_STATIC_TRAMP)
out:
#endif
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
int FFI_HIDDEN
ffi_closure_unix64_inner(ffi_cif *cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *rvalue,
struct register_args *reg_args,
char *argp)
{
void **avalue;
ffi_type **arg_types;
long i, avn;
int gprcount, ssecount, ngpr, nsse;
int flags;
avn = cif->nargs;
flags = cif->flags;
avalue = alloca(avn * sizeof(void *));
gprcount = ssecount = 0;
if (flags & UNIX64_FLAG_RET_IN_MEM)
{
/* On return, %rax will contain the address that was passed
by the caller in %rdi. */
void *r = (void *)(uintptr_t)reg_args->gpr[gprcount++];
*(void **)rvalue = r;
rvalue = r;
flags = (sizeof(void *) == 4 ? UNIX64_RET_UINT32 : UNIX64_RET_INT64);
}
arg_types = cif->arg_types;
for (i = 0; i < avn; ++i)
{
enum x86_64_reg_class classes[MAX_CLASSES];
size_t n;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) FFI_ALIGN (argp, align);
avalue[i] = argp;
argp += arg_types[i]->size;
}
/* If the argument is in a single register, or two consecutive
integer registers, then we can use that address directly. */
else if (n == 1
|| (n == 2 && !(SSE_CLASS_P (classes[0])
|| SSE_CLASS_P (classes[1]))))
{
/* The argument is in a single register. */
if (SSE_CLASS_P (classes[0]))
{
avalue[i] = ®_args->sse[ssecount];
ssecount += n;
}
else
{
avalue[i] = ®_args->gpr[gprcount];
gprcount += n;
}
}
/* Otherwise, allocate space to make them consecutive. */
else
{
char *a = alloca (16);
unsigned int j;
avalue[i] = a;
for (j = 0; j < n; j++, a += 8)
{
if (SSE_CLASS_P (classes[j]))
memcpy (a, ®_args->sse[ssecount++], 8);
else
memcpy (a, ®_args->gpr[gprcount++], 8);
}
}
}
/* Invoke the closure. */
fun (cif, rvalue, avalue, user_data);
/* Tell assembly how to perform return type promotions. */
return flags;
}
#ifdef FFI_GO_CLOSURES
extern void ffi_go_closure_unix64(void) FFI_HIDDEN;
extern void ffi_go_closure_unix64_sse(void) FFI_HIDDEN;
#ifndef __ILP32__
extern ffi_status
ffi_prep_go_closure_efi64(ffi_go_closure* closure, ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*));
#endif
ffi_status
ffi_prep_go_closure (ffi_go_closure* closure, ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*))
{
#ifndef __ILP32__
if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64)
return ffi_prep_go_closure_efi64(closure, cif, fun);
#endif
if (cif->abi != FFI_UNIX64)
return FFI_BAD_ABI;
closure->tramp = (cif->flags & UNIX64_FLAG_XMM_ARGS
? ffi_go_closure_unix64_sse
: ffi_go_closure_unix64);
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}
#endif /* FFI_GO_CLOSURES */
#if defined(FFI_EXEC_STATIC_TRAMP)
void *
ffi_tramp_arch (size_t *tramp_size, size_t *map_size)
{
extern void *trampoline_code_table;
*map_size = UNIX64_TRAMP_MAP_SIZE;
*tramp_size = UNIX64_TRAMP_SIZE;
return &trampoline_code_table;
}
#endif
#endif /* __x86_64__ */