Branch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2012 Tilera Corp.
TILE Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <arch/abi.h>
#include <arch/icache.h>
#include <arch/opcode.h>
/* The first 10 registers are used to pass arguments and return values. */
#define NUM_ARG_REGS 10
/* Performs a raw function call with the given NUM_ARG_REGS register arguments
and the specified additional stack arguments (if any). */
extern void ffi_call_tile(ffi_sarg reg_args[NUM_ARG_REGS],
const ffi_sarg *stack_args,
size_t stack_args_bytes,
void (*fnaddr)(void))
FFI_HIDDEN;
/* This handles the raw call from the closure stub, cleaning up the
parameters and delegating to ffi_closure_tile_inner. */
extern void ffi_closure_tile(void) FFI_HIDDEN;
ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
/* We always allocate room for all registers. Even if we don't
use them as parameters, they get returned in the same array
as struct return values so we need to make room. */
if (cif->bytes < NUM_ARG_REGS * FFI_SIZEOF_ARG)
cif->bytes = NUM_ARG_REGS * FFI_SIZEOF_ARG;
if (cif->rtype->size > NUM_ARG_REGS * FFI_SIZEOF_ARG)
cif->flags = FFI_TYPE_STRUCT;
else
cif->flags = FFI_TYPE_INT;
/* Nothing to do. */
return FFI_OK;
}
static long
assign_to_ffi_arg(ffi_sarg *out, void *in, const ffi_type *type,
int write_to_reg)
{
switch (type->type)
{
case FFI_TYPE_SINT8:
*out = *(SINT8 *)in;
return 1;
case FFI_TYPE_UINT8:
*out = *(UINT8 *)in;
return 1;
case FFI_TYPE_SINT16:
*out = *(SINT16 *)in;
return 1;
case FFI_TYPE_UINT16:
*out = *(UINT16 *)in;
return 1;
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
#ifndef __LP64__
case FFI_TYPE_POINTER:
#endif
/* Note that even unsigned 32-bit quantities are sign extended
on tilegx when stored in a register. */
*out = *(SINT32 *)in;
return 1;
case FFI_TYPE_FLOAT:
#ifdef __tilegx__
if (write_to_reg)
{
/* Properly sign extend the value. */
union { float f; SINT32 s32; } val;
val.f = *(float *)in;
*out = val.s32;
}
else
#endif
{
*(float *)out = *(float *)in;
}
return 1;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
case FFI_TYPE_DOUBLE:
#ifdef __LP64__
case FFI_TYPE_POINTER:
#endif
*(UINT64 *)out = *(UINT64 *)in;
return sizeof(UINT64) / FFI_SIZEOF_ARG;
case FFI_TYPE_STRUCT:
memcpy(out, in, type->size);
return (type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
case FFI_TYPE_VOID:
/* Must be a return type. Nothing to do. */
return 0;
default:
FFI_ASSERT(0);
return -1;
}
}
void
ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
ffi_sarg * const arg_mem = alloca(cif->bytes);
ffi_sarg * const reg_args = arg_mem;
ffi_sarg * const stack_args = ®_args[NUM_ARG_REGS];
ffi_sarg *argp = arg_mem;
ffi_type ** const arg_types = cif->arg_types;
const long num_args = cif->nargs;
long i;
if (cif->flags == FFI_TYPE_STRUCT)
{
/* Pass a hidden pointer to the return value. We make sure there
is scratch space for the callee to store the return value even if
our caller doesn't care about it. */
*argp++ = (intptr_t)(rvalue ? rvalue : alloca(cif->rtype->size));
/* No more work needed to return anything. */
rvalue = NULL;
}
for (i = 0; i < num_args; i++)
{
ffi_type *type = arg_types[i];
void * const arg_in = avalue[i];
ptrdiff_t arg_word = argp - arg_mem;
#ifndef __tilegx__
/* Doubleword-aligned values are always in an even-number register
pair, or doubleword-aligned stack slot if out of registers. */
long align = arg_word & (type->alignment > FFI_SIZEOF_ARG);
argp += align;
arg_word += align;
#endif
if (type->type == FFI_TYPE_STRUCT)
{
const size_t arg_size_in_words =
(type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
if (arg_word < NUM_ARG_REGS &&
arg_word + arg_size_in_words > NUM_ARG_REGS)
{
/* Args are not allowed to span registers and the stack. */
argp = stack_args;
}
memcpy(argp, arg_in, type->size);
argp += arg_size_in_words;
}
else
{
argp += assign_to_ffi_arg(argp, arg_in, arg_types[i], 1);
}
}
/* Actually do the call. */
ffi_call_tile(reg_args, stack_args,
cif->bytes - (NUM_ARG_REGS * FFI_SIZEOF_ARG), fn);
if (rvalue != NULL)
assign_to_ffi_arg(rvalue, reg_args, cif->rtype, 0);
}
/* Template code for closure. */
extern const UINT64 ffi_template_tramp_tile[] FFI_HIDDEN;
ffi_status
ffi_prep_closure_loc (ffi_closure *closure,
ffi_cif *cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
#ifdef __tilegx__
/* TILE-Gx */
SINT64 c;
SINT64 h;
int s;
UINT64 *out;
if (cif->abi != FFI_UNIX)
return FFI_BAD_ABI;
out = (UINT64 *)closure->tramp;
c = (intptr_t)closure;
h = (intptr_t)ffi_closure_tile;
s = 0;
/* Find the smallest shift count that doesn't lose information
(i.e. no need to explicitly insert high bits of the address that
are just the sign extension of the low bits). */
while ((c >> s) != (SINT16)(c >> s) || (h >> s) != (SINT16)(h >> s))
s += 16;
#define OPS(a, b, shift) \
(create_Imm16_X0((a) >> (shift)) | create_Imm16_X1((b) >> (shift)))
/* Emit the moveli. */
*out++ = ffi_template_tramp_tile[0] | OPS(c, h, s);
for (s -= 16; s >= 0; s -= 16)
*out++ = ffi_template_tramp_tile[1] | OPS(c, h, s);
#undef OPS
*out++ = ffi_template_tramp_tile[2];
#else
/* TILEPro */
UINT64 *out;
intptr_t delta;
if (cif->abi != FFI_UNIX)
return FFI_BAD_ABI;
out = (UINT64 *)closure->tramp;
delta = (intptr_t)ffi_closure_tile - (intptr_t)codeloc;
*out++ = ffi_template_tramp_tile[0] | create_JOffLong_X1(delta >> 3);
#endif
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
invalidate_icache(closure->tramp, (char *)out - closure->tramp,
getpagesize());
return FFI_OK;
}
/* This is called by the assembly wrapper for closures. This does
all of the work. On entry reg_args[0] holds the values the registers
had when the closure was invoked. On return reg_args[1] holds the register
values to be returned to the caller (many of which may be garbage). */
void FFI_HIDDEN
ffi_closure_tile_inner(ffi_closure *closure,
ffi_sarg reg_args[2][NUM_ARG_REGS],
ffi_sarg *stack_args)
{
ffi_cif * const cif = closure->cif;
void ** const avalue = alloca(cif->nargs * sizeof(void *));
void *rvalue;
ffi_type ** const arg_types = cif->arg_types;
ffi_sarg * const reg_args_in = reg_args[0];
ffi_sarg * const reg_args_out = reg_args[1];
ffi_sarg * argp;
long i, arg_word, nargs = cif->nargs;
/* Use a union to guarantee proper alignment for double. */
union { ffi_sarg arg[NUM_ARG_REGS]; double d; UINT64 u64; } closure_ret;
/* Start out reading register arguments. */
argp = reg_args_in;
/* Copy the caller's structure return address to that the closure
returns the data directly to the caller. */
if (cif->flags == FFI_TYPE_STRUCT)
{
/* Return by reference via hidden pointer. */
rvalue = (void *)(intptr_t)*argp++;
arg_word = 1;
}
else
{
/* Return the value in registers. */
rvalue = &closure_ret;
arg_word = 0;
}
/* Grab the addresses of the arguments. */
for (i = 0; i < nargs; i++)
{
ffi_type * const type = arg_types[i];
const size_t arg_size_in_words =
(type->size + FFI_SIZEOF_ARG - 1) / FFI_SIZEOF_ARG;
#ifndef __tilegx__
/* Doubleword-aligned values are always in an even-number register
pair, or doubleword-aligned stack slot if out of registers. */
long align = arg_word & (type->alignment > FFI_SIZEOF_ARG);
argp += align;
arg_word += align;
#endif
if (arg_word == NUM_ARG_REGS ||
(arg_word < NUM_ARG_REGS &&
arg_word + arg_size_in_words > NUM_ARG_REGS))
{
/* Switch to reading arguments from the stack. */
argp = stack_args;
arg_word = NUM_ARG_REGS;
}
avalue[i] = argp;
argp += arg_size_in_words;
arg_word += arg_size_in_words;
}
/* Invoke the closure. */
closure->fun(cif, rvalue, avalue, closure->user_data);
if (cif->flags != FFI_TYPE_STRUCT)
{
/* Canonicalize for register representation. */
assign_to_ffi_arg(reg_args_out, &closure_ret, cif->rtype, 1);
}
}